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Abstract

While multi-party conversations are often less
structured than monologues and documents,
they are implicitly organized by semantic level
correlations across the interactive turns, and
dialogue discourse analysis can be applied to
predict the dependency structure and relations
between the elementary discourse units, and
provide feature-rich structural information for
downstream tasks. However, the existing cor-
pora with dialogue discourse annotation are
collected from specific domains with limited
sample sizes, rendering the performance of
data-driven approaches poor on incoming di-
alogues without any domain adaptation. In
this paper, we first introduce a Transformer-
based parser, and assess its cross-domain per-
formance. We next adopt three methods to
gain domain integration from both data and
language modeling perspectives to improve
the generalization capability. Empirical results
show that the neural parser can benefit from
our proposed methods, and performs better on
cross-domain dialogue samples.

1 Introduction

Text-level discourse parsing is to convert a piece
of text into a structured format, by identifying the
links and relations between Elementary Discourse
Units (EDUs). Incorporating discourse information
is proved beneficial for various natural language
processing tasks such as machine comprehension
(Narasimhan and Barzilay, 2015) and summariza-
tion (Xu et al., 2020). Since discourse parsing
is involved in capturing and comprehending var-
ious semantic and pragmatic phenomena as well
as understanding the structural discourse proper-
ties, it is quite challenging for machines to con-
duct automatic processing. There are a series of
studies that provide theories and data for devel-
oping computational solutions, such as the Penn
Discourse Treebank (PDTB) (Prasad et al., 2008)
with sentence-level annotation, and the Rhetorical

Figure 1: A multi-party dialogue example (Shi and
Huang, 2019) with discourse link and relation annota-
tion in the STAC Corpus (Asher et al., 2016). “Ack.”
is short for relation “Acknowledgement”, “QAP.” for
“Question-Answer-Pair”, and “Q-Elab.” for “Question-
Elaboration”. The links in red form a non-projective
structure (McDonald et al., 2005).

Structure Theory (RST) (Carlson et al., 2002) with
document-level annotation. In RST treebanks, each
processed passage is in a hierarchical constituency-
based tree structure, and adjacent EDUs are merged
to form larger spans1 recursively (Li et al., 2014a).

Recently, the Segmented Discourse Represen-
tation Theory (SDRT) is proposed for multi-party
dialogue discourse parsing (Asher and Lascarides,
2005; Asher et al., 2016), which is different from
RST whose annotations are on documents. Ad-
ditionally, SDRT-based annotations contain non-
projective links. For example, as shown in Figure
1, a discourse structure will become non-projective
when it is impossible to draw the relations on the
same side without crossing (McDonald et al., 2005).
In this case, the constituency-based structure is
not applicable. As a result, the SDRT proposed to
transform dialogue discourse trees to a dependency-
based structure, where EDUs are directly linked to
their precedents without forming upper-level spans.

Since manual parsing is labor-intensive and time-
consuming, automatic discourse analysis under the

1The merged spans are named as complex discourse units
(CDUs) in which multiple EDUs and/or CDUs are grouped
together to form a single argument to a discourse relation
(Asher et al., 2016)
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Figure 2: A multi-party dialogue example with its dis-
course annotation from the Molweni (Li et al., 2020).

RST-DT STAC Molweni

Training Sample Size 347 1091 9000
Test Sample Size 38 100 500
Average EDU Number 56.03 10.95 8.82
Average Word Number 531.8 46.7 96.1
Annotation Scheme RST SDRT SDRT
Relation Number 18 17 17
Data Domain News Game Ubuntu
Conversational Data No Yes Yes

Table 1: Data statistics of training samples from three
text-level discourse parsing treebanks.

SDRT theory raises research interest (Badene et al.,
2019). Previous models show reasonable results on
benchmark treebanks (Shi and Huang, 2019), and
utilizing structural information benefits follow-up
applications such as dialogue summarization (Feng
et al., 2020). However, domain generality is less
studied yet important in practical use cases. Exist-
ing treebanks only contain limited training data (as
shown in Table 1) and limited domain coverage. An
SDRT parser trained on strategic game conversa-
tions (Asher et al., 2016) may not perform well on
technical discussions (Li et al., 2020), and the sub-
optimal parsing could further affect downstream
task performance. Moreover, due to the annotation
complexity, the labeled samples from various do-
mains are not readily available for transfer learning
(Yu et al., 2019).

