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Abstract

Natural language inference (NLI) requires
models to learn and apply commonsense
knowledge. These reasoning abilities are par-
ticularly important for explainable NLI sys-
tems that generate a natural language explana-
tion in addition to their label prediction. The
integration of external knowledge has been
shown to improve NLI systems, here we in-
vestigate whether it can also improve their ex-
planation capabilities. For this, we investi-
gate different sources of external knowledge
and evaluate the performance of our models
on in-domain data as well as on special trans-
fer datasets that are designed to assess fine-
grained reasoning capabilities. We find that
different sources of knowledge have a differ-
ent effect on reasoning abilities, for example,
implicit knowledge stored in language mod-
els can hinder reasoning on numbers and nega-
tions. Finally, we conduct the largest and most
fine-grained explainable NLI crowdsourcing
study to date. It reveals that even large differ-
ences in automatic performance scores do nei-
ther reflect in human ratings of label, explana-
tion, commonsense nor grammar correctness.

1 Introduction

Natural language inference (NLI) is closely related
to real-world applications, such as fact checking.
Given two sentences (premise and hypothesis), the
task is to decide whether (a) the first sentence en-
tails the second sentence, (b) the two sentences
contradict each other or (c) they have a neutral rela-
tion. Figure 1 shows an example for an entailment
relation. Solving the task requires models to not
only reason over the provided information but also
to link it with commonsense knowledge.

As for other natural language tasks, state-of-the-
art NLI systems rely on deep neural architectures
which do not easily expose their inner workings.
However, following a model’s reasoning process is
valuable to machine learning engineers as well as
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A dog jumping for a
Frisbee in the snow.
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snow it must be cold weather outside, and
"jumping for a frisbee'' is a rephrasing of

"playing with a plastic toy.''

entailment
contradiction

neutral

?

in
pu

t

premise hypothesis

label explanation

m
od

el
 o

ut
pu

t

Figure 1: NLI example instance from e-SNLI (Cam-
buru et al., 2018). The system needs to include com-
monsense knowledge, such as “snow→ cold weather”.

end-users. The former can use the insights to im-
prove models and the latter can base their decision
on them whether to trust the system or not. One ap-
proach to gain insight into a system is to train it to
generate explanations as an additional output (Cam-
buru et al., 2018; Atanasova et al., 2020). Such self-
explaining models are particularly interesting for
NLI because the explanation can indicate the com-
monsense knowledge which was utilized during
prediction. The integration of external knowledge
was shown to improve NLI systems (Jijkoun and
de Rijke, 2005; Chen et al., 2018; Li et al., 2019;
Faldu et al., 2021). However, the following ques-
tion remains: Does the positive effect of external
knowledge on the inference ability transfer to
the generation of explanations? (R1) Figure 1
shows an NLI example for which external knowl-
edge potentially helps to infer the correct label and
explanation. In the example, the system needs to
link dog to animal, jumping for a Frisbee to play-
ing, Frisbee to plastic toy and snow to outside as
well as to cold weather. The predicted explanation
needs to explicitly state this reasoning chain and
thus would be expected to benefit from external
knowledge.

Especially recently, pre-trained language models,
such as BERT (Devlin et al., 2019) or GPT (Rad-
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ford et al., 2019), became popular. It was shown
that they are able to learn and store commonsense
knowledge implicitly (Petroni et al., 2019). As a
result, an open question is: How effective is the
implicit commonsense knowledge of language
models compared to symbolic sources of knowl-
edge, such as knowledge base triplets? (RQ2)

To evaluate NLI models, mainly automatic mea-
sures, such as accuracy, are used. However, model
weaknesses can stay unnoticed using automatic
scores alone. Moreover, Schuff et al. (2020)
showed that automatic scores are not necessarily
correlated to human-perceived model quality. Thus,
human evaluation is a crucial step in the devel-
opment of user-centered explainable AI systems.
Therefore, we ask the question: How do humans
perceive explanation quality of state-of-the-art
natural language inference models? (R3)

In this paper, we investigate the three previously
mentioned research questions R1–R3. To answer
them, we analyze the impact of external knowl-
edge from multiple sources, such as knowledge
graphs, embeddings and language models and pro-
pose novel architectures to include and combine
them into explainable NLI systems. Further, we
conduct an extensive automatic analysis as well as a
user study. To the best of our knowledge, our study
exceeds previous human evaluations of explainable
NLI models regarding the number of participants
as well as the variety of rated explanation criteria.

