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Abstract

Language Models are the underpin of all mod-
ern Natural Language Processing (NLP) tasks.
The introduction of the Transformers archi-
tecture has contributed significantly into mak-
ing Language Modeling very effective across
many NLP task, leading to significant advance-
ments in the field. However, Transformers
come with a big computational cost, which
grows quadratically with respect to the input
length. This presents a challenge as to under-
stand long texts requires a lot of context. In
this paper, we propose a Fine-Tuning frame-
work, named CoreLM, that extends the archi-
tecture of current Pretrained Language Mod-
els so that they incorporate explicit entity in-
formation. By introducing entity representa-
tions, we make available information outside
the contextual space of the model, which re-
sults in a better Language Model for a fraction
of the computational cost. We implement our
approach using GPT2 and compare the fine-
tuned model to the original. Our proposed
model achieves a lower Perplexity in GUMBY
and LAMBDADA datasets when compared to
GPT2 and a fine-tuned version of GPT2 with-
out any changes. We also compare the models’
performance in terms of Accuracy in LAM-
BADA and Children’s Book Test, with and
without the use of model-created coreference
annotations.

1 Introduction

Language Models (LMs) have seen significant im-
provements in performance due to the Transform-
ers architecture (Vaswani et al., 2017). The re-
sulting Pretrained Language Models (PLMs) such
as BERT (Devlin et al., 2019), GPT2 (Radford
et al., 2019) and XLNet (Yang et al., 2019) have
contributed to significant advancements in many
Natural Language Processing (NLP) tasks. PLMs,
regardless of their training objective and method-
ology, aim to learn contextualized text representa-
tions. As such, the available context during training

has a key role in the models performance.
The quadratic computation complexity in the at-

tention mechanism of the Transformer architecture,
in terms of input sequence length, has been a limit-
ing factor to the amount of contextual information
the models can have at each step. To make this ar-
chitecture more efficient, a plethora of approaches
have been introduced (Kitaev et al., 2020; Beltagy
et al., 2020; Child et al., 2019, inter alia), aiming
to lower the computational complexity without sac-
rificing performance. Tay et al. (2020) summarizes
these approaches and categorizes them based on
type of attention mechanism in their survey. Yet,
even with linear complexity, physical resources will
always limit the amount of contextual information
that can be handled simultaneously.

In terms of language, entities represent a natu-
ral way to tie words together through large pieces
of discource. In NLP, Coreference Resolution is
the task that aims to identify and group these en-
tity mentions together, when they refer to the same
real world entity (Stylianou and Vlahavas, 2021).
Therefore, Coreference Resolution presents a nat-
ural way to link the context that we are currently
handling with distant information, far outside the
capabilities model architectures and current hard-
ware resources. However, while this information is
present in the text, it is usually not annotated and
when annotated are very sparse and in small quanti-
ties making it extremely difficult to train large LMs
(Kunz and Hardmeier, 2019).

In this paper we present a framework to effec-
tively use coreference annotations to further fine-
tune large PLMs, increasing their performance far
more than just by fine-tuning on the same data.
By using large PLMs we take advantage of exist-
ing resources that are expensive to reproduce and
come with a big environmental cost (Strubell et al.,
2019). What is more, fine-tuning takes advantage
of the massive amount of data that essentially ini-
tialize the model, making it possible to introduce



71

new capabilities to models with small amounts of
annotated data.

In our approach, we use GPT2 as our base model
and extend its architecture with the addition of a
new Entity-Gating layer that handles entity annota-
tions along with a gating mechanism that handles
information flow between the base model and the
Entity-Gating layer. As such, our approach uses en-
tity representations when they are available through
both training and inference, without imposing any
constraints to the model’s functionality.