In this paper, we evaluate and improve the cross-
domain generality of neural dialogue discourse
parsing: (1) we conduct a statistical analysis on
existing dialogue discourse treebanks, and figure
out the possible factors resulting in the gap across
multiple domains from a data perspective; (2) we
introduce a Transformer-based neural model for the
dependency-based discourse parsing; (3) we pro-
pose three methods for better sharing the effective
features across dialogue domains: utilizing prior
language knowledge, cross-domain pre-training,
and vocabulary refinement. Experimental results

Figure 3: Word level vocabulary overlap of three text-
level discourse treebanks. The vocabulary sizes of RST-
DT, STAC, and Molweni are 17824, 3642, and 18936,
respectively.

Figure 4: Discourse relation distributions of STAC and
Molweni. X axis denotes the label frequency.

on STAC (Asher et al., 2016) and Molweni (Li
et al., 2020) show that the parsing performance of
single-domain training drops significantly on the
out-of-domain samples, and it can be improved by
our proposed methods.

2 Corpora Analysis

In this section, we conduct a statistical analysis of
three text-level discourse treebanks for data-related
factors that potentially affect model generality.
RST Discourse Treebank (RST-DT) (Carlson
et al., 2002) is the first corpus for text-level docu-
ment parsing, and contains articles from the Wall
Street Journal (WSJ). While it is not in the dialogue
domain, we include it for an extensive comparison.
STAC (Asher et al., 2016) is the first corpus for
multi-party dialogue discourse parsing, and built
on 1.2k strategic conversations where participants
take discussion during playing an online game.
Molweni (Li et al., 2020) follows the same annota-
tion scheme as STAC, and the data (12k samples)
are collected from an online forum, where people
discuss technical topics about the Ubuntu system.
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Figure 5: Overview of the dependency-based discourse parsing framework.

Figure 6: Illustration of parsing process on the dialogue
example shown in Figure 2. Numbers in brackets de-
note the order of link prediction, which is in a sequen-
tial manner. This produces a dependency structure.

The data statistics are summarized in Table 1. (1)
Compared with Molweni, the RST-DT and STAC
have much smaller sample sizes. (2) Samples from
RST-DT have a larger EDU number than STAC and
Molweni, resulting in deeper parsed tree structures.
The tree depth is one of the major factors that af-
fect parsing complexity. (3) Interestingly, while the
word number of Molweni is two times larger than
that of STAC, no significant difference in their av-
erage EDU numbers, resulting in a similar parsing
complexity from a depth perspective. (4) The lexi-
cal distributions of STAC and Molweni are signifi-
cantly different sharing a small portion of common
vocabulary (Figure 3), as they focus on different
conversation scenarios (Game vs. Ubuntu). (5)
Despite the domain distinction between STAC and
Molweni, their relation distributions are similar, ex-
cept that frequencies of the relation (Clarification-
Question and Comment) are quite different, prob-
ably because the online technical forums contain
more question-clarification and comments (Figure
4). While STAC and Molweni are annotated un-
der the same SDRT theory, their lexical features
and relation distributions are different, which we
speculate will influence the domain generality.

3 Dialogue Discourse Parsing

3.1 Task Definition

Given a dialogue that has been segmented into a
sequence of EDUs {u0, u1, ..., un} where n is the

EDU number, the discourse parser is applied to
predict links and the corresponding relation types
between the EDUs. The predicted structure con-
stitutes a dependency tree, which is a special type
of Directed Acyclic Graph (DAG). As in previ-
ous work (Shi and Huang, 2019), each EDU is only
linked to one of their precedent EDUs, and there are
no backward links. As shown in Figure 6, the pars-
ing process can be conducted by a sequential scan
of the EDUs. For one EDU ui, the model predicts
a dependency link by estimating a probability dis-
tribution as P (uj |ui, Upair

i ) where 0 ≤ j < i and
Upair
i = {(ul, uk, rl,k)|0 ≤ l < k < i} is the set

of already predicted pairs before the current step i.
The model then determines the relation type based
on the predicted link P (ri,j |ui, uj) where j < i
and ri,j is in the range of [0, C] (C is the number
of relation types). Following Li et al. (2014b), we
add a root node as u0, and if one EDU is not linked
from any preceding nodes, it is pointed to u0.