For R1, we find that the positive effect of exter-
nal knowledge on label accuracy in the standard
NLI setting can also be observed in the explain-
able NLI setting and external knowledge can im-
prove the BLEU scores of the generated explana-
tions. In regard of R2, we observe that pre-trained
language models are the most promising source
of commonsense knowledge but at the same time
identify weaknesses with respect to negations and
numerical reasoning abilities which, however, can
be mitigated through combination with additional
knowledge sources. Despite the improvements in
accuracy, BLEU or BLEURT scores, our user study
shows for R3 that these do not reflect in human
ratings of explanation correctness, commonsense
inclusion or grammar and label correctness.

Our results urge caution to solely rely on auto-
matic scores for explainability. Therefore, we ex-
pect our paper to motivate the development of ded-
icated evaluation tasks and scores and further em-
phasize the importance of the user within explain-

able AI. To facilitate future work, we release our
model’s predictions as well as the crowdsourced
human ratings.1

2 Related Work

2.1 External Knowledge for NLI

External knowledge was shown to help across a
wide variety of NLP tasks (Shi et al., 2016; Seyler
et al., 2018; Pan et al., 2019; Lin et al., 2019).
While early sources for external knowledge are
WordNet and NomBank (Jijkoun and de Rijke,
2005; MacCartney et al., 2008), today a large vari-
ety of possibilities exist: From COMET (Bosse-
lut et al., 2019) over ConceptNet (Speer et al.,
2017) to language models. Chen et al. (2018)
show that enriching an NLI system with exter-
nal lexical-level semantic knowledge increases ac-
curacy scores on SNLI and enhances transfer to
MultiNLI. Wang et al. (2019) show the potential of
knowledge from ConceptNet for NLI systems. Li
et al. (2019) find that external knowledge from pre-
training helps NLI and suggest to combine it with
external knowledge from human-curated resources.
Li and Sethy (2019) propose knowledge-enhanced
attention modifications for Transformers and de-
composable methods and show that their methods
improve model robustness. Faldu et al. (2021) ex-
tend BERT by extracting entities from the input
text and adding their projected KG embeddings de-
rived from ConceptNet and WordNet as sequential
input to a modified BERT layer. Bauer et al. (2021)
present ERNIE-NLI, a modified ERNIE (Zhang
et al., 2019) model using NLI-specific knowledge
embeddings and find that it improves performance
over a non-adapted ERNIE model using general-
domain TransE embeddings. To compare different
possibilities of integrating external knowledge, we
propose various models in this paper. Further, we
address the question whether external knowledge
also improves explanation generation.

2.2 Explainable NLI

The task of explainable NLI consists of (i) pre-
dicting the correct entailment label and (ii) provid-
ing an explanation that allows the user to assess
the model’s reasoning. In general, such explana-
tion can take various forms, such as weights and
gradients over the input (Simonyan et al., 2014;
Ribeiro et al., 2016; Lundberg and Lee, 2017) and

1https://github.com/boschresearch/
external-knowledge-explainable-nli

https://github.com/boschresearch/external-knowledge-explainable-nli
https://github.com/boschresearch/external-knowledge-explainable-nli
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text spans or snippets from the input or external
text (Zaidan and Eisner, 2008; Lei et al., 2016;
Yang et al., 2018). Beyond that, there exists vari-
ous resources and approaches designed to generate
textual explanations. Rajani et al. (2019) present
a dataset that contains free-text explanations for
multiple-choice commonsense reasoning and Bha-
gavatula et al. (2020) provide a dataset for abduc-
tive multiple choice answering as well as abductive
NLG. Camburu et al. (2018) provide the e-SNLI
dataset, which adds free-text explanations as an ad-
ditional layer on the SNLI dataset (Bowman et al.,
2015). As numerous models with and without ex-
ternal knowledge have been developed on the SNLI
dataset, we use its explainable extension e-SNLI
to conduct our analysis and train our models on.
Various models have been proposed on e-SNLI
including systems based on alignment (Swanson
et al., 2020), label-specific explanation generators
(Kumar and Talukdar, 2020) and fine-tuned text-
to-text models (Narang et al., 2020). In contrast
to those, our focus is not on proposing a new ar-
chitecture or paradigm to develop a high-scoring
system. Much more, we seek to conduct a broad
comparison across knowledge sources and isolate
their effect on automatic scores as well as human
perception.

2.3 Evaluation and Human Ratings

Explainable NLI system performance is typically
scored using (i) accuracy with respect to annotated
gold labels on a reference dataset and (ii) BLEU
scores (Papineni et al., 2002) between the gener-
ated explanations and the ground truth explana-
tions (Camburu et al., 2018; Kumar and Talukdar,
2020; Narang et al., 2020). BLEU scores can only
quantify explanation quality loosely (Narang et al.,
2020). Therefore, previous work evaluates explana-
tion quality either by manual annotation (Camburu
et al., 2018; Kumar and Talukdar, 2020) or crowd-
sourcing (Narang et al., 2020). However, previous
human evaluations regarding explainable NLI are
limited to assess label and/or explanation correct-
ness. In contrast, we additionally evaluate common-
sense inclusion as well as grammatical correctness
of explanations. As Clinciu et al. (2021) find auto-
matic BLEURT scores to have distinctly stronger
correlations to human ratings of generated textual
explanations than BLEU, we investigate whether
BLEURT is a viable replacement for a user study.

