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Abstract

In the paper, we present a ‘pre-training’+‘post-training’+‘fine-tuning’ three-stage paradigm,
which is a supplementary framework for the standard ‘pre-training’+‘fine-tuning’ language
model approach. Furthermore, based on three-stage paradigm, we present a language model
named PPBERT. Compared with original BERT architecture that is based on the standard two-
stage paradigm, we do not fine-tune pre-trained model directly, but rather post-train it on the
domain or task related dataset first, which helps to better incorporate task-awareness knowl-
edge and domain-awareness knowledge within pre-trained model, also from the training dataset
reduce bias. Extensive experimental results indicate that proposed model improves the perfor-
mance of the baselines on 24 NLP tasks, which includes eight GLUE benchmarks, eight Su-
perGLUE benchmarks, six extractive question answering benchmarks. More remarkably, our
proposed model is a more flexible and pluggable model, where post-training approach is able
to be plugged into other PLMs that are based on BERT. Extensive ablations further validate the
effectiveness and its state-of-the-art (SOTA) performance. The open source code, pre-trained
models and post-trained models are available publicly.

1 Introduction

Recently, the introduction of pre-trained language models (PLMs), including GPT (Radford et al., 2018),
BERT (Devlin et al., 2019), and ELMo (Peters et al., 2018), among many others, has achieved tremen-
dous success to the natural language processing (NLP) research. Typically, the basic structure of such a
model consists of two successive stages, one step during the pre-training phase and another step during
the fine-tuning phase. During the pre-training phase it pre-trains on unsupervised dataset firstly, then
during the fine-tuning phase it fine-tunes on downstream supervised NLP tasks. Up to now, these models
obtained the best performance on various NLP tasks. Some of the most prominent examples are BERT,
and BERT based SpanBERT (Joshi et al., 2019), ALBERT (Lan et al., 2020). These PLMs are trained on
the large unsupervised corpus through some unsupervised training objectives. However, it is not obvious
that the model parameters which is obtained during unsupervised pre-training phase can be well-suited
to support the this kind of transfer learning. Especially during the fine-tuning phase, for the target NLP
task only a small amount of supervised text data is available, fine-tuning the pre-trained model are po-
tentially brittle. And for the pre-trained model, supervised fine-tuning requires substantial amounts of
task-specific supervised training dataset, not always available. For example, in GLUE benchmark (Wang
et al., 2019b), Winograd Schema dataset (Levesque et al., 2012) have only 634 training data, too small
for fine-tuning natural language inference (NLI) task. Moreover, although PLMs, such BERT, can learn
contextualized representations across many NLP tasks (to be task-agnostic), which leverages PLMs alone
still leaves the domain-specific challenges unresolved (BERT are trained on general domain corpora on-
ly, and capture a general language knowledge from training dataset, but lack domain or task-specific data
severely). For example, in financial domain, they often contain unique vocabulary information, such as
stock, bond type, and the sizes of labeled data are also very small (even only few hundreds of samples).
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In the paper, to overcome the aforementioned issues, we proposed a novel three-stage BERT (called PP-
BERT) architecture, in which we add a second stage of training, that is ‘post-training’, to improving the
original BERT architecture model.