3.2 Transformer-Based Discourse Parser
In this paper, based on the sequential parsing
process (Shi and Huang, 2019), we introduce a
Transformer-based model for dialogue discourse
parsing (as shown in Figure 5), which is comprised
of the following components:
Hierarchical Encoder. The encoder computes
EDU global representations in a hierarchical man-
ner. A Transformer encoder (Vaswani et al., 2017)
is used for token-level encoding.2

Htoken = TransformerEnc([t0, t1, ..., tm]) (1)

where t denotes token, and m denotes token num-
ber. For the i-th EDU, its local representation hiedu
is obtained by averaging3 its corresponding tokens
hidden states. Then the local EDU representations

2Due to space limitation, refer to (Vaswani et al., 2017) for
more details of the Transformer architecture.

3We also adopt first-and-last sum and only-first sum for
EDU representation, and the averaging performs best.
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are fed to a bi-directional GRU component (Chung
et al., 2014) for dialogue-level encoding, and we
get final representations H ′ with both local and
global information.

h′i = [GRUForward
hi
edu

; GRUBackward
hi
edu

] (2)

Link Prediction. An attentive pointer network
(Vinyals et al., 2015) is used for the link prediction.
For the i-th EDU, we compute a list of attentive
scores with a linear layer between the current node
and each candidate h′i where j < i. Then scores are
normalized by softmax function to a distribution
over the previous EDUs, and we obtain the linked
EDU with the largest pointing probability.

si,j = Linear([h′i;h
′
j ]) (3)

ai,j =
exp(si,j)∑i
j=0 exp(si,j)

(4)

Relation Classification. Given one linked pair is
h′i and h′j , we concatenate and feed them to a rela-
tion classifier (a linear component):

ri,j = Linear([h′i;h
′
j ]) (5)

then the output is a probability over the 17 pre-
defined discourse relations. For link and relation
prediction, the negative log-likelihood is adopted
for the loss function.

4 Cross-Domain Integration

Based on the corpora analysis in Section 2, to im-
prove the domain-level generality, we investigate
three methods to encourage the neural model to
utilize the shared linguistic features from different
dialogue domains.
Utilizing Language Backbone. Large-scale pre-
trained language models provide feature-rich con-
textualized representations (Devlin et al., 2019). In
previous work, utilizing prior knowledge can boost
the performance in parsing tasks, and also shows
some but still limited generalization capability at
domain and language level (Liu et al., 2020). Here,
we select the ‘RoBERTa-base’ model (Liu et al.,
2019) as the language backbone.
Cross-Domain Pre-training. Following Gururan-
gan et al. (2020), we conduct the masked language
modeling pre-training with the joint data of STAC
and Molweni. This can fuse dialogue-related lin-
guistic features to the language backbone, which is
not pre-trained on human conversations. Moreover,

Train on Joint Data Link Link+Rel.

Deep Sequential Parser (Shi and Huang, 2019)
Test on STAC 72.8 54.8
Test on Molweni 77.4 54.3

Our Proposed Parser w/ language backbone
Test on STAC 75.5 57.2
Test on Molweni 80.2 56.9

Table 2: F1 scores of link and relation prediction with
models trained on the joint data (STAC+Molweni).

Train on STAC Link Link+Rel.

Deep Sequential Parser (Shi and Huang, 2019)
Test on STAC 73.1 55.7
Test on Molweni 58.6 26.2

Our Transformer-Based Parser
Test on STAC 73.4 55.5
Test on Molweni 57.8 26.4

+ Utilizing Language Backbone
Test on STAC 75.3 [2.5% ↑] 56.9 [2.5% ↑]
Test on Molweni 60.7 [5.0% ↑] 31.5 [19.3% ↑]

+ Cross-Domain Pre-training
Test on STAC 75.1 [2.3% ↑] 57.1 [2.8% ↑]
Test on Molweni 62.1 [7.4% ↑] 32.6 [23.4% ↑]

+ Cross-Domain Vocabulary Refinement
Test on STAC 75.3 [2.3% ↑] 57.1 [2.8% ↑]
Test on Molweni 63.2 [9.3% ↑] 33.1 [25.3% ↑]

Table 3: Micro-F1 scores of link and relation predic-
tion with models trained on STAC. Values in brackets
denote relative increase over the base model.

pre-training with multiple data resources can in-
crease the domain coverage, and this step (parsing
annotation is not required) can be conducted before
the task-specified learning.
Cross-Domain Vocabulary Refinement. STIn
Section 2, we observe that the vocabulary overlap
between STAC and Molweni is limited (see Figure
3). Dialogues in Molweni contain a certain amount
of technical-related words, whereas STAC contains
more game-related words. As the model may over-
fit corpus-specified lexical features, a vocabulary
refinement is adopted by filtering out words that
are in lower frequency (< 20 occurrence) and not
shared by the two datasets.