3 Method

In the following, we describe our base model and
then present the models we analyze.

3.1 Base Model

We combine a state-of-the-art attention-based in-
ference model with an explainable NLI model that
predicts entailment labels and generates explana-
tions. In particular, we use the encoder part of
the enhanced sequential inference model (ESIM),
which has a cross-attention layer to capture rele-
vant semantics between premise and hypothesis
(Chen et al., 2017) and the prediction part of the
PRED-EXPL model of Camburu et al. (2018). We
represent the input sentences with BERT embed-
dings (Devlin et al., 2019) which we fine-tune on
the SNLI dataset.2 Throughout the paper, we refer
to this model as VANILLA.

3.2 Integration of Knowledge Sources

External knowledge can be found in various for-
mats. We aim at covering a possibly broad variety
and focus on state-of-the-art sources and methods.
We include the natural language knowledge base
COMET (Bosselut et al., 2019), the ConceptNet
Numberbatch embeddings (Speer et al., 2017) and
the GPT-2 language model (Radford et al., 2019).

3.2.1 Background Knowledge from COMET
As our example in Figure 1 shows, resolving natu-
ral language entailment can require reasoning over
multiple concepts and relations, such as inferring
cold weather and outside from snow. We seek to
facilitate this resolvement by providing the model
with related words (and phrases) that can be seen
as a natural language extension of premise and
hypothesis. We use the COMmonsEnse Transform-
ers (COMET) (Bosselut et al., 2019) as a natu-
ral language knowledge base to query background
knowledge for premise and hypothesis. COMET
is based on a transformer language model that is
fine-tuned on a knowledge base completion task on
ConceptNet. Given an input sentence and a Con-
ceptNet relation, it generates a phrase to complete
the object in a knowledge statement expressed in
the (subject, relation, object) format. Instead of
feeding in the whole premise and hypothesis, we

2We pass inputs of the form [CLS] premise [SEP] hypothe-
sis to BERT and use a softmax layer on top of the CLS token’s
embedding to predict the entailment label and fine-tune the
model for up to 2 epochs.
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find that chunking them into noun and verb sub-
phrases based on POS tags patterns yields better
object phrase generations.3 Thus, for each sen-
tence (premise/hypothesis) we generate #chunks ×
#relations object phrases.4

Afterwards, we embed each object phrase (with
the respective relation string prependend) with
Sentence-BERT (Reimers and Gurevych, 2019)
and quantify its similarity to the embedding of the
source sentence using cosine similarity. For each
relation, we keep the object phrase with the highest
similarity score.

Given the relation HasA and the chunked sen-
tence The dog | is walking in the snow, for example,
COMET will generate bone and effect of freeze for
the two sub-phrases, respectively. We only pre-
serve the object phrase effect of freeze as it has a
higher similarity to the source sentence.

To condense the object phrases into a fixed-
length vector representation, we average the re-
spective Sentence-BERT embeddings. This proce-
dure yields one vector representing the background
knowledge regarding the premise and one regard-
ing the hypothesis. We combine them with the
local inference vector representation (Chen et al.,
2017). Following Camburu et al. (2018), this vec-
tor is passed to the label prediction module as well
as the explanation decoder. We refer to this model
as COMET.

3.2.2 Modified Attention with ConceptNet
Following Li and Srikumar (2019), we use
knowledge-driven rules to modify the attention
weights within the cross-attention layer between
premise and hypothesis in the encoder. This en-
forces the attention mechanism to align word pairs
pi and hj from premise and hypothesis based on
world knowledge. The rules proposed by Li and
Srikumar (2019) are shown in Equation 1 and 2. In
R1, the antecedentKpi,hj

indicates that a word pair
pi and hj is of a certain relation within Concept-
Net. If the condition of the antecedent is true, the
consequent A′

pi,hj
that aligns the word pair follows.

R2 is a relatively conservative rule that additionally
takes the model’s own decision into account. The

3We manually find that feeding in the whole sentence pre-
dominantly relates the output to the last tokens of the sentence
and fails to include information from tokens earlier in the
sentence.

4We consider the relations AtLocation, CapableOf, De-
finedAs, HasA, HasProperty, HasSubevent, InheritsFrom, In-
stanceOf, IsA, LocatedNear, MadeOf, PartOf, SymbolOf,
UsedFor and LocationOfAction.

antecedent Kpi,hj
∧ Api,hj

in R2 is a conjunctive
condition that becomes true if a word pair is both
in a relation and aligned by a model’s original at-
tention. If such a conjunctive condition is true, the
word pair must be aligned which results in a new
alignment as the consequent A′

pi,hj
indicates.