For our experiments, we compare the perfor-
mance of GPT2, post and pre fine-tuning, with
and without our changes in a series of relative
tasks. Furthermore, since most coreference an-
notated datasets are either very small or hard to
acquire, we use GUMBY (Gessler et al., 2020) as
our fine-tuning dataset which is a model annotated
corpus. In addition, by using noisy annotations we
aim to show the resilience of our approach to noise
and the universality of our framework. Our results
highlight the effects of our framework in language
modeling, modeling long-range dependencies, and
in specific word types where our fine-tuned model
achieves better performance than GPT2.

2 Background

This section provides a concise overview of the
Transformers architecture (Vaswani et al., 2017),
which is the foundation of our approach, followed
by a brief explanation of autoregressive language
modeling used by our base model, GPT2.

2.1 Transformers

The Transformers architecture is based on stacked
Transformer blocks, which take as input a k× d
input vector and return a same size vector after
applying a sequence of operations, where k and d
denote the context window size and hidden size
respectively. Each block is consisted of a multi-
head masked self attention layer and a two layer
position-wise feed-forward network, each rapped
with a layer normalization (LayerNorm) layer (Ba
et al., 2016) and a residual connection (He et al.,
2016). Formally, given an input X the encoder and
decoder architecture is described as:
Encoder:

Y = LayerNorm(Self-Attention(X))+X

Z = LayerNorm(PositionFFN(Y))+Y
(1)

Decoder:

T = LayerNorm(Self-Attention(T))+T

P = LayerNorm(Self-Attention(T,Z))+T

H = LayerNorm(PositionFFN(P))+P

(2)

However, the decoder can also be used indepen-
dently by eliminating the second Self-Attention
layer.

Self-Attention: The self-attention mechanism
takes as input a vector X and projects it into Q,
K, V representations for the Query, Key, Value at-
tention scheme. Using the projected vector, this
mechanism is formalized as:

Self-Attention = softmax(
QK
√

d
)V (3)

where d is the size of the Q, K, V vectors. Usu-
ally the self-attention is multi-headed, in which
multiple attentions are calculated in parallel, with
the outputs of the multi-headed attentions being
concatenated.

PositionFFN: Given an input vector X , this layer
applies two position-wise linear transformations
with a ReLU activation in between. The Posi-
tionFFN layer is formalized as:

PositionFFN =max(0,XW1+b1)W2+b2 (4)

with W1,b1 and W2,b2 being the trainable weight
and bias parameters of each layer respectively.

2.2 Autoregressive Language Modeling

Autoregressive language models estimate the dis-
tribution over a sequence of word tokens by fac-
torizing their joint probabilities as the product of
conditional probabilities (Bengio et al., 2003). For
a context vector of tokens U = (u1, . . . ,uk), this is
formally described as:

p(U) =
k

∏
i=1

p(uk∣u1, . . . ,uk−1) (5)

where, k is the context window size.
GPT2 is an autoregressive LM, based on the

previously described Transformer’s decoder archi-
tecture. In comparison to the previously described
architecture, it uses masked multi-headed attention
to prevent leftward information flow in the decoder.
For further information about the model’s architec-
ture we refer readers to Radford et al. (2019).
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3 Coreference-aware Language
Modeling

Language models are limited to the amount of in-
formation they can process based on the available
context window k (eq. (5)). However, increasing k
will lead to an exponential increase in computation
complexity. As such, we implicitly increase the
available information, without increase the context
window, using coreference annotations.

We do this by introducing entity-representations
(§3.2), in the form of vectors, that are utilized by
the model to infuse the respective entity informa-
tion to all the tokens in the sequence that are part
of entities. The entity-representations are created
from the whole discourse available, hence holding
contextual information that are very distant to the
context window. As such, we make no alterations
to the language modeling objective. These vector
representations are introduced to the model via an
Entity-Gating layer (§3.3) that is added to model
architecture.

