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Abstract

Text data are an important source of detailed
information about social and political events.
Automated systems parse large volumes of text
data to infer or extract structured information
that describes actors, actions, dates, times, and
locations. One of these sub-tasks is geocod-
ing: predicting the geographic coordinates as-
sociated with events or locations described by
a given text. We present an end-to-end prob-
abilistic model for geocoding text data. Addi-
tionally, we collect a novel data set for eval-
uating the performance of geocoding systems.
We compare the model-based solution, called
ELECTRo-map, to the current state-of-the-art
open source system for geocoding texts for
event data. Finally, we discuss the benefits of
end-to-end model-based geocoding, including
principled uncertainty estimation and the abil-
ity of these models to leverage contextual in-
formation.

1 Introduction

Text data are an important source of information
about social and political events. We introduce a
novel method for predicting the latitude and longi-
tude of locations mentioned or described in natural
language texts (“geocoding”). This neural network-
based method offers several advantages over ex-
isting rule-based techniques for geocoding: (1) it
produces a probability distribution over predicted
latitudes and longitudes thereby allowing users to
report the certainty of their estimates; (2) it does
not require the identification of place names in the
text prior to geocoding; (3) it naturally leverages
contextual clues to improve predictions and disam-
biguate location names.

This paper proceeds by first providing a brief
overview of related work in geocoding and lan-
guage modeling. We then introduce a probabilistic
model for geocoding texts and identify a dataset

with which to train and evaluate the model. We
compare our results to existing methods and con-
clude with suggestions for future research.

1.1 Geocoding Text
Lee et al. (2019) describe a geolocation pipeline for
producing political event data that includes three
steps: (1) named entity recognition (NER) identi-
fies character strings of named places; (2) “geop-
arsing” software matches named locations to geo-
graphical locations; (3) events from the source text
are linked to their respective locations.

Mordecai is an open source tool for Steps 1 and
2 (Halterman, 2017). Mordecai uses a pretrained
named entity recognition model and word2vec
(Mikolov et al., 2013) to match location names
identified within an unstructured text document to
known locations within the GeoNames Gazetteer
(GeoNames).

Kulkarni et al. (2020) present a model-based
geocoding solution. Their convolutional neural net-
work model predicts geographic grid cell member-
ship for each input text; it does not predict latitude
and longitude values directly. This complicates
comparison with the model presented here which
directly regresses latitude and longitude on text.
For example, the evaluation metrics the authors
chose for their model are largely based on classi-
fication accuracy rather than continuous measures
of nearness, as would be the case in a regression
setting.1

1.2 Transformer Language Models
The foundation of the model described in this pa-
per is a very large neural network language model

1Specifically, the authors report the area under the receiver
operating characteristic curve (AUC) and classification ac-
curacy. This classification framing contrasts with the model
presented here which directly predicts latitude and longitude
values and therefore is evaluated via mean absolute error in
kilometers.
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called a transformer network, a “transformer.” Typ-
ically, a transformer is trained on a large corpus
with a self-supervised objective: either next sen-
tence prediction and/or masked language predic-
tion. This initial training is called “pretraining.”
However, these models have been shown to gener-
alize very well to tasks for which they were not ex-
plicitly pretrained. With subsequent “fine-tuning,”
transformers can acquire the ability to accomplish
new tasks with substantially fewer training exam-
ples than those with which they were pretrained.
Vaswani et al. (2017) introduced the first trans-
former language model; the particular model used
here is called DistilRoBERTa (Sanh et al., 2019;
Liu et al., 2019).

2 Model

We introduce a model that is capable of performing
Steps 1 through 3 (§ 1.1) end-to-end. That is, given
training data exemplary of the desired mapping
from text inputs, X, to geographic coordinates, Y,
this model is fine-tuned such that it learns a func-
tion f(xi;W) → ŷi, where W is the set of model
parameters. This is a non-linear multivariate regres-
sion of latitude and longitude on text. We modify a
pretrained DistilRoBERTa model by adding three
fully-connected dense layers with sigmoid activa-
tion, an output (“head”) layer, and a custom loss
function. We use this model to minimize the nega-
tive log likelihood of a five component mixture of
von Mises-Fisher (vMF) distributions conditional
on the input text.

The von Mises distribution is an approximation
of a univariate Gaussian distribution on the circum-
ference of a circle. The vMF distribution general-
izes the von Mises distribution beyond two dimen-
sions to the surfaces of spheres and hyperspheres;
when p = 2, the vMF distribution is equivalent to
the the von Mises distribution.