Typically there are two directions to pursue new state-of-art in the post pre-trained PLMs era. One
is to construct novel neural network architecture model based on PLMs, like BERTserini (Yang et al.,
2019a) and BERTCMC (Ohsugi et al., 2019). Other approach is to optimize pre-training, like GP-
T 2.0 (Radford et al., 2018), MT-DNN (Liu et al., 2020a), SpanBERT (Joshi et al., 2019), and AL-
BERT (Lan et al., 2020). In the paper, we present another novel method to improve the PLMs. We
present a ‘pre-training’+‘post-training’+‘fine-tuning’ three-stage paradigm and further present a lan-
guage model named PPBERT. Compared with original BERT architecture that is based on the standard
‘pre-training’+‘fine-tuning’ PLMs approach, we do not fine-tune pre-trained models directly, but rather
post-train them on the domain or task related training dataset first, which helps to better incorporate task-
awareness knowledge and domain-awareness knowledge within pre-trained model, also in the training
dataset can reduce bias. More specifically, our framework involves three sequential stages: pre-training
stage using on large-scale corpora (see subsection 2.1), post-training stage using the task or domain re-
lated datasets via multi-task continual learning method (see subsection 2.2), and fine-tuning stage using
target datasets, even with little labeled samples or without labeled samples (see subsection 2.3). Thus,
PPBERT can benefits from the regularization effect since it leverages cross-domain or cross-task data,
which helps model generalize better with limited data and adapt to new domains or tasks better.

Sum up, on a wide variety of tasks our proposed post-training process outperforms existing BERT
benchmark, and achieved better performance on small dataset and domain-specific tasks in particular
substantially. Specifically, we compared our model with BERT baselines on GLUE and SuperGLUE
benchmark tasks and consistently significantly outperform BERT on all of 16 tasks (8 GLUE tasks and
8 SuperGLUE tasks), increasing by the GLUE average score of 87.02, showing an absolute improve-
ment of 2.97 over BERT; showing an absolute improvement of 5.55, pushing the SuperGLUE to 74.55.
More remarkably, our model is a more flexible and pluggable. The post-training appoach can be straight
plugged into other PLMs based on BERT. In our ablation studies, we plug the post-training strategy
into original BERT (i.e., PPBERT) and its variant, ALBERT (called PPALBERT), respectively. Our
approaches advanced the SOTA results for five popular question answering datasets, surpassing the pre-
vious pre-trained models by at least 1 point in absolute accuracy. Moreover, through further ablation
studies, the best model obtains SOTA results on small datasets (1/20 training set). All of these clearly
demonstrate our proposed three-stage paradigms exceptional generalization capability via post-training
learning.

Figure 1: An illustration of the architecture for our PPBERT, which is a ‘pre-training’-‘post-training’-then-‘fine-tuning’
three-stage BERT. Compared with standard BERT architecture that has the two-stage ‘pre-training’-then-‘fine-tuning’, we do
not directly fine-tune pre-trained models, but rather add a second stage of training (called ‘post-training’). More specifically,
during the pre-training stage, we first on the large-scale dataset conduct unsupervised pre-training, and then during the post-
training stage post-train pre-trained models on the task or domain related dataset, and last during the fine-tuning stage conduct
fine-tuning on downstream supervised NLP tasks.
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2 The Proposed Model: PPBERT

As shown in Figure 1, the standard BERT is built based on two-stage paradigm architecture, ‘pre-
training’+‘fine-tuning’. Compared traditional pre-training methods, PPBERT does not fine-tune the
pre-trained model directly after pre-training, but rather continues to post-train the pre-trained model on
the task or domain related corpus, helping to reduce bias. During post-training processing our proposed
PPBERT framework can continuously update pre-trained model. The architecture of our PPBERT
architecture is shown in Figure 1.

2.1 Pre-training

The training procedure of our proposed PPBERT has 2 processing: pre-training stage and post-training
stage. As BERT outperforms most existing models, we do not intend to re-implement it but focus on
the second training stage: Post-training. The pre-training processing follows that of the BERT model.
We first use original BERT and further adopt a joint post-training method to enhance BERT. Thus, our
proposed PPBERT is more flexible and pluggable, where post-training approach is able to be plugged
into other language models based on BERT, such as ALBERT (Lan et al., 2020), SpanBERT (Joshi et
al., 2019), not only applied to original BERT.

2.2 Post-training

Compared with original BERT architecture that has two-stage paradigm, ‘pre-training’+‘fine-tuning’,
we do not fine-tune pre-trained model, but rather first post-train the model on the task or domain related
training dataset directly. We add a second training stage, that is ‘post-training’ stage, on an intermediate
task before target-task fine-tuning.

