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Abstract

The high performance of large pretrained lan-
guage models (LLMs) such as BERT (Devlin
et al., 2019) on NLP tasks has prompted ques-
tions about BERT’s linguistic capabilities, and
how they differ from humans’. In this paper, we
approach this question by examining BERT’s
knowledge of lexical semantic relations. We
focus on hypernymy, the “is-a” relation that
relates a word to a superordinate category.

We use a prompting methodology to simply
ask BERT what the hypernym of a given word
is. We find that, in a setting where all hy-
pernyms are guessable via prompting, BERT
knows hypernyms with up to 57% accuracy.
Moreover, BERT with prompting outperforms
other unsupervised models for hypernym dis-
covery even in an unconstrained scenario. How-
ever, BERT’s predictions and performance on
a dataset containing uncommon hyponyms and
hypernyms indicate that its knowledge of hy-
pernymy is still limited.

1 Introduction

Large pretrained language models (Devlin et al.,
2019; Radford et al., 2019) have set new standards
for performance on NLP tasks. Many of these tasks,
such as question answering and natural language
inference, might seem to require human-like syn-
tactic and semantic capabilities to perform well,
leading to many studies on this topic (Rogers et al.,
2020).

However, evidence that LLMs have human-like
semantic capabilities is mixed. With respect to pol-
ysemy, Wiedemann et al. (2019) find that the sense
of a polysemous word can be disambiguated using
a k-nearest-neighbor approach on BERT’s repre-
sentation of the word. In contrast, Yenicelik et al.
(2020) note that while polysemous words’ senses
are linearly separable based on their BERT embed-
dings, these embeddings do not form clusters based
on their senses alone.

In terms of BERT’s knowledge of lexical seman-
tics, Vulić et al. (2020) find that BERT’s embed-
dings capture useful lexical-type knowledge, per-
forming better than non-contextual embeddings on
a lexical relation prediction task. That said, BERT’s
knowledge of lexical semantics is not equal for all
words: it struggles with rare words (Schick and
Schütze, 2020).

In this work, we further examine BERT’s knowl-
edge of lexical semantics, more specifically that of
hypernymy, using a Cloze / prompting methodol-
ogy. In the most basic form of this framework, we
simply run BERT on an input sentence such as “An
apple is a [MASK].”, and extract the probabilities
assigned to each token that could fill in the blank;
here, we would expect an answer such as “fruit”.

While Ravichander et al. (2020) also approach
BERT’s lexical semantics using a prompting task,
they focus on simple prompts and examine only if
BERT can predict a word’s canonical hypernym. In
contrast, we explore how more complex prompts
affect BERT’s ability to predict hypernyms, pro-
pose new methods of evaluating hypernym discov-
ery that that take into account the fact that a word
may have multiple hypernyms, and find effective
prompts for hypernym discovery.

2 Background: Prompting

Although fine-tuning is the methodology with
which LLMs shattered existing state-of-the-art on
many downstream tasks, the use of prompting has
also gained interest in recent years. Unlike fine-
tuning, prompting involves no further training to
solve downstream tasks; instead, a prompt is fed to
the language model, which either predicts the con-
tinuation of the prompt (autoregressive language
modeling) or the identity of one or more masked
words (masked language modeling). The output of
the language model is then used as the response to
the task at hand.

Prompting has seen use for diverse tasks such as
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knowledge base completion (Petroni et al., 2019)
as well as summarization and translation (Radford
et al., 2019). While performance on these tasks is
not always up to par with supervised state of the art,
prompting has the advantage of being unsupervised.
However, various studies have found that task per-
formance is highly dependent on the prompt used
(Jiang et al., 2020; Reynolds and McDonell, 2021);
these same studies propose automatic or hand-
made improvements to prompts to improve them.
Supervised techniques have also been devised to
automatically develop better prompts (Shin et al.,
2020).