R1 : Kpi,hj
→ A′

pi,hj
(1)

R2 : Kpi,hj
∧Api,hj

→ A′
pi,hj

(2)

Different from the approach of Li and Srikumar
(2019) that checks a word pair’s relation in a binary
fashion, we hypothesize that knowledge-aware em-
beddings might capture more fine-grained word re-
lationship that exists in multi-hop relational edges.
Considering playground and playroom, for exam-
ple, the former is usually located outdoors whereas
the latter is located indoors. We generalize the
binary relational inclusion from Li and Srikumar
(2019) to continuous relation scores. For this, we
replace the binary rule antecedent with the absolute
cosine similarity between the ConceptNet Number-
batch (Speer et al., 2017) vector representations of
pi and hj . We empirically confirm that our contin-
uous formulation outperforms the binary version
regarding label accuracy as well as explanation
correctness. In the following, we refer to these
modified rules as continuous constraints and use
CONT to refer to the respective model.

3.2.3 All-Text Prediction with GPT-2

Similar to Kumar and Talukdar (2020), we fine-
tune a pre-trained GPT-2 language model on the
e-SNLI dataset. In contrast to Kumar and Taluk-
dar (2020), we use a single GPT-2 model to gen-
erate explanations for all three entailment labels
instead of training a separate model for each of
them. This allows us to directly integrate the la-
bel prediction into the language model instead of
training an additional model which predicts the la-
bel on top of the three explanations. Therefore,
we propose two models, which both are GPT-2-
large models, but differ regarding their training
setting. In the label-first setting (GPT-LF), the
model is trained on text following the structure
Premise: <premise> Hypothesis: <hypothesis>
[LAB] [label] [EXP] <explanation> EOS. In the
explanation-first setting (GPT-EF) it is trained on
text following the structure Premise: <premise>
Hypothesis: <hypothesis> [EXP] <explanation>
[LAB] <label> EOS.
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3.3 Combined Models

COMET and ConceptNet. We combine
COMET with CONT to benefit from both integrated
background information from COMET and a
knowledge-enhanced attention mechanism based
on ConceptNet Numberbatch. We expect this
to help the model focus on important relations
between premise and hypothesis.

Knowledge-Enhanced Ensembles. We com-
bine the world knowledge of BERT (VANILLA),
ConceptNet Numberbatch (CONT), COMET
(COMET) and the combined model COMET+CONT

with the language model abilities of GPT-2 (GPT-LF

and GPT-EF). For this, we propose an ensemble that
not merely aggregates label votes, but combines
the models with respect to their different strengths.

The label predictions of VANILLA, CONT,
COMET, COMET+CONT as well as GPT-LF are
passed to a majority voting. In the basic ensemble,
the GPT-LF model is then conditioned on the voted
label and generates the final explanation. We refer
to this model as ENSEMBLE.

In the filtered ensemble, the majority voting only
allows models to vote if their generated explanation
lets the GPT-EF model predict the same label pre-
diction as the original model. In other words, we
fix the input as well as the generated explanation
and only let the GPT-EF model predict the label.
This step can be interpreted as a consistency filter
which prevents models from voting if their label
prediction does not match their explanation pre-
diction. In the following, we refer to this model
as FILTERED-ENS. We include a depiction of the
model architecture in the appendix.

4 Automatic Evaluation

First, we evaluate the discussed knowledge-
enhanced models with respect to commonly used
scores on e-SNLI and a stress test evaluation. In
addition to our constructed models, we also include
PRED-EXPL (Camburu et al., 2018), which is basi-
cally our VANILLA baseline without cross-attention
but with GloVe embeddings instead of fine-tuned
BERT embeddings. Further, we include two re-
cent models proposed for e-SNLI: NILE:post-hoc,
which is the highest performing model from Kumar
and Talukdar (2020), and WT5-11B from Narang
et al. (2020), which holds the current state-of-the-
art performance. While NILE:post-hoc is based on
GPT-2 as well, WT5-11B is a fine-tuned version

Type Model Label Acc. BLEU BLEURT

no
n-

L
M

PRED-EXPL 84.21 19.77 -0.871
VANILLA 89.20 19.71 -0.820
COMET 88.97 18.84 -0.822
CONT 89.02 20.1 -0.799
COMET+CONT 89.07 19.66 -0.809

L
M

-b
as

ed

GPT-EF 87.89 21.70 -0.624
GPT-LF 89.70 26.90 -0.577
ENSEMBLE 90.24 27.10 -0.576
FILTERED ENS 90.24 27.09 -0.577

NILE:POST-HOC 91.49 26.26 -0.577
WT5-11B 92.3 29.01 -0.511

Table 1: Automatic evaluation metrics on the e-SNLI
test set. Label accuracy quantifies NLI performance.
BLEU and BLEURT score the similarity between pre-
dicted and ground truth explanation texts. Higher val-
ues are better.

of the T5 language model (Raffel et al., 2020). We
train all non-LM models with five random seeds
and report scores of the median model based on
label accuracy. Table 2 shows predicted explana-
tions for the subset of models that we investigate
within the human evaluation in Section 5. Further
examples are provided in the appendix.