2.2.1 Training Details

In the post-training stage, its aims to train the pre-trained model on the task or domain related annotated
data continuously, to learn task knowledge or domain knowledge from different post-training tasks by
keeping updating the pre-trained model. Thus, it brings a big challenge: How to train these post-training
tasks in a continual way, and more efficiently post-train a new task without forgetting the knowledge that
is learned before.

Inspired by (Chen and Liu, 2018; Sun et al., 2019) and (Parisi et al., 2019), which show Continual
Learning can train the model with several tasks in sequence, but we find that, standard Continual Learning
method trains the model with only one task at each time with the demerit that it is easy to forget the
knowledge previously learned. Also concurrently, inspired by (Liu et al., 2020a; Liu et al., 2020b) and
(Hou et al., 2020; Liu et al., 2020c), which show Multi-task Learning can allow the use of different
training corpus to train sub-parts of neural networks, but we find that, although Multi-task Learning
could train multiple tasks at the same time, it is necessary that all customized pre-training tasks are
prepared before the training could proceed. So this method takes as much time as continual learning
does, if not more. So we present a multi-task continual learning method to tackle with this problem.
More specifically, whenever a new post-training task comes, the multi-task continual learning method
first utilizes the parameters that is previously learned to initialize the model, and then simultaneously
train the newly-introduced task together with the original tasks, which will make sure that the learned
parameters can encode the knowledge that is previously learned. More crucially, during post-training we
allocate each task K training iterations, and then further assign these K iterations for each task to different
stages of training. Also concurrently, instead of updating parameters over a batch, we divide a batch into
more sub-batches and accumulate gradients on those sub-batches before parameter updates, which allows
for a smaller sub-batch to be consumed in each iteration, more conducive to iterating quickly by using
distributed training. As a result, proposed PPBERT can continuously update pre-trained model using
the multi-task continual learning method. So we can guarantee the efficiency of our post-training without
forgetting the knowledge that is previously trained.
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2.2.2 Post-training Datasets
As discussed above, fine-tuning processing has main challenges, on the target task directly, as follows:
i) during the fine-tuning phase, there is only a small amount of supervised training data, fine-tuning the
pre-trained model are potentially brittle; ii) for the pre-trained model, its supervised fine-tuning requires
substantial amounts of task-specific supervised training dataset, limited and indirect, not always avail-
able; iii) leveraging BERT alone leaves the domain or task-specific questions unresolved. To enhance the
performance of pre-trained model, we need to effectively fuse task knowledge (from related NLP tasks
supervised data) or domain knowledge (from related in-domain supervised data). As a common NLP
task, Questions and Answers (QA) ,to get the answer based on a question, requires reasoning on facts
relevant to the given question and deep semantic understanding of document. Thus, a large-scale QA
supervised corpus can benefit most NLP tasks. Similarly, NLI task (a.k.a. RTE) and sentiment analysis
(SA) are also two important and basic tasks for natural language understanding. Eventually, we use QA
dataset (CoQA), NLI dataset (SNLI) and SA dataset (YELP) as post-training datasets. We post-train our
model on CoQA, SNLI and YELP data simultaneously.

In this work, for generality and wide applicability of our proposed PPBERT, we use only CoQA,
SNLI and YELP as post-training datasets. Note that, because PPBERT adopts the effective multi-task
continual learning training method (subsubsection 2.2.1), its post-training datasets are easily scalable,
which is meant to be combined further with other datasets, including domain specific data.

2.3 Fine-tuning

In fine-tuning processing, we first initialize PPBERT model with the post-trained parameters, and then
use supervised dataset from specific tasks to further fine-tune. In general, for each downstream task, after
being fine-tuned it has its own fine-tuned models.