Beyond downstream tasks, prompting is also use-
ful for investigating language models as a test sub-
ject. While probing (Conneau et al., 2018; Tenney
et al., 2019), for example, is useful, it involves train-
ing an auxiliary model. This auxiliary model can
be troublesome; (Hewitt and Liang, 2019) show
that the probes themselves can learn tasks inde-
pendently of whether the model encodes linguistic
structure. Moreover, a model can contain infor-
mation within its internal representations without
relying on that information to make predictions. In
contrast, prompting requires no auxiliary models
that might complicate matters.

Ettinger (2020) uses prompting to compare
BERT’s linguistic competencies and tendencies to
that of humans; among those investigated is hyper-
nymy. They find that BERT easily identifies noun
hypernyms, but fails to adapt to negated sentences:
given the prompts “A hammer is a [MASK]” and
“A hammer is not a [MASK]”, BERT predicts the
words “hammer”, “tool”, and “weapon” for both.

In a follow-up, Ravichander et al. (2020), investi-
gate whether BERT has a systematic understanding
of hypernymy. They find that BERT’s understand-
ing of hypernymy is not systematic: BERT fails
when tasked with finding the hypernym of a hy-
ponym in the plural; it also fails more often when
the hyponym in question is uncommon, or has not
been seen with its hypernym in Wikipedia. In con-
trast to the practically-oriented works, these studies
that analyze LLMs use primarily simple prompts
to extract BERT’s predictions.

These two uses of prompting, for downstream
tasks and for analysis of LLMs, are somewhat in
tension. On one hand, studies searching for knowl-
edge in BERT treat it as a test subject, and use
prompting to search for knowledge of hypernymy
using very simple prompts. On the other hand,

from practically-oriented studies, we know that
using simple prompts may lead to BERT underper-
forming, if only because it is not responding to the
task at hand. The use of simple prompts might thus
obscure knowledge of hypernymy in BERT.

In this paper, we attempt to balance these two
approaches. We explore more complex prompts,
in an attempt to reveal knowledge of hypernymy
in BERT that might be hidden by challenges with
prompting. However, we limit prompts to those
which are human-understandable, and can be cre-
ated without any supervision (excluding, thus,
prompt-tuning approaches). Moreover, we com-
pare BERT’s performance on a hypernym discov-
ery task to that of other systems, to give context to
its hypernym discovery ability.

3 BERT Diagnostics

In this section, we use prompting to determine how
well BERT understands hypernymy. In order to
predict the hypernym of a word (hyponym) using
BERT and prompting, we run BERT on a prompt
including a mask token, using it to predict the iden-
tity of the masked token. One such prompt might
be “An apple tastes good. An apple is a [MASK].”,
where the hyponym is “apple”, and its canonical
hypernym is “fruit.”

3.1 Dataset

We perform our experiments on a subset of the hy-
pernyms / hyponyms given by Battig and Montague
(1969); we call this the Battig dataset. The dataset
consists of pairs (x, y) of hyponym word x and
canonical hypernym y; these pairs are organized by
y, and many words share the same hypernym. Our
subset consists of 863 words that have unique 25
hypernyms in total. We select only words where y
would be represented by BERT as one token; doing
this allows the hypernyms to be guessed by BERT
using one [MASK]token.

3.2 Experiments

Using the Battig dataset, we conduct a variety of
experiments, to determine to what degree BERT
is aware of hypernymy. In each experiment, we
fix a given prompt, with a slot for a hyponym,
as well as a mask token which will be used to
obtain the hypernym. Then, for each hyponym
in the Battig datset, we use Wolf et al. (2020)’s
bert-base-uncased BERT model to obtain
the probabilities assigned to each word (potential
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hypernym). Here, we detail the prompts used; in
Section 3.3, we discuss how we evaluate our re-
sults.

In our first experiment, the basic experiment, we
extract hypernyms from BERT using the simple
prompt “A(n) x is a [MASK].”. We use the ap-
propriate article (“a”, “an”, or none at all) for x,
but we always use the article “a” as the determiner
for [MASK]. This results in difficulties in guess-
ing hypernyms that start with vowels. Although
a prompt such as “xs are [MASK].” would avoid
this issues, using such a prompt is not possible due
to tokenization issues: while all hypernyms in the
singular are single tokens, hypernyms in the plural
are often split into multiple tokens, and cannot be
guessed using one [MASK]token.