Because the vMF distribution has support over
the surface of the unit p− 1 sphere in p Euclidean
space, we must transform our geodetic coordinates
(latitude and longitude) to Cartesian coordinates
on this sphere. The formulae to do so, assuming a
spherical Earth, are given by Equations 1–3.

xi = cos(radlati )× cos(radloni ) (1)

yi = cos(radlati )× sin(radloni ) (2)

zi = sin(radlati ) (3)

The vMF probability density function is given
by Equation 4. µ, the mean direction, is a point

in p space that falls on the unit p − 1 sphere. A
point x in p space can be projected onto this sphere
by L2 normalization: x/||x||. The concentration
parameter, κ, controls the dispersion of the distri-
bution across the surface of the sphere. κ = 0
corresponds to a uniform distribution over the en-
tire sphere while κ = ∞ corresponds to a point
mass at µ. Ip/2−1 is the modified Bessel function
of the first kind at order p/2− 1.

fvmf (x;µ, κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
e(κµ

T x) (4)

A probabilistic neural network model with a sin-
gle vMF component is optimized by minimizing
the negative log likelihood given in Equation 5.

−L(W) = −
∑
i

ln(fvmf (yi; µ̂i, κ̂i)) (5)

µ̂i = fµ(xi;W)

κ̂i = fκ(xi;W)

The outputs of the neural network, given an input
text xi, are the parameters of a vMF distribution.
Therefore, the model estimates a distribution over
possible coordinates for a given input text. While
the parameters of the neural network itself (W) are
deterministic, predicting a probability distribution
for each input text allows us to capture aleatoric un-
certainty. Aleatoric uncertainty is the uncertainty
inherent in the data themselves. In the case of
geocoding text, this uncertainty may result from
texts that do not distinguish between Springfield, IL
and Springfield, GA, or from texts that refer to mul-
tiple locations (assuming that the model in question
is unable to represent a multimodal distribution).

This uncertainty is unlikely to be homoskedastic;
some texts will more precisely specify relevant
locations than others. We allow for heteroskedastic
uncertainty by estimating both the central tendency
(µ̂i) and the dispersion (κ̂i) of a target distribution.

Building on the negative vMF log likelihood loss
described above, we optimize a neural network
model to predict a mixture of vMF distributions.2

For every input text, the model predicts parameters
for five vMF distributions in addition to a set of
mixing probabilities. The mixing probabilities de-
scribe the weights associated with each of the five
vMF components. In this way, the model can fit

2We use the Adam optimizer with a learning rate of
5 × 10−5 and train for five epochs (Kingma and Ba, 2015).
The network is difficult to train and a single-component vMF
model failed to converge.
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highProb best random
Model n Mean Median Mean Median Mean Median
Mordecai 12,864 1101.3 161.9 348.8 14.3 1213.7 140.6

(24.1) (2.9) (13.5) (0.4) (24.0) (3.5)
Mordecai Complete Cases 12,585 946.0 154.5 177.0 13.4 1076.7 134.0

(22.0) (3.1) (8.3) (0.3) (25.0) (4.2)
ELECTRo-map 12,864 108.1 44.1 96.8 44.0 6380.8 4814.5

(4.1) (0.4) (2.5) (0.4) (54.1) (96.1)

Table 1: Test set (out-of-sample) geocoding performance. Reported values are measured in kilometers. Bootstrap
estimated standard errors in parentheses.

(a) “Hanover Lutheran Church is a Lutheran congregation in
Cape Girardeau, Missouri, that is a member of the Lutheran
Church–Missouri Synod...”

(b) “Salamanperä Strict Nature Reserve (Salamanperän luon-
nonpuisto) is home to Wolverine and Finnish Forest Reindeer
(R. tarandus fennicus), and it is said...”

(c) “Houghton Library, on the south side of Harvard Yard
adjacent to Widener Library, is Harvard University’s primary
repository for rare books and manuscripts...”

(d) “Pil (Persian –; also Romanized as Pı̄l; also known as Pel)
is a village in Owzrud Rural District, Baladeh District, Nur
County, Mazandaran Province, Iran...”