3 Experiments

3.1 Tasks

To evaluate our proposed approach, we use a comprehensive experiment tasks, as follows:
i) in section 3, eight tasks in the GLUE benchmark (Wang et al., 2019b) and eight tasks in the Super-

GLUE benchmark (Wang et al., 2019a);
ii) in section 4, five question answering tasks, two natural language inference tasks and two tasks in

domain adaptation, financial sentiment analysis and financial question answering.
We expect that these NLP tasks will benefit from proposed ‘pre-training’+‘post-training’+‘fine-

tuning’ three-stage paradigm particularly.

3.2 Datasets

This subsection briefly describes the datasets.

3.2.1 GLUE
The General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019b) is a collec-
tion of eight datasets to evaluate NLU tasks. GLUE0 consists of a series of NLP task datasets (See
Table 1), including: Corpus of Linguistic Acceptability (CoLA), Multi-genre Natural Language Infer-
ence (MNLI), Recognizing Textual Entailment (RTE), Quora Question Pairs (QQP), Semantic Textual
Similarity Benchmark (STS-B), Stanford Sentiment Treebank (SST-2), Question Natural Language In-
ference (QNLI), Microsoft Research Paraphrase Corpus (MRPC).

3.2.2 SuperGLUE
Similar to GLUE, the SuperGLUE benchmark (Wang et al., 2019a) is a new benchmark that is more
difficult language understanding task datasets1, including : BoolQ, CommitmentBank (CB), Choice of

0https://gluebenchmark.com/
1https://super.gluebenchmark.com/
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Table 1: Summary of the GLUE benchmark.

Corpus Task #Train #Dev #Test Metrics
CoLA Acceptability 8.5k 1k 1k Matthews corr
STS-B Similarity 7k 1.5k 1.4k Pearson/Spearman corr
QQP Paraphrase 364k 40k 391k Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k Accuracy/F1
SST-2 Sentiment 67k 872 1.8k Accuracy
QNLI QA/NLI 108k 5.7k 5.7k Accuracy
MNLI NLI 393k 20k 20k Accuracy
RTE NLI 2.5k 276 3k Accuracy

Notes: The details of GLUE benchmark. The #Train, #Dev and #Test denote the
size of the training set, development set and test set of corresponding corpus re-
spectively.

Plausible Alternatives (COPA), Multi-Sentence Reading Comprehension (MultiRC), Reading Compre-
hension with Commonsense Reasoning (ReCoRD), Recognizing Textual Entailment (RTE), Words in
Context (WiC), Winograd Schema Challenge (WSC).

3.2.3 SQuAD
The Stanford Question Answering Dataset (SQuAD) is one of the most popular machine reading com-
prehension challenges datasets. SQuAD is a typical extractive machine reading comprehension task,
including a question and a paragraph of context. Its aim is to give a text span extracted from the docu-
ment based on the given question. SQuAD consists of two versions: SQuAD (Rajpurkar et al., 2016) (in
this version, the provided document always contains an final answer) and SQuAD v2.0 (Rajpurkar et al.,
2018) (in this version, some questions are not answered from the provided document).

3.2.4 Financial datasets
To better demonstrate the generality of our post-training approach, we further perform domain adaptation
experiments on two financial tasks, FiQA sentiment analysis (SA) dataset and FiQA question answering
(QA) dataset. As part of the companion proceedings for WWW’18 conference, (Maia et al., 2018)
released two very small financial datasets (FiQA).

3.2.5 Additional benchmarks
As shown in Table 6, we present additional datasets for extractive question answering tasks, including
RACE (Lai et al., 2017), NewsQA (Trischler et al., 2017), TrivaQA (Joshi et al., 2017), HotpotQA (Yang
et al., 2018). More details are provided in the supplementary materials.

3.3 Experimental Results

We evaluate the proposed PPBERT on two popular NLU benchmarks: GLUE and SuperGLUE . We
compare PPBERT with standard BERT model and demonstrate the effectiveness of with ‘post-training’.