4.1 Performance on e-SNLI

Following prior work on e-SNLI, we report label
accuracy as well as BLEU scores (Papineni et al.,
2002) for explanations. We additionally evaluate
BLEURT scores (Sellam et al., 2020), which is a
reference-based learned evaluation metric to model
human judgements of text generation. BLEURT
is of particular interest for explanation evaluation
as Clinciu et al. (2021) compare how various au-
tomatic scores such as BLEU, ROUGE and ME-
TEOR correlate to human ratings of generated ex-
planations and find that embedding-based methods
and particularly BLEURT scores show distinctly
higher correlations than, e.g., BLEU.

Table 1 shows the respective scores for all con-
sidered models.5 The upper block lists models that
share or extend the PRED-EXPL architecture. Com-
pared to PRED-EXPL, the VANILLA model achieves
a notable increase in label accuracy as well as
BLEURT scores. Surprisingly, COMET reduces
all scores and even decreases the BLEU score be-

5For NILE:post-hoc (Kumar and Talukdar, 2020) and
WT5-11B (Narang et al., 2020) we report the label accu-
racy from their paper and calculate BLEU/BLEURT scores
based on the explanation predictions provided by the authors.
Narang et al. (2020) calculate BLEU scores using SacreBLEU
v1.3. (Post, 2018) leading to a higher reported score of 33.7.
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Model Predicted Explanation

GROUND-
TRUTH

a man is either playing the accor-
dion or performs a mime act while
happy people pass by or angry peo-
ple glare at him.

VANILLA a man can not be playing and a
mime at the same time

COMET the man is either playing the accor-
dion or a mime

CONT people can not be playing and angry
at the same time

COMET+
CONT

the man can not be playing the ac-
cordion and the mime at the same
time

GPT-LF Happy people are not angry people.
WT5-11B The man cannot be playing the ac-

cordion and performing a mime act
at the same time.

Table 2: Explanation predictions of the models used
within the human evaluation for the premise “A man on
a sidewalk is playing the accordion while happy people
pass by” and the hypothesis “A man on the sidewalk
performs a mime act while angry people glare at him”.
All models correctly predict the class contradiction but
generate different explanations. The predicted expla-
nation of the FILTERED-ENS model is identical to the
explanation of the GPT-LF model as GPT-LF is used to
predict the ensemble’s explanation.

low the PRED-EXPL score. In contrast, knowledge-
enhanced cross attention (CONT) improves BLEU
and BLEURT scores and reaches a label accuracy
close to VANILLA. Combining CONT with COMET

retains the CONT label accuracy but again slightly
decreases BLEU and BLEURT scores. The lower
block contains models that are or include language
models. All language model-based models increase
BLEU and BLEURT scores. All except GPT-EF

outperform all non-language model models.
To analyze whether the performance differences

of models can be really attributed to a better reason-
ing and commonsense knowledge ability instead of
merely different model capacity, we next evaluate
our models on the NLI stress test evaluation.

4.2 Stress Test Evaluation
Table 3 shows the results of our models on the
NLI stress test evaluation proposed by Naik et al.
(2018). The dataset contains multiple subsets of
which each subset is used to evaluate the robustness
of the system against a specific type of perturbation,

e.g., spelling errors, negations, numerical reason-
ing and more. On average, all models distinctly
improve performance compared to the PRED-EXPL

baseline. With respect to VANILLA, all models
except GPT-EF improve average performance. Fur-
ther, both COMET and CONT improve average label
accuracy, while their combination decreases perfor-
mance. Surprisingly, GPT-LF outperforms the en-
semble methods on average. While COMET+CONT

reaches the best performance in terms of e-SNLI
label accuracies, it performs worst on the stress
tests. The same effect can be observed for the
FILTERED-ENS. While it reaches top performance
for the spelling error test, its performance drops for
numerical reasoning, where it performs worse than
any other model. These results show that combin-
ing different knowledge sources does not result in
a consistent combination of their weaknesses and
strengths. Instead, the sources of external knowl-
edge have to be carefully adjusted to the target
domain and our results paint a rather pessimistic
picture regarding a cure-all solution. Further, a
model’s reasoning capabilities have to be assessed
in detail as evaluation across different reasoning
types easily masks model weaknesses.