3.1 Architecture
Our base model, GPT2, is comprised of N stacked
Transformer decoder blocks, where each is con-
sisted of a multi-headed attention layer and a
position-wise feedforward layer with residual con-
nections and layer normalizations. We extend its
architecture by adding an Entity-Gating layer after
the Transformer decoders (eqs. (6) to (9)).

h0 =UWe+Wp (6)

hl = transformer_decoder(hl−1)∀i ∈ [1,n] (7)

he = entity_gating(hn,E) (8)

p(U) = softmax(heW T
e ) (9)

Here, n is the number of layers, We is the token
embedding matrix, Wp is the position embedding
matrix and E is the context vector of entity repre-
sentations. Figure 1 illustrates a high level view of
the model of our proposed architecture.

3.2 Entity representations
Each entity is represented by a learned vector Ei ∈

R1×dembd , where dembd is the embedding dimension
of the model (We). These entity vectors are stored

Figure 1: CoreLM Architecture as an extention of
GPT2 model (area within dashed border).

in a persistent set of entities E so that they can be
utilized through out the whole discourse scope. We
use E0 as a static entity representation for tokens
that are not part of an entity.

The entity representations are initialized as a
vector of ones. This design choice is based on the
architecture of the Entity-Gating layer (§3.3) and
the learning process. Specifically, as each token is
accompanied with an entity representation. Initial-
izing the entity representations this way introduces
less noise during the first occurrence of an entity
mention. It also provides a dynamic way of us-
ing the same architecture, even when no entity are
available.

3.3 Entity-Gating

Our proposed Entity-Gating layer (Figure 2) fol-
lows the same design principles of the GPT2 Trans-
former decoder blocks, using a Multi-Headed At-
tention layer, Layer Normalization layers and resid-
ual connections. However, we replace the Masked
Multi-Head Self Attention layer with an Entity-
Attention layer and use a learnable gating mecha-
nism to control flow of information. Formally, the
Entity-Gating layer is described as:

EGA = LayerNorm(EntityAttention(hl))+hl
(10)
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Figure 2: (left) Entity-Gating layer architecture.
(right) Entity-Attention mechanism. In the illustration,
we assume a single attention head for simplicity.

EGB = LayerNorm(PositionFFN(EGA))+EGA

(11)

he = LayerNorm(Gate(EGB,hl)) (12)

The LayerNorm and PositionFFN are used as de-
scribed in Section 2.1, from the original architec-
ture.

Our EntityAttention layer uses the Query (Q),
Entity (E), Value (V) scheme described in eq. (13)
(Stylianou and Vlahavas, 2020). In comparison to
their variation, we use a multi-headed approach so
that we limit the effect of entity representation to
the tokens closer to the entity mention. As such,
the attention mechanism is defined as:

EntityAttention = Softmax(
QE
√

dk
)V (13)

where dk is the dimension of the queries and enti-
ties in each head. Finally, the Gate layer combines
the layer input hl with EGB using the following
gating mechanism before applying a layer normal-
ization to the output:

ge = δ(σ(V hl)) (14)

ze = (1−ge)⊙EGB+ge⊙hl (15)

in which σ is a sigmoid function, V is a param-
eter vector, ⊙ is the Hadamard product and δ is
a gate flow rate. We use a gate flow rate to en-
sure that the entity information is considered by
our final model. By definition, δ Ð→ 0 results in no
pass-through of information from the gate, δ Ð→ 1
results in completely dependent pass-through from
the learned vector and δ Ð→ 0.5 enforces at least a
fifty-fifty split of information.

4 Experiments

We Fine-Tune our entity-aware LM with the orig-
inal training objective of maximizing the log-
probability of U (eq. (5)). Language Models are
evaluated in terms of Perplexity (PPL) which is the
exponentiated average negative log probability per
word prediction, as we are using a word-level base
model. As such, PPL is a direct reflection of the
model’s loss. For Fine-Tuning we use GUMBY,
a model annotated coreference corpus, containing
4960 documents.