3.3.1 GLUE Results
We evaluated performance on GLUE benchmark, with the large models and the base models of each ap-
proach. We reports the results of each method on the development dataset and test dataset. The detailed
experimental results on GLUE are presented in Table 2. As illustrated in the BASE models columns of
Table 2, PPBERTBASE achieves an average score of 81.53, and outperforms standard BERTBASE on all
of the 8 tasks. As shown, in test dataset parts of LARGE models sections in Table 2, PPBERTLARGE

outperform BERTLARGE on all of the 8 tasks and achieves an average score of 85.03. We also observe
similar results in the dev set column, achieveing an average score of 87.02 on the dev set, a 2.97 improve-
ment over BERTLARGE. From this data we can see that PPBERTLARGE matched or even outperformed
human level.
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Table 2: The overall performance of PPBERT and the comparison against BERT models on
GLUE benchmark.

BASE model LARGE model
Test Set Dev Set Test Set

Task Human Perf. BERT† PPBERT‡ BERT† PPBERT‡ BERT† PPBERT‡

CoLA 66.4 52.1 52.3 60.6 61.3 60.5 61.1
SST-2 97.8 93.5 94.6 93.2 95.7 94.9 95.7
MRPC 86.3/80.8 84.8/88.9 85.7/89.2 88.0 89.6 85.4/89.3 87.2/90.2
STS-B 92.7/92.6 87.1/85.8 87.6/86.5 90.0 91.3 87.6/86.5 90.5/89.8
QQP 59.5/80.4 89.2/71.2 88.8/73.0 91.3 92.2 89.3/72.1 90.6/73.9
MNLI 92.0/92.8 84.6/83.4 85.9/85.1 86.6 88.7 86.7/85.9 88.3/88.4
QNLI 91.2 90.5 92.2 92.3 93.8 92.7 93.7
RTE 93.6 66.4 72.3 70.4 84.2 70.1 80.3
(Avg) 85.94 80.00 81.53 (1.53 ↑) 84.05 87.02 (2.97 ↑) 82.45 85.03 (2.58 ↑)

Notes: The results on GLUE benchmark (Wang et al., 2019b), where the results on test set are scored by the GLUE
evaluation server and the results on dev set are the median of three experimental results. The metrics for these tasks
are shown in Table 1. Purple-colored texts indicate the results on par with or pass human performance. ‡ indicates our
proposed model. † indicates original model BERT (Devlin et al., 2019).

Table 3: Results on SuperGLUE benchmark.

Single Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC (Avg)
Human Perf.§ 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 89.79
BERT§ 77.4 75.7/83.6 70.6 70.0/24.1 72.0/71.3 71.7 69.6 64.4 69.00
PPBERT (ours) 80.3 81.4/86.9 74.2 76.5/40.7 78.7/77.5 77.4 72.9 68.7 74.55

Notes: All results are based on a 24-layer architecture (LARGE model). PPBERT results on the development set are a
median over three runs. Model references: §: ((Wang et al., 2019a)).

3.3.2 SuperGLUE Results

Table 3 shows the performances on 8 SuperGLUE tasks. As shown in Table 3, it is apparent that PP-
BERT outperforms BERT on 8 tasks significantly. The main gains from PPBERT are in the MultiRC
(+6.5) and in ReCoRD (+6.7), both accounting for the rise in PPBERT’s GLUE score. Also, as Ta-
ble 3 shows, there is a huge gap between human performance (89.79) and the performance of PPBERT
(74.55).