Finally, we assess whether language models
reach their higher performance due to better rea-
soning: For most of the assessed reasoning types —
with exception of numerical reasoning and negation
— the best non-ensemble model in fact is GPT-LF.
Also, GPT-LF reaches the highest accuracy on aver-
age. Therefore one could generally recommend to
include external knowledge in form of a pre-trained
language model as the foremost option. However,
our results also show that language models are not
necessarily the best choice for all reasoning needs
and can, e.g., severely decrease performance for
numerical reasoning and negations, where models
based on language models perform worse than all
other models.

5 Human Evaluation

While automatic scores, such as BLEU, provide
a valuable starting point for evaluating explana-
tions, they fall short in capturing the model’s real
explanation capabilities. We, therefore, conduct
a large-scale crowdsourcing study to complement
our automatic evaluations on e-SNLI and the stress
tests. Following related work (Narang et al., 2020),
we assess explanation quality based on ratings from
crowdworkers on Mechanical Turk. While previ-
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Competence Test Distraction Test Noise Test

Type Model Total Antonymy Numerical Word Overlap Length Mismatch Negation Spelling
no

n-
L

M

PRED-EXPL 48.69 36.36 36.55 47.17 53.44 45.31 52.42
VANILLA 56.94 37.94 32.24 55.46 65.21 52.03 62.90
COMET 57.05 34.54 35.48 57.31 64.15 52.85 62.33
CONT 57.09 32.50 40.28 52.10 64.35 53.38 62.77
COMET+CONT 56.26 44.43 34.16 51.34 64.39 49.36 63.03

L
M

-b
as

ed GPT-EF 52.74 51.81 31.33 55.91 60.97 38.44 58.20
GPT-LF 59.28 54.84 28.80 64.06 68.72 42.82 67.07
ENSEMBLE 59.19 37.97 34.03 58.13 67.45 52.51 65.92
FILTERED-ENS 58.99 52.53 28.54 63.70 68.02 42.18 67.10

Table 3: Label accuracies (higher is better) for all categories in the NLI stress test tasks (Naik et al., 2018). The
six rightmost columns show (i) the model’s reasoning abilities (competence), (ii) how sensitive it is to lexical
distractors (distraction) and (iii) how robust it is against noise from different perturbations (noise). Each column
corresponds to one dataset. For datasets with matched and mismatched subsets, we report the accuracy over all
labels within the group. Similarly, the total accuracy is calculated over all labels.

ous work limited evaluation to rating explanation
correctness, we additionally ask participants to pro-
vide fine-grained ratings of commonsense inclusion
and grammatical correctness. A screenshot of the
interface is shown in the appendix. We release the
full data of our study.

5.1 Conditions

In order to evaluate effects across the dis-
cussed sources of external knowledge, we in-
clude seven models in our human evaluation:
VANILLA, COMET, CONT, COMET+CONT, GPT-
LF, FILTERED-ENS and WT5-11B. Additionally
we evaluate the e-SNLI ground truth labels and
explanations. Table 2 displays the different expla-
nations the models predict for an exemplary input
as well as its ground truth explanation annotation.

5.2 Dependent Variables

We evaluate the models’ predicted labels and ex-
planations along four self-reported dimensions.

Label Correctness. Following Kumar and
Talukdar (2020) and Narang et al. (2020), we ask
participants to rate if the predicted label is correct.

Explanation Correctness. Similar to Camburu
et al. (2018), Kumar and Talukdar (2020) and
Narang et al. (2020), we collect subjective yes/no
explanation correctness ratings.

Grammatical Correctness. We ask participants
to rate if the generated explanation is grammatical.

Commonsense Inclusion. We ask participants
whether the explanation includes commonsense

knowledge that is needed to answer the question.
We collect responses on an item with the options
yes, no and no need.

5.3 Study Design

In order to evaluate the effect of the level of re-
quired external knowledge, we compile, like Ku-
mar and Talukdar (2020) and Narang et al. (2020),
a set of 100 premise-hypothesis pairs. In contrast
to them, we compose the 100 pairs to contain 50
pairs that require a low level of external knowledge
and 50 pairs that require a high level. To gather
pairs of both categories, we let two annotators rate
250 premise-hypothesis pairs from the e-SNLI test
set. We sample 50 pairs per level of external knowl-
edge from the 179 pairs on which the annotators
agree. We provide details on the annotation criteria
in the appendix. During the study, we, like Narang
et al. (2020), collect 5 crowdsourced ratings for
each condition and for each of the 10 input pairs
per batch, i.e., 500 ratings per model and a total of
4000 ratings for each variable. We provide ratings
of exemplary model predictions in the appendix.