The entity-aware fine-tuned LM is evaluated
on GUMBY, using the created entity representa-
tions during Fine-Tuning and in a Zero-Shot set-
ting, without any further training, on LAMBADA,
WikiText2, WikiText103 in terms of PPL and on
LAMBADA and CBT in terms of Accuracy. We
also evaluate the effect of newly introduced entity
annotations from a separate Coreference Resolu-
tion model on the Zero-Shot evaluated corpora, to
investigate their effect in the model’s performance.
Detail information about the model parameters and
experimental setup are provided in Appendix A.
Appendix B enlists our methodology to annotate
the LAMBADA and CBT corpora with coreference
clusters, used in Zero-Shot evaluation only.

4.1 Fine-Tuning

In order to fine-tune the model, using the annotated
entity information in the GUMBY corpus (Gessler
et al., 2020), we re-formatted it by introducing a
second input stream along the raw text, which as-
signs a unique entity identifier in the corresponding
token in the text (Stylianou and Vlahavas, 2020).

We similarly use ∅ to identify tokens that are
not part of an entity. However, in order to utilize
the encapsulated entity information present, we
create multiple instances of the source files each
annotated with a single layer of entity annotations.
This comes in comparison with their approach in
which only the outer entities are considered. We
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Table 1: Language Modeling performance evaluation on fine-tuning and zero-shot setting. The fine-tuned models
are trained only on GUMBY and evaluated on LAMBADA, WikiText2 and WikiText103 test sets.

GUMBY
(PPL)

LAMBADA
(PPL)

WikiText2
(PPL)

WikiText103
(PPL)

GPT2
Zero-Shot

66.19 26.49 30.63 35.81

GPT2
+Fine-Tuning

52.60 28.93 32.36 35.53

GPT2
+CoreLM
+Fine-Tuning

46.97 26.21 31.80 29.51

treat all entities as encapsulated entities, so that the
second instance of the source file is only annotated
with the entities that were identified within the span
of text of first entity layer (example in Appendix A
- Table 3). As a result, our final data was consisted
of 13070 documents, which is approximately triple
the original size. As the original corpus does not
provide with predefined split, we held out 10%
of the data for evaluation while maintaining the
balance between source types.

The fine-tuned model is compared against the
base model (GPT2) and a fine-tuned version of the
base model without any entity information, on the
held out data of GUMBY. As shown in Table 1 our
approach significantly improves the model’s perfor-
mance after fine-tuning compared to the original
model.

4.2 Language Modeling

For the Language Modeling evaluation we use
WikiText2, WikiText103 (Merity et al., 2016) and
LAMBADA (Paperno et al., 2016) in a Zero-Shot
evaluation setting. We compare the previously fine-
tuned entity-aware LM with the base-model, with
and without any Fine-Tuning on GUMBY. The re-
sults are showcased in Table 1.

We notice that fine-tuning GPT2 with GUMBY
does not generalize well in other domains, leading
in a significant drop in performance in both LAM-
BADA and WikiText2. In WikiText103, in which
the unknown words are proper names, the fine-
tuned version performs better. With CoreLM, our
model avoids catastrophic forgetting and presents
similar performance gains in all corpora, result-
ing in a slight improvement in LAMBADA and
WikiText103 and a slight impairment in WikiText2
compared to the base model.

4.3 LAMBADA
The LAMBADA corpus is used to evaluate our
approach, in a Zero-shot setting. LAMBADA is de-
signed to test the model’s ability to use long range
dependencies in text. Long range dependency, in
this context, is consider to be a context window of
50 tokens, which the architecture can handle due to
the 1024 token window context. During evaluation,
we use use model acquired coreference annotation
to the corpus, using a pretrained model Corefer-
ence Resolution model (Appendix B). Hence, we
also evaluate the effect of coreferent information.
Without Coreference: Comparing the model’s
performance to GPT2, our approach achieves in-
creased Accuracy in correctly predicting the last
word, with scores 46.67% for GPT2 and 48.11%
for CoreLM (statistically significant with paired
t-test p << 0.01 - Table 2). This increase in per-
formance is slightly bigger if we compare it to the
fine-tuned GPT2 model on GUMBY.
With Coreference: Coreference annotations of-
fer a slight increase in performance, with 0.28%
Accuracy increase compared to the CoreLM ver-
sion without coreference annotations. While this in-
crease is not a statistically significant contribution,
it is an expected behavior given that the entity rep-
resentations were initialized during the zero-shot
evalutation (Appendix B). Furthermore, the con-
text of each of LAMBADA entries is well inside
the capabilities of the GPT2 model architecture
and consequently the coreference annotations did
not provide any information that were not already
accessible by the model.