3.3.3 Overall Trends

Table 2 and Table 3 respectively show our results on GLUE and SuperGLUE with and without ‘post-
training’. As shown, we compare proposed method to standard BERT benchmarks on 16 baseline tasks,
and find on every task our proposed PPBERT outperforms BERT. Since in pre-training phase PPBERT
has the same architecture and pre-training objective as standard BERT, the main gain is attributed to
‘post-training’ in post-training phase. If we consider the gains, especially PPBERT is better at natural
language inference and question answering tasks, and is not good at syntax-oriented task. In GLUE
benchmark (we also observe similar results in SuperGLUE), for example, i) for the question answering
tasks (QNLI, MultiRC, ReCoRD) and the natural language inference tasks (MNLI and RTE), we achieves
significant accuracy gain of at least 1 point improvement. ii) for sentiment task (SST-2), although we
observe a smaller gain (+0.8), it is mainly because the accuracy has been already high, a reasonable score
(obtained a accuracy score of 95.7); iii) for simple sentence task, we observe the smallest gain (+0.2)
on all tasks in the syntax-oriented (CoLA) task. Besides, this mirrors results also reported in (Bowman
et al., 2018), who show that few pre-training tasks other than language modeling offer any advantage
for CoLA. iv) for MRPC and RTE tasks, as shown in Table 2 and Table 3, what is interesting in the
results is that we find consistent improvements after post-trainingThis reveals that the learned PPBERT
representation by ‘pre-training’+‘post-training’ allows much more effective domain adaptation than the
BERT representation by ‘pre-training’ only.
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4 Ablation Study and Analyses

4.1 Cooperation with other Pre-trained LMs
Our proposed PPBERT is a more flexible and pluggable, where post-training approach can be plugged
into other PLMs based on BERT, not only applied to original BERT model. We further validate the
performance of PPBERT when ‘post-training’ appoach on different pre-trained LMs. We compare
post-training by plugging it into original BERT (i.e., PPBERT) and and its variant, ALBERT (called
PPALBERT) pre-trained LMs, respectively. Also, we further post-train the most recent proposed PPAL-
BERT with one additional QA dataset (SearchQA), and call it PPALBERTLARGE-QA.

4.1.1 Comparisons to SOTA models
We evaluate our models on the popular SQuAD benchmark (subsubsection 3.2.3). Performance of each
model is evaluated on the two standard metric values: F1 score and exact match (EM) score. F1 score
measures the precision and recall, and less strict than then EM score. EM score measures whether the
model output exactly matches the ground answers.

Table 4 details performance gains when exploiting each of the three post-trained LMs on SQuAD
datasets (two versions, respectively). As shown in Table 4, on the SQuAD dev dataset (version 1.1),
compared with BERT baseline, adding post-training stage improves the EM by 1.1 points (84.1→85.2),
and F1 1.2 points (90.9→92.1). Similarly, PPALBERTLARGE also outperforms ALBERTLARGE base-
line, by 0.3 EM and 0.2 F1. Especially, PPALBERTLARGE-QA using further post-training relatively
improves 0.1 EM and 0.1 F1 over PPALBERTLARGE, respectively. We also observe similar results
on SQuAD v2.0 development set. The most recent proposed PPALBERT sets a new state-of-the-art,
achieving 87.7 EM and 90.5 F1.

Table 4: Comparison with state-of-the-art results on the Dev set of SQuAD.

SQuAD1.1 SQuAD2.0
Single Model EM/F1 EM/F1
Human Perf. 82.3/91.2 86.8/89.5
ALBERTBASE (Lan et al., 2020) 82.1/89.3 76.1/79.1
BERTLARGE (Devlin et al., 2019) 84.1/90.9 79.0/81.8
XLNetLARGE (Yang et al., 2019b) 89.0/94.5 86.1/88.8
RoBERTaLARGE (Liu et al., 2019) 88.9/94.6 86.5/89.4
ALBERTLARGE (Lan et al., 2020) 89.3/94.8 87.4/90.2
PPBERTLARGE (ours) 85.2/92.1 82.2/84.8
PPALBERTLARGE (ours) 89.6/95.0 87.6/90.4
PPALBERTLARGE-QA (ours) 89.7/95.1 87.7/90.5

Notes: Results on SQuAD 1.1/2.0 development dataset. Best scores are in bold texts, and the
previous best scores are underlined.