Figure 1: Predicted (diamond) and actual (star) coordinates. Contours represents 10% of the vMF mixture proba-
bility density. Approximately 95% of the probability density for each vMF mixture is shown in Figures 1a–1d.
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a more flexible distributional shape than it would
otherwise be able to with a single vMF component.
Indexing the mixing components, ρ, by k, the re-
vised loss function is given in Equation 6. We refer
to this model as ELECTRo-map: End-to-end Loca-
tion Estimation with Confidence via Transformer
Regression.3

−L(W) = −
5∑

k=1

ρk
∑
i

ln(fvmf (yi; µ̂ik, κ̂ik))

(6)

3 Data

To evaluate ELECTRo-map, we collect data from
all Wikipedia articles with coordinates linked to
Wikidata.org.4 These data include the primary lati-
tude and longitude associated with an article, globe,
title, language, and extract attributes. The data were
collected via the official Wikipedia API by iterating
over the set of Wikipedia pages linked to Wikidata
geographic entries.5 Together, the data comprise
the introductory sections of 1,286,475 English lan-
guage articles. Most of the excerpts are between
one sentence and a couple paragraphs in length.
Many of these texts contain references to multiple
geographic locations, but each one only has one
“correct” latitude and longitude pair that describes
the precise location of the article’s referent. These
are partitioned into a training set (1,260,746 arti-
cles), a validation set (12,864 articles) and a test
set (12,865 articles).6

4 Evaluation

We compare the performance of ELECTRo-
map against Mordecai. Because Mordecai and
ELECTRo-map can both return multiple results per
text, we offer three solutions for aggregating results
to a single latitude and longitude prediction per ob-
servation. The first is to take the single highest
probability prediction (highProb).7 The second is
to take the best prediction from the mixture (best).8

3https://tfwiki.net/wiki/Electro_map
4Found at https://www.wikidata.org/wiki/

Q15181105
5https://en.wikipedia.org/w/api.php
6Test set size is kept small due to hardware limitations and

the speed of Mordecai.
7While ELECTRo-map produces proper probabilities for

each component, Mordecai only produces a country-level
confidence score.

8Note that this rule requires knowledge of the target lati-
tude and longitude. It therefore represents an unrealistic ideal
scenario.

The third is to take a random prediction from the
mixture (random). Mordecai occasionally returns
null results. In these cases, we impute a latitude
and longitude pair of (0.0, 0.0). We also provide
results for a complete cases analysis of Mordecai,
omitting all 279 observations for which Mordecai
failed to produce a geolocation.

Results are shown in Table 1. In the best case
scenario, that in which the location of interest
is known a priori, Mordecai clearly outperforms
ELECTRo-map. Mordecai’s median error is only
13.4km. However, in the more likely scenario that
a single geolocation is desired for a text and no
a priori knowledge of the preferred prediction is
available, ELECTRo-map outperforms Mordecai.
Mean and median errors for ELECTRo-map are
108.1km and 44.1km, respectively, compared to
946km and 154.5km for Mordecai. These numbers
also compare favorably to the Kulkarni et al. (2020)
model; in addition to classification-based metrics,
the authors report the mean distance between pre-
dicted grid cell centroids and target locations. They
report mean errors of between 174km and 180km.9

Four examples drawn from the test set are de-
picted in Figure 1. Predicted and actual locations
are given as well as contours denoting the proba-
bility density associated with the predicted distri-
bution. Each contour represents one decile. Each
subfigure represents roughly 95% of the probabil-
ity density. Captions give abridged excerpts of the
associated input texts.

5 Conclusion

When humans perform geocoding manually, they
often rely on contextual clues for assistance. Those
clues may or may not come from the text itself. For
instance, the presence of other named entities, like
sports teams, may help human coders to distinguish
between Washington state and Washington D.C.
Automated processes for geocoding should also
make use of contextual clues.

Model-based geocoding offers a natural method
for both incorporating contextual clues and for deal-
ing with the uncertainties that arise while geocod-
ing. ELECTRo-map, for instance, quantifies un-
certainty by estimating a mixture of probability
distributions over likely geographic coordinates.
Furthermore, model-based geocoding offers the
ability to fine-tune for specific tasks: researchers

9Note that the data sets in these two papers, while both
based on Wikipedia, are distinct.

https://tfwiki.net/wiki/Electro_map
https://www.wikidata.org/wiki/Q15181105
https://www.wikidata.org/wiki/Q15181105
https://en.wikipedia.org/w/api.php
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may be interested in geocoding certain parts of
texts and not others (e.g. birth and death places).
To the extent that the model is unable to distinguish
between multiple location types in the source text,
this ambiguity should be reflected in the model’s
reported uncertainty. Model-based and gazetteer-
based methods (like Mordecai) are not exclusive,
though. It may be possible to derive better results
by, for example, first identifying a distribution over
likely locations via a statistical model and then
“snapping to” a most likely location within that dis-
tribution using a gazetteer.

Finally, the success of multilingual transform-
ers suggests that ELECTRo-map or related tech-
niques may generalize across languages (K et al.,
2020). Future efforts on model-based geocoding
should seek to evaluate cross-lingual performance
and measure the importance of context on location
disambiguation.
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