4.4 Children’s Book Test
The Children’s Book Test (CBT) (Hill et al., 2016)
was designed to evaluate LMs in different word cat-
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Table 2: Zero-Shot evaluation on LAMBADA and Children’s Book Test (CBT) with and without coreference
annotations.

LAMBADA
(Acc)

CBT-CN
(Acc)

CBT-NE
(Acc)

CBT-V
(Acc)

CBT-P
(Acc)

GPT2
Zero-Shot

46.67 84.48 64.52 92.24 91.00

GPT2
+Fine-Tuning

46.63 84.02 64.24 92.04 90.80

GPT2
+CoreLM
+Fine-Tuning

48.11 84.16 64.48 92.40 90.88

GPT2
+CoreLM
+Fine-Tuning
+Coref

48.39 84.16 64.56 92.40 91.97

egories. In comparison to GPT2, we report scores
in all categories, i.e. Common Nouns (CN), Named
Entities (NE), Verbs (V) and Prepositions (P). CBT
is designed as a cloze test, in which a hidden word
should be predicted, given ten possible options.
We formulate this task as a language modeling task,
similar to Radford et al. (2019), in which we con-
dition the sentence with each option and calculate
its probability, choosing the one with the highest
probability as the final prediction. Similarly to
LAMBADA, we use a pretrained Coreference Res-
olution model to annotate the corpus with newly
initialized entity mentions.

Table 2 shows the results in terms of Accuracy
with and without the use of coreference annota-
tions.
Without Coreference: Comparing the base
model, with a fine-tuned version of the base model
and CoreLM, it becomes obvious that the GUMBY
does not generalize well with CBT. As a result,
we note a drop in performance by just fine-tuning
the model in all word categories. However, the
CoreLM fine-tuned version results in better perfor-
mance compared to the GPT2 fine-tuned model,
with insignificant differences from the base model
in almost all categories, with the exceptions of
Verbs in which we notice a slightly better Accuracy.
With Coreference: Including coreference an-
notation to the CoreLM model results in small
changes in performance in all categories. Specifi-
cally, there is no gain in performance when using
entities in CN corpus variant. However, in the NE
variant we achieve a 0.16% increase. This very

small increase is because in the majority of the
cases, the cloze test answers are similar to the sur-
face forms of the entities as found in the context
and as such the correlation is very easy for model
to make without the need of extra information. For
the V variant of the corpus, there is no change to the
performance while using coreference annotations
as expected, while for the P variant, there is a in-
crease of 1.09% (statistically significant with t-test
p< 0.01). This increase in prepositions is attributed
to the accurate resolution of the nouns as mentions
of entities that changed their representations.

The performance changes, while using corefer-
ence annotation are indicative of the impact of en-
tity representations in CoreLM. As our base model
is capable of contextualizing each entry in CBT
due to it’s context window, we expect these im-
provements to be bigger in corpora which the infor-
mation outside the context window of the model is
required.

5 Error Analysis

In our experiments, we showcased the effects of
CoreLM on the base model, in different scenarios.
In this section we investigate the cases in which
the base model performed better than the CoreLM
model and vice-versa. For that reason, we manu-
ally compared the predictions made between the
two models, using the GUMBY Fine-Tuned GPT2
model as the deciding factor in our observations
between the effects of CoreLM Fine-Tuning and
simple Fine-Tuning. We limit our analysis on the
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CBT corpus which provides a meaningful way to
evaluate the changes due to its word category vari-
ants.