As a follow up, we run the type-of experiment,
using the prompt “A(n) x is a type1 of [MASK].”.
This is intended to allow for vowel hypernyms and
clarify that hypernymy is the relation of interest.

We also test two final simple prompts that reflect
common real-world situations in which hypernyms
might appear. The first, “a [MASK], such as x”, is
a prompt first proposed as a template using which
hypernym-hyponym pairs could be discovered in
unlabeled text (Hearst, 1992). This such-as prompt
is a fragment, rather than a natural sentence. The
second prompt is “My favorite [MASK]is x.”. This
“favorite” prompt both provides a more natural
prompt, and puts the [MASK]token in an interme-
diate position.

Next, we perform a series of contextualized
queries, based on the hypothesis that some hyper-
nyms are difficult for BERT to predict because
there is insufficient information in the query, and
our short, contextless prompts are too different
from the training data. To resolve this we generate
contexts in two ways. First, we create a handwrit-
ten context to be used for each hypernym. For ex-
ample, if the word x is a flower, its context might be
“A(n) x smells nice.”, followed by the prompt “A(n)
x is a [MASK]”. Note that since there is no train-
ing, BERT cannot simply learn a context-hypernym
correspondence. However, although we attempted
to write prompts that did not hint very strongly
at the identity of the hypernym, it is possible that
these contexts might have provided clues.

We also experiment with automatically gath-
ered contexts, gathered from SemCor 2.0 (Lan-

1We experiment with other words besides “type” that might
indicate hypernymy, such as “kind”, “category”, and “sort”,
but find no significant difference in results.

gone et al., 2004). To do this, we first automatically
find the WordNet sense of each word in the dataset.
We assign to each word the first WordNet sense (if
any) that includes the word’s hypernym as an in-
herited hypernym. Then, we choose as the word’s
context the first SemCor sentence that includes the
word used in the appropriate sense.

Additionally we experiment with prompts that
include multiple hyponyms. Specifically, we use
two prompts: “A(n) x is a [MASK]. So is a(n)
x′.” and “My favorite [MASK]is either a(n) x or
a(n) x′”, where x′ is another word, in principle
another hyponym. These prompts allow us to query
the hypernym of polysemous words more clearly:
while the word “orange” admits the hypernyms
“color” and “fruit”, when “orange” is paired with
“purple”, only the former is acceptable. In the first
experiment, we select x′ from the actual pool of
words that share x’s hypernym.

In the FastText multiple hyponym experiment,
we automatically find values for x′. We repre-
sent each word in the dataset as its FastText (Bo-
janowski et al., 2016) vector, using the eng-300
pretrained model. Then, we choose as x′ the near-
est neighbor (using cosine distance) of the word of
interest x within the FastText model’s vocabulary.
Using this method, we can generate x′ while keep-
ing the prompting process entirely unsupervised.

Finally, we test an ensemble strategy: we take
BERT’s predictions based on an unweighted av-
erage of three prompts: “x is a [MASK]”, “x is
an [MASK]”, and “x is a type of [MASK]”. Since
the last of the three prompts gives no hint as to
the starting letter of the following word, it acts as
a tiebreaker between possible vowel / consonant-
initial responses.

3.3 Evaluation

We use a variety of metrics to evaluate the hyper-
nyms predicted by BERT. First, we use precision
at 1 (P@1), that is, the proportion of BERT’s most-
likely predictions that were correct, relative to the
canonical hypernym given by the dataset. We also
use mean reciprocal rank (MRR), which is the
mean (taken over examples) of the reciprocal of the
rank of the correct answer in BERT’s top predic-
tions. We consider only BERT’s top 5 predictions,
and assign a reciprocal rank of 0 if the answer is
not in the top 5.