5.4 Analysis

We collect responses from 290 crowdworkers and
discard those that were entered in less then 5 min-
utes (31%) as this might indicate arbitrary answer
selection. Note that the repeated measures design
of our study possibly introduces inter-dependencies
within ratings as, e.g., certain participants can have
a tendency to rate explanations as correct more of-
ten than others or a certain question might elicit
more label correctness ratings. Thus, we use gener-
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alized linear mixed models (GLMM) to account for
the potentially confounding variables (worker ID,
question ID and level of required commonsense
knowledge). As our response variables are binary,6

we use binomial GLMMs. We include fixed ef-
fects (model and commonsense level) as well as
random intercepts (worker and question IDs). Fig-
ure 2 shows effect displays for the collected ratings
in relation to the predictor model type.

We conduct likelihood ratio tests between the
full model and the model without the evaluated
predictor to test the effects of model type and com-
monsense level on all four rating variables. As
model type contains more than two factors, we
additionally conduct single-step corrected Tukey
HSD post-hoc tests for all four variables.

Label Correctness. We do not observe a signifi-
cant main effect of model type (χ2(7) = 13.00,
p = 0.0723) but a significant main effect of
commonsense level (β = 0.28, χ2(1) = 4.54,
p < 0.0331).7

Explanation Correctness. We observe a main
effect of model type (χ2(7)=24.06, p<0.0012) and
commonsense level (β = 0.27, χ2(1) = 7.79,
p < 0.0053). For model type, a post-hoc Tukey test
showed significant differences between FILTERED-
ENS and VANILLA (p < 0.0055) as well as
FILTERED-ENS and COMET+CONT (p < 0.0029).

Grammatical Correctness. We observe a main
effect of model type (χ2(7) = 14.20, p < 0.0479).
However, a post-hoc Tukey test did not reveal
significant differences between any model type
pair. No significant main effect of commonsense
level was observed (β = 0.02, χ2(1) = 0.02,
p = 0.8803).

Commonsense Correctness. We observe a main
effect of model type (χ2(7) = 20.63, p < 0.0044).
However, a post-hoc Tukey test did not reveal
significant differences between any model type
pair. No significant main effect of commonsense
level was observed (β = 0.07, χ2(1) = 0.25,
p = 0.6163).

Overall, these results show surprisingly few sig-
nificant differences between the different model
types and conflict with the large differences within
automatic evaluation scores.

6We do not consider “no need” commonsense ratings dur-
ing the respective model estimation.

7β refers to the estimate of a high commonsense level.

6 Discussion

R1: Effect of External Knowledge. We showed
that external knowledge can increase label accura-
cies on e-SNLI as well as on the stress tests. In
addition, we found external knowledge to increase
BLEU/BLEURT scores and thus help explanation
generation in terms of automatic evaluation.

R2: Implicit Knowledge in Language Models.
While language models achieve the best scores
on general e-SNLI performance, the stress tests
showed that they do not succeed in all reasoning
types. Thus, for choosing the best way of integrat-
ing commonsense knowledge, the final reasoning
goal of the model needs to be considered.

R3: Perceived Explanation Quality by Humans.
We expected the large differences in e-SNLI label
accuracy (up to 3.23%), BLEU (up to 10.17) and
BLEURT (0.31) to reflect in human ratings, but
none of these maximal differences in scores leads
to a significantly different rating for any depen-
dent variable. Regarding the observed significant
differences, FILTERED-ENS is not the best model
included in the study with respect to e-SNLI (WT5-
11B reaches distinctly higher values for all scores)
and, similarly, neither VANILLA nor COMET+CONT

are the worst models on any score in Table 1. Thus,
large accuracy gains do not necessarily imply bet-
ter models when used in real-world applications
with users. In the following, we will further discuss
these results.

Superhuman Model or Noisy Ground Truth?
It is particularly remarkable that the ground truth
ratings do not significantly differ from any other
model’s ratings. In fact, the ground truth condi-
tion ranks in the lower half across all four rating
dimensions and yields the lowest probability of
receiving label correctness ratings as shown in Fig-
ure 2a. Similarly, Narang et al. (2020) note that
in their experiment the WT5-11B model reaches a
12%-higher explanation correctness rating than the
ground truths. This indicates that e-SNLI might not
be suitable to distinguish performances of today’s
high-performing models. While it remains valuable
for training, models should be scored on specifi-
cally designed evaluation sets, for example an ex-
plainable extension of the NLI stress test dataset.

Limitations and Future Directions. Although
we evaluated a total of 11 different model archi-
tectures and various different sources of external
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(a) Label correctness.
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(b) Explanation correctness.
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(c) Grammatical correctness.
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(d) Commonsense correctness.