In our analysis, we noticed that fine-tuning on
GUMBY lead to wrong choices by the model in
all categories, which were not made by the GPT2.
However, when CoreLM was used with corefer-
ence annotations, 83% of those cases were cor-
rected. The vast majority of the corrected cases
were in the Prepositions and Named Entities word
categories, with only 19% of the corrected ones in
Verbs and Common Noun word categories. A posi-
tive correlation between corrected cases and correct
coreference annotations was noticed, as cases in
which CoreLM persisted on the wrong option also
had different coreferent annotations than the cor-
rect sentence.

In the cases where CoreLM performed better
than both the fine-tuned and base model, we no-
ticed the same correlation between coreference an-
notations that directly affected the available op-
tions. Unavailingly, a small number of cases in
which, the nouns following a preposition or the
Named Entities themselves were annotated in a
wrong coreference cluster, lead to different prob-
ability distributions for the available options and
eventually to making the wrong selection. Further-
more, comparing the predictions made by CoreLM
with and without the use of coreference annotations,
we notice that the majority of the errors persisted
when the option was not directly annotated in a
coreference cluster.

6 Discussion

Our approach takes advantage of PLMs and in-
creases their performance by exploiting distant con-
textual information in the form of entity representa-
tions using coreference annotations. What is more,
it can be used with and without the existence of
such information, hence not hindering the flexibil-
ity of PLMs. Our experiements when Fine-Tuning
GPT2 and the GPT2 with CoreLM on the same
data, without using coreference information show
that even when the fine-tuning data are not best
suited for the downstream tasks, CoreLM main-
tains more of the original model’s performance,
making it a more resilient Fine-Tuning methodol-
ogy. In addition, as CoreLM is very modular, it
can be applied to the majority of LMs, including
non-autoregressive approaches such as BERT.

In Language Modeling, our approach achieved

significantly lower Perplexity in all corpora com-
pared to the GPT2 Fine-Tuned version. What is
more, GUMBY proved to be an ill-suited corpus to
fine-tune for both LAMBADA and WikiText based
on the post Fine-Tuning performance. Regardless,
Fine-Tuning with CoreLM demonstrated signifi-
cant gains, even compared to the pre Fine-Tuned
model.

In both LAMBADA and CBT, we show increase
in Accuracy compared to GPT2 pre and post Fine-
Tuning. Most notably, the Named Entity and Prepo-
sitions word types showed the biggest increase in
CBT, with Common Nouns suffering in compari-
son compared to the pre Fine-Tuned version and
Verbs attaining a slightly better Accuracy. Our
error analysis highlights the effect of coreference
annotations to these changes in performance. In
all cases, Fine-Tuned GPT2 achieved lower scores
in all word categories compared to CoreLM Fine-
Tuned, which indicated that GUMBY is not a suit-
able fine-tuning corpus for these tasks.

Using model-created coreference annotations
during Zero-Shot evaluation did increase the per-
formance slightly. While the performance increase
is minor, the entity representations used were only
initialized from the scope of each example as there
was not long contextual information to take ad-
vantage off. What is more, coreference annota-
tions increased the performance regardless of the
information being within the context window in all
the examples, indicating that further gains can be
achieved by using coreference annotations exten-
sively over large pieces of discourse.

Unavailingly, our approach is based on the abil-
ity of other models to accurately predict corefer-
ence clusters so that CoreLM can exploit the coref-
erent mentions. The errors in the predicted clusters
introduce noise, to both entity representations and
the final model. What is more, maintaining a persis-
tent set of entity representations, is computationally
expensive and can be very burdening when consid-
ering a large collection of documents. As a result,
an entity management mechanism, similar to the
one used in Toshniwal et al. (2020), would be re-
quired for CoreLM to scale efficiently to bigger
document collections.