However, these metrics are flawed, as many
words have multiple hypernyms, possibly corre-
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sponding to multiple senses of the word. For ex-
ample, an oak is a type of tree, but also a type of
plant; orange, is both a type of fruit and a color. To
resolve this, we also create an automated metric,
WordNet P@k, to determine if a predicted hyper-
nym is valid. In WordNet (Fellbaum, 1998), most
nouns have for each word sense a list of inherited
hypernyms, including both its direct hypernyms,
as well as the inherited hypernyms of the noun’s
hypernyms. In our WordNet precision at k (P@k)
metric, a word w is considered to be a hypernym
of a word x if w is an inherited hypernym of x.
WordNet P@k is thus the proportion of the top
k predicted hypernyms for x that are one of x’s
inherited hypernyms.

This metric, too, has flaws; because WordNet’s
word senses are very fine-grained, WordNet’s hy-
pernyms do not correspond directly with intuition,
penalizing hypernyms that might be valid. More-
over, in some cases, WordNet’s hypernyms for a
word do not include the hypernym label from the
dataset; e.g. WordNet does not include“boat” as
a hypernym for “yacht”. To partially resolve this
issue, we label a prediction correct under WordNet
if the prediction is a hypernym from the dataset or
an inherited hypernym according to WordNet.

We also notice that in many cases, BERT’s most
likely prediction for a given word’s hypernym is
the word itself. In the case of a prompt such as “x
is a [MASK]”, the tautology “x is x” is not strictly
incorrect. Moreover, it is not uncommon that, when
x is predicted as its own hypernym, the second
most likely prediction is the canonical hypernym
of x. So, we report results both including x as a
possible prediction, and excluding x when BERT
predicts it as its own hypernym.

3.4 Results
For each of our experiments, we use a different set
of prompts to predict the top hypernyms of each
hyponym in the dataset, and report four metrics:
P@1, MRR, WordNet P@1, and WordNet P@5,
as defined above. Table 1 reports these metrics as
expected, while Table 2 shows the results predict-
ing the hypernyms for a word x with BERT, and
deleting x from the list of hypernyms, as BERT
often predicts x to be its own hypernym.

3.5 Discussion
The results indicate that the basic experiments, us-
ing only prompts of the form “x is a [MASK]”
prompt BERT to give the correct answer only 30%

of the time. In contrast, explicitly stating the (type-
of) relationship intended results in a precision of
only 16.2, likely because these constructions are
less common in the training data than those without
“type-of”. This is despite the fact that this prompt
avoids the troubles of using “a/an” in the prompt.

The “such-as” prompt is more effective than the
prior two: its precision is 18 points higher than the
basic prompt, and its MRR is 6 points higher; more-
over, its WordNet P@1 is the highest of all prompts
using only one hyponym. The “favorite” prompt
also performs favorably compared to the first two,
although not as well as the “such-as” prompt.

The addition of handcrafted context to the
prompt, intended to better replicate BERT’s train-
ing conditions and disambiguate the meaning of the
hyponym in question, improves BERT’s hypernym-
guessing ability. However, the automatically-found
contexts do not yield the same boost; manual anal-
ysis reveals that BERT often guesses words that
might reasonably continue the text given the con-
text, but these are not necessarily hypernyms.

Adding another hyponym to the prompt in addi-
tion to x is the most effective at improving BERT’s
accuracy. When both hyponyms share the same
hypernym, the WordNet P@1 rises to 60%, which
is much higher than the baseline basic prompt, but
still demonstrates room to improve. Some of the
errors (BERT fails to guess the hypernyms “ani-
mal” and “instrument”) are due to the hypernym’s
starting with a vowel; others, like the BERT’s in-
ability to guess hypernyms “relative” and “cloth”,
do not admit such an easy explanation. In the case
of “cloth”, while in the case of “relative”, BERT
simply guesses wrong.

Although the multiple hyponym method does not
allow BERT to perfectly guess the correct hyper-
nym, its MRR of 66.7 (excluding x) is impressive.
Moreover, we can use unsupervised methods to
find a second hypernym, with only a moderate loss
in accuracy.