Figure 2: Effect displays for user ratings of label, explanation, grammatical and commonsense correctness depend-
ing on model type following Fox (2003). The rating probability is the probabality that a prediction of a respective
model type is perceived to be correct by a human considering fixed effects. Error bars mark 95% confidence limits.

knowledge, this clearly does not exhaust all possi-
ble knowledge sources or architectures. While our
analysis provides insight into the most common
knowledge sources integrated into representative
model architectures, future work should confirm
our findings for additional sources and architec-
tures. Although our user study already is the largest
and most fine-grained evaluation of explainable
NLI, future work should further expand the set of
dependent variables to potentially reveal effects
that are not visible through the lens of our experi-
mental setup. While our work addresses the task of
explainable NLI, we expect that the observed dis-
connect between automatic and human evaluation
applies to further tasks and requires to re-assess
model evaluation across explainability tasks.

7 Conclusion

In this paper, we addressed three research ques-
tions: whether integrating external knowledge
can improve explainability for NLI, how effective
knowledge implicitly stored in language models
is for reasoning, and how humans perceive expla-
nation quality of state-of-the-art natural language
inference models. To answer these questions, we

proposed different methods of integrating various
knowledge sources into deep learning models. We
found that fine-tuned language models reach the
highest performance on e-SNLI as well as the high-
est average accuracy within the NLI stress test
evaluation. However, their performance can break
down on numerical reasoning and negations. In
addition to automatic evaluation, we conducted a
large-scale human crowdsourcing evaluation and
found that high differences in accuracy, BLEU or
BLEURT scores do not reflect in significant dif-
ferences in human ratings of explanation correct-
ness, commonsense inclusion, grammar or label
correctness. This highlights an alarming disconnect
between automatic evaluation scores and human
ratings, that puts the real-world utility of recent
model improvements into question and requires to
re-think automatic evaluation across the field of
explainable AI.
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Figure 3: Ensemble architectures. The blue boxes show the consistency-filter extension.

Figure 4: Screenshot of the study interface presented to crowdworkers on Mechanical Turk.
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Pattern Matching

The entailment can be decided by matching identical parts in
the premise and the hypothesis.
Premise: A water scene with a sunset in the background.
Hypothesis:There is a water scene with the sunset in the back.

Unrelated Negation

The entailment can be decided by identifying an unrelated nega-
tion.
Premise: Children bathe in water from large drums.
Hypothesis: The kids are not reading.

Rephrasing

The entailment can be decided by simple rephrasing (e.g. re-
placing a word with a synonym).
Premise: A boy dressed in an orange shirt and a helmet is riding
a dirt bike in the woods.
Hypothesis: A boy in orange rides his dirt bike.

Easily-
Distinguishable
Concepts

The entailment can be decided by identifying unrelated concepts
that have no semantic relation.
Premise: Firefighters in full gear are walking up a ladder.
Hypothesis: The firefighters are eating lunch.

H
ig

h
L

ev
el

Complex Reasoning

The entailment can be decided by resolving more complex
relations and reasoning using common sense knowledge.
Premise: Soccer players are playing a night game and the ball
is in the air, while the two teams fight for it.
Hypothesis: The sun was shining during the soccer match.

Abstract Concepts

The entailment can be decided using common sense knowledge
about abstractions of concepts.
Premise: A girl reaches up to kiss a cat, which is sitting on the
counter.
Hypothesis: A girl is showing affection towards a cat.

Table 4: Annotation guidelines used during the annotation of low/high levels of required external knowledge with
examples.
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Premise: There is a group of children getting their picture taken with presents.
Hypothesis: Two men carry a Christmas tree.

Premise: A woman looks at a plate filled with steam.
Hypothesis: The woman is out shopping at the mall.

Premise: Man sitting on bench with a suitcase in front of PADDINGTON sign.
Hypothesis: A man sitting with a sign.

Premise: A man grilling a hamburger.
Hypothesis: The man is swimming at the bottom of the ocean.

Premise: The African American man protests against unlawful sex.
Hypothesis: The man protests.

H
ig

h
L

ev
el

Premise: A boy in a red jacket and black hat sliding on his knees down a snowy hill
Hypothesis: A child is playing outside.

Premise: A man playing a piano.
Hypothesis: The man’s hands are on the keys of a piano.

Premise: 3 girls chatting and laughing on the stairwell.
Hypothesis: Girls are not having a good time.

Premise: A man visiting a friend in the hospital.
Hypothesis: A man and a patient in a hospital room.

Premise: Two girls pose along a tree-lined path and blow kisses towards the camera.
Hypothesis: Two girls are taking pictures outside.

Table 5: Pairs from the low/high external knowledge requirement annotations sampled from pairs for which anno-
tators agreed.
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