7 Related Work

Early entity-aware LMs were trained from scratch
with entity information available through the train-
ing process. Specifically, Yang et al. (2017) and Ji
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et al. (2017) both introduced models that used refer-
ence information with attention-based mechanisms
to incorporate them into the model. Yang et al.’s
(2017) model made use of both intra-linguistic,
coreferring mentions in text, and extra-linguistic,
tables and lists, features through three different
components, only creating learnable embeddings
for intra-linguistic features. Ji et al.’s (2017) model
was focused only on intra-linguistic mentions, i.e.
corefererring mentions, and introduced additional
control variables indicating if the next token is part
of an entity as well as the number of remaining en-
tity tokens. Recently, Kunz and Hardmeier (2019)
extended Yang et al.’s (2017) approach by using
learnable entity embeddings. These approaches
also have the ability to autoregressively predict the
entity of the following word and constrain the word
generation to a specific entity.

EnGen combines EntityNLM (Ji et al., 2017)
with S2SA (Sutskever et al., 2014), to train a gener-
ative language model that uses both previous sen-
tence representations and entity representations in
order to generate coherent text (Clark et al., 2018).
In comparison to their approach, our approach
handles entities and information flow differently.
Stylianou and Vlahavas (2020) also introduced a
Transformer-based approach towards incorporating
learnable entity representations, using multi-head
attentions inside all the Transformer blocks of the
model. In comparison to past approaches, this ap-
proach was only focused on the effective use of
entity information in a LM and did not predict the
following entity information. However, all of these
models required high quality annotated data to be
trained from scratch which were limited and of spe-
cific genre (Kunz and Hardmeier, 2019; Stylianou
and Vlahavas, 2020).

Other methods have focused on using only
extra-linguistic information, ignoring pronouns and
nominal mentions in text. ERNIE (Zhang et al.,
2019) uses Knowledge Graphs (KG) to extract enti-
ties for identified named entities. However, ERNIE
represents entity information using a pre-trained
knowledge embedding model, trained on the used
KG, and does not create dynamic entity represen-
tations. Liu et al. (2019) use Knowledge Bases to
learn word type embeddings based on the learned
type representations. Similar to past approaches
(Ji et al., 2017; Kunz and Hardmeier, 2019) it can
autoregressively constrain the prediction to a cer-
tain entity type. The type information is restricted

using pre-defined vocabularies making the model
less dynamic in its entity predictions. Both ap-
proaches have been found to be very effective for
the tasks that were respectively designed, however
they lack in expandability of their domain of appli-
cation without requiring complete retraining.

8 Conclusions and Future Work

In this paper we presented CoreLM, a modular
Fine-Tuning framework for PLMs to exploit model-
created coreference annotations in order to create
better mention representations and an overall better
LM. In our experiments we showcased a perfor-
mance increase when evaluating in a zero-shot set-
ting, compared to the similarly fine-tuned model,
even when the fine-tuning corpus did not general-
ize well to the end tasks. Our analysis shows that
coreference annotations play a significant role in
both Fine-Tuning and in downstream task perfor-
mance, with correct annotations leading to better
performance when used.

In addition, our work helps in adding a new fron-
tier to Coreference Resolution through the effective
use of coreference annotations in Language Mod-
eling. In this paper we showcased the effects of
coreference annotation even when the information
is within the context window of the model. Using
coreference annotations can further lead to the de-
crease of the required context window and boost
approaches like Shortformer (Press et al., 2020),
leading to better and more efficient LMs.

In the future we aim to create a more efficient
approach to LM through the use of both intra-
linguistic (Coreference) and extra-linguistic (KG)
features. Undeniably, KGs provide a means for
structured, high quality information that cannot be
found in a single text. We believe that an informa-
tion fusion from coreference annotation and graph
nodes, along with short context window will not
be computationally prohibitive and lead in better,
information rich, LMs.
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Table 3: Data example from the GUMBY corpus, as formatted for the task. Other corpora are similarly formatted,
with multiple rows of entity annotation when coreference information were needed.