Finally, the prompt ensemble technique offers
no improvement over the basic prompt in terms of
accuracy with respect to the canonical hypernym.
However, when excluding x from the predicted
hypernyms and measuring using WordNet accuracy,
the ensemble of prompts performs as well as when
multiple hypernyms are given. This reflects the fact
that the ensemble of prompts does induce BERT
to predict hypernyms starting with a vowel, such
as “animal” and “instrument”. It is simply that the
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Experiment P@1 MRR WN P@1 WN P@5
A(n) x is a [MASK]. 30.3 44.4 36.2 22.0
A(n) x is a type of [MASK]. 16.2 33.7 21.7 21.4
a [MASK], such as a(n) x 48.3 50.4 54.9 25.5
My favorite [MASK]is a(n) x. 35.7 44.0 50.8 23.8
[Handwritten context]. A(n) x is a [MASK]. 42.5 53.0 45.1 18.6
[SemCor context]. A(n) x is a [MASK]. 29.7 38.2 33.0 15.9
A(n) x is a [MASK]. So is a(n) x′. 51.7 63.0 54.1 23.8
A(n) x is a [MASK]. So is a(n) x′. (FT) 41.2 52.2 45.7 21.1
My favorite [MASK]is either a(n) x or a(n) x′. (FT) 38.5 47.1 55.9 24.7
Ensemble 29.8 44.9 38.6 26.9

Table 1: Diagnostic test performance (Battig dataset) when including the hyponym x in the top k. “WN” denotes
WordNet, and “FT” denotes FastText.

Experiment P@1 MRR WN P@1 WN P@5
A(n) x is a [MASK]. 38.7 49.7 46.6 22.9
A(n) x is a type of [MASK]. 31.4 43.4 43.0 22.7
a [MASK], such as a(n) x 50.3 52.7 57.6 26.3
My favorite [MASK]is a(n) x. 35.7 44.1 50.8 23.9
[Handwritten context]. A(n) x is a [MASK]. 44.8 54.7 48.2 19.0
[SemCor context]. x is a [MASK]. 33.6 41.5 40.3 17.7
A(n) x is a [MASK]. So is a(n) x′. 57.4 66.7 61.5 24.2
A(n) x is a [MASK]. So is a(n) x′. (FT) 47.2 56.1 53.1 22.0
My favorite [MASK]is either a(n) x or a(n) x′. (FT) 38.6 47.4 56.5 24.9
Ensemble 38.2 50.3 53.0 30.0

Table 2: Diagnostic test performance (Battig dataset) when excluding the hyponym x from the top k. “WN” denotes
WordNet, and “FT” denotes FastText.

hypernym predicted given this prompt is (in 15% of
examples) correct, but not the canonical hypernym.

4 Comparison with other Hypernym
Discovery Models

Although the goal of this paper is to learn more
about BERT, we also compare BERT to other mod-
els used for hypernym discovery, the task of predict-
ing a word’s hypernym. To do so, we evaluate on
the test split of the Semeval 2018 Task 9 (Camacho-
Collados et al., 2018) dataset, which consists of
1500 words, each with a list of valid hypernyms.

This dataset is not very compatible with our ap-
proach. The hypernyms listed for each hyponym
do not necessarily fit into one token. Moreover, the
hyponyms in the dataset are abstract nouns. Many
are also not necessarily common knowledge, be-
ing instead specific individuals, places, or technical
terms. In contrast, the category norms dataset was
designed to include only hyponyms that almost
anyone would know.

As in the prior experiments, we use the

bert-base-uncased pretrained BERT model
from Huggingface (Wolf et al., 2020). We test the
prompts “x is a type of [MASK]” and “My favorite
[MASK]is x”, to account for hypernyms starting
with either consonants or vowels. We also test
the high-performing “such-as” prompt “a [MASK],
such as x”. We predict the top 15 hypernyms for
each hypernym and evaluate using the following
metrics: mean average precision (MAP), Mean Re-
ciprocal Rank (MRR), and precision at k (P@k).
Mean average precision can be defined as the aver-
age over k of P@k; we compute this average for
k = 1, . . . , 15. Table 3 shows the results for our
BERT model as compared to the highest and low-
est scoring (by MAP) supervised and unsupervised
models (results from (Camacho-Collados et al.,
2018)); our models are “BERT (such as)”, “BERT
(favorite)”, and “BERT (type of)”.