4.1.2 Performance on other QA and NLI tasks
Furthermore, extensive experiments on six NLP tasks about semantic relationship are conducted, in-
cluding two natural language inference benchmarks (QNLI and MNLI-m, both from GLUE), and four
extractive question answering benchmarks (TriviaQA, RACE, HotpotQA and NewsQA). All benchmark-
s except RACE, we use the same fine-tuning method as SQuAD. Different from others, RACE is a
multiple-choice QA dataset. The experimental results for PPALBERT are shown in Table 5. As depict-
ed in Table 5, both PPALBERTLARGE and PPALBERTLARGE-QA achieve state-of-the-art accuracy
across all settings. Overall, as expected, only utilizing ‘pre-training’ is inferior to our proposed ‘pre-
training’-then-‘post-training’ method. The experimental results (subsubsection 4.1.1 and subsubsec-
tion 4.1.2) described above, indicate that our two stage training paradigm is very flexible, and proposed
post-training appoach could be easily plugged into other PLMs. More remarkably, we achieve new SOTA
performances on existing baselines.
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Table 5: Performance on six QA and NLI tasks.

Single Model NewsQA TrivaQA HotpotQA RACE QNLI MNLI-m
BERTLARGE

† 68.8 77.5 78.3 72.0 92.3 86.6
SpanBERTLARGE

† 73.6 83.6 83.0 - 93.3 87.0
RoBERTaLARGE

‡ - - - 83.2 94.7 90.2
ALBERTLARGE

§ - - - 86.5 95.2 90.4
PPALBERTLARGE (ours) 74.6 84.3 83.4 86.7 95.6 90.7
PPALBERTLARGE-QA (ours) 74.8 84.5 83.5 86.8 95.9 90.9

Notes: The details of NewsQA, TrivaQA, HotpotQA and RACE are shown in Table 6. QNLI and
MNLI-m are from GLUE. Model references: †: ((Joshi et al., 2019)), ‡: ((Liu et al., 2019)), §: ((Lan et
al., 2020)).

Table 6: The details of QA datasets.

Dataset Lang. #Que. #Docs Que. Docs Answer Type

SQuAD 1.1† EN 100K 536 CS Wiki. Span of words
SQuAD 2.0‡ EN 150K 500 CS Wiki. Span of words
NewsQA (Trischler et al., 2017) EN 100K 10K CS CNN Span of words
HotpotQA (Yang et al., 2018) EN 78K 113k CS Wiki. Span/substring of words
TrivaQA (Joshi et al., 2017) EN 40K 660K TW Wiki./Web doc. Span/substring of words
RACE (Lai et al., 2017) EN 870K 50K EE EE Multiple-choice
CoQA (Reddy et al., 2019) EN 127K 8K CS QA Dialog Span/substring of words

Notes: CS denotes Crowdsourced. TW denotes Trivia websites. EE denotes English exam. Model references: †: ((Ra-
jpurkar et al., 2016)), ‡: ((Rajpurkar et al., 2018)).

5 Conclusion

In the paper, we present a ‘pre-training’+‘post-training’+‘fine-tuning’ three-stage paradigm and a lan-
guage model named PPBERT based on the three-stage paradigm, which is a supplementary framework
for the standard ‘pre-training’+‘fine-tuning’ two-stage architecture. Our proposed three-stage paradig-
m helps to incorporate task-awareness knowledge and domain knowledge within pre-trained model, also
reduce the bias in the training corpus. PPBERT can benefits from the regularization effect since it lever-
ages cross-domain or cross-task data, which helps model generalize better with limited data and adapt
to new domains or tasks better. With the latest PLMs as baseline and encoder backbone, PPBERT is
evaluated on 24 well-known benchmarks, which outperformS strong baseline models and obtains new
SOTA results. We hope this work can encourage further research into the language models training, and
the future works involve the choice of other transfer learning sources such as CV etc.
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