X1∶12 The prime minister of Israel , Binyamin Netanyahu , told a news
E1∶12 11 11 11 11 11 ∅ 11 11 ∅ ∅ 13 13
E1∶12 ∅ ∅ ∅ ∅ 7 ∅ ∅ ∅ ∅ ∅ ∅ ∅

A Experimental Setup

In all our experiments we use the GPT2-small con-
figuration with 124M parameters, with 12 layers
and 12 attention heads each for our base model. We
add one Entity-Gating layer after the base model’s
Transformer layers, which has a masked multi-
headed entity attention layer with 12 heads and
a 10% dropout between layers. The gate flow rate
(δ ) is set to 0.5. These hyperparameters were found
to perform best from [6, 8, 10, 12, 16] number of
heads and [0.2, 0.5, 0.7, 1] gate flow rate (δ ) after
manual tuning.

All datasets are tokenized using the pre-trained
GPT2 tokenizer, which uses Byte Pair Encoding
(BPE) (Sennrich et al., 2016). We also apply a
simple de-tokenization based on author’s responses
in the official GitHub repository as the exact de-
tokenizer used to achieve the published results has
not been made available.1 We use the OpenAI
LAMBADA split for evaluation and remove the
The Jungle Book by Rudyard Kipling from CBT
as it was found to be part of the GPT2 original
training set (Radford et al., 2019). As such, all
scores are based on our own experiments and in
some cases vary (both positively and negatively)
from the reported scores.

Our model has 132M parameters, a 6% increase,
after the addition of the Entity-Gating layer and
the entity representations. It is fine-tuned on the
GUMBY corpus for 10 epochs, with a batch size
of 128. Rectified Adam (Liu et al., 2020) was used
as the optimizer with 100 steps of warm up and a
linearly decaying learning rate with a starting value
of 1e-5. During Fine-Tuning, the entity represen-
tations are updated after every training step. We
freeze all 12 GPT2 Transformer layers and apply
gradients only to the input layers (We and Wp), out-
put layers (the language modeling head) and the
Entity-Gating layer. During Zero-Shot evaluation
we do not use any entity information and as such
we discard the persistent entity representations.

All experiments were run on a single Titan V
12GB graphics card, using half precision floating-

1https://github.com/openai/gpt-2/issues/131

point format, Zero Stage 2 optimization (Rajbhan-
dari et al., 2020) and DeepSpeed (Rasley et al.,
2020). In this setup, fine-tuning takes approxi-
mately 8 hours, with no noticeable differences in
terms of inference speed compared to GPT2.

B Coreference Annotations

The vast majority of the datasets do not come with
coreference annotations, a process which is very
expensive and time consuming if it was to be done
by human annotators. The same issue rises from
the use of free text from web sources. In order
to fully exploit our proposed framework, we uses
the pre-trained Coreference Resolution model by
Toshniwal et al. (2020) to create noisy coreference
annotations for LAMBADA and Children’s Book
Test (CBT) corpora.

Our approach does not have an entity-linking
component with which the originally identified en-
tities from the GUMBY corpus could be linked
with newly identified entities in the other corpora.
As such, the persistent entity representation used
in the original GUMBY corpus were reset for each
corpora. Hence, the resulting entity representa-
tion are not as descriptive as the GUMBY created
ones as, there was little context involved and we
only used the corpora for zero-shot evaluation, not
allowing for iteratively creating richer entity repre-
sentations.

LAMBADA: No major preprocessing was re-
quired for the LAMBADA dataset. We did treat
each entry in the dataset as a new document so
that coreference annotations did not point to enti-
ties on other unrelated entities. The resulted entity
representation were created as an average of the
hidden representation of all the entity mention in
that entry (§3.2), excluding the last word and its
entity annotation which were to be predicted.

Children’s Book Test: For CBT, we first formu-
lated the corpus to fit our Language Modeling ap-
proach (§4.4), conditioning each choice with one
of 10 possible candidates and annotating the doc-
ument as if the candidate was the answer in the
cloze test. During evaluation, we predicted coref-

https://github.com/openai/gpt-2/issues/131
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erence clusters for the context conditioned with all
possible candidate choices.