5 Experimental Result and Analysis

5.1 Configuration
The proposed models were implemented using Py-
Torch (Paszke et al., 2019) and Hugging Face4.
Learning rate was set at 2e-5, and the AdamW
(Loshchilov and Hutter, 2019) optimizer was ap-

4https://github.com/huggingface/transformers
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Train on Molweni Link Link+Rel.

Deep Sequential Parser (Shi and Huang, 2019)
Test on STAC 42.5 18.3
Test on Molweni 77.9 54.4

Our Transformer-Based Parser
Test on STAC 42.3 18.0
Test on Molweni 75.9 52.5

+ Utilizing Language Backbone
Test on STAC 48.3 [14.2% ↑] 26.6 [47.7% ↑]
Test on Molweni 79.7 [5.1% ↑] 55.9 [6.4% ↑]

+ Cross-Domain Pre-training
Test on STAC 48.8 [15.3% ↑] 28.4 [57.7% ↑]
Test on Molweni 79.6 [5.0% ↑] 55.7 [6.1% ↑]

+ Cross-Domain Vocabulary Refinement
Test on STAC 50.5 [19.4% ↑] 28.9 [60.6% ↑]
Test on Molweni 79.5 [5.0% ↑] 55.7 [6.1% ↑]

Table 4: Micro-F1 scores of link and relation predic-
tion with models trained on Molweni. Values in brack-
ets denote relative increase over the base model.

plied. We trained each model for 20 epochs, and
selected the best checkpoints based on evaluation
scores. Input dialogue sequences were processed
with the sub-word tokenization scheme used in
‘RoBERTa-base’ (Liu et al., 2019).

At the inference stage, we adopted the micro-
averaged F1 score as the evaluation metric. Results
of different settings are shown in Table 2-4. “Link”
denotes link prediction, and “Link+Rel.” stands for
a prediction that the dependency link and relation
type are correct at the same time.

5.2 Joint Domain Evaluation
To compare performance between single-domain
and joint-domain training, we obtain the upper
bound parsing results on the merged data of two
dialogue discourse treebanks (STAC and Molweni).
As shown in Table 2, models trained on merged
data achieve favorable results on both corpora, and
perform slightly better than single-domain train-
ing. Moreover, our Transformer-based model with
the language backbone outperforms the previous
state-of-the-art baseline.

5.3 Cross-Domain Evaluation
To evaluate the effectiveness of the proposed
domain integration methods, we conduct single-
corpus training and cross-corpus evaluation (each
treebank represents one dialogue domain).

For single-corpus training on STAC, as shown in
Table 3, the cross-domain performance on Molweni
data of all models drops significantly, especially
the relation prediction. Utilizing language back-

bone brings substantial improvement. This shows
that linguistic features can be shared by samples
from different treebanks under the SDRT theory.
Adopting cross-domain pre-training and vocabu-
lary refinement further improve the performance,
and do not affect the original domain. Combining
three methods provides the parser a relative 25.3%
improvement on the link+relation F1.

For single-corpus training on Molweni, as
shown in Table 4, baseline models obtain low
link+relation F1 scores (around 18.0) on the STAC
corpus. Noteworthy, the performance decrease of
STAC(train)->Molweni(test) is smaller than that
of Molweni(train)->STAC(test), we speculate that
this may stem from a larger linguistic diversity in
STAC data. The scores are significantly elevated
by adopting language backbone, cross-domain pre-
training, and vocabulary refinement, achieving a
relative 60.6% improvement on link+relation F1.

6 Conclusion

In this paper, we investigated the domain-level gen-
erality of dialogue discourse parsing. Since exist-
ing corpora are collected from different conversa-
tion scenarios, models with single-domain training
cannot perform well in other domains. The sta-
tistical analysis and experimental results suggest
that domain adaptation or integration is necessary
when neural parsers are applied in practical use
cases, and utilizing prior language knowledge and
adopting cross-domain pre-training can improve
their generality.
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