For all prompts, BERT outperforms all of the
unsupervised models on all metrics, as well as the
worst-performing supervised model. The “such-as”
prompt even manages to outperform the supervised
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Model S/US MAP MRR P@5
BERT (such as) US 20.17 12.65 10.49

CRIM_r1 S 19.78 36.10 19.03
SJTU BCMI S 5.77 10.56 5.96

BERT (favorite) US 9.17 13.95 7.91
BERT (type of) US 7.37 22.30 8.81

Team 13 US 2.77 6.07 2.72
Apollo_r1 US 1.40 3.51 1.33

Table 3: Model performance on Semeval 2018 Task 9:
Hypernym Discovery (Semeval 2018 Task 9 Dataset).
S/US = Supervised or Unsupervised

models with respect to MAP, although its MRR
and P@5 put it squarely in the middle of the pack.
This is surprising, considering that BERT makes
no use of the closed vocabulary of hypernyms that
this task has, and other models took advantage of.
In fact, with the “such-as” prompt, BERT could not
possibly predict many of the hypernyms in this task,
including hypernyms that start with vowels, and
hypernyms that are represented as multiple tokens.
However, its performance is still respectable.

5 Qualitative analysis - does BERT
understand hypernymy?

Having quantitatively analyzed BERT’s outputs
on various prompts, we now turn to qualitatively
analyze them. The immediate results—that the
quality of BERT’s responses depends heavily on
the prompt, and none of the prompts are perfect—
are not terribly surprising, and follow from those
of other works on prompting. However, a closer
look reveals that while no prompt was successful
at recovering the hypernyms we desired, certain
prompts were able to most often produce reason-
able hypernyms, even if they were not exactly the
desired hypernyms.

Past works (Ravichander et al., 2020) have sug-
gested that BERT’s answers to hypernym queries
show a lack of knowledge of hypernymy. Some
of our prompts display the same behavior. For
example, the “type-of” prompt yields “wine”, “cof-
fee”, and “grape” for the hypernyms of the color
“mauve”. BERT guesses items that may be mauve
in color, but are certainly not hypernyms of mauve;
this prompt suggests that BERT does not under-
stand the hypernymy relation.

However, the performance of the “such-as”
prompt tells a different story. It is, in fact, more
accurate than the numbers suggest—it predicts in

the Battig dataset, for example, “felony” to be the
hypernym of “embezzlement”, which is marked
wrong, but is in fact correct. Follow-up manual
analysis of 100 (out of 419) incorrect predictions
from the Battig dataset using this prompt showed
that 35% of answers marked as incorrect were actu-
ally correct, suggesting a true P@1 of 66.4%. This
is also true of the “favorite” prompt, in which the
same analysis suggested a true P@1 of 76%, higher
than the “such-as” prompt’s.

Despite this seemingly-good performance, a
closer look at the incorrect answers provided by
BERT in response to these prompts complicates
the notion that BERT understands hypernymy.
When using the “such-as” prompt, a pattern of
errors appears with respect to city names: an oft-
guessed hypernym is “few”. While this makes
sense in the context of the prompt—consider a
phrase such as “most cities, except for a [few, such
as Minneapolis]”—this is not a valid hypernym.
However, it is a convenient failure case that BERT
can predict for almost any hyponym; it appears in
the top 15 predictions for 438 of 1500 entries in the
SemEval dataset.

A similar pattern appears with the “favorite
prompt”. On the Battig dataset, BERT sometimes
yields hypernyms that are too generic—for exam-
ple, as the hypernyms of medicine, it yields “thing”,
“subject”, and “topic”. Worse, on the SemEval
dataset BERT predicts “word” as the top hypernym
for 305 of the 1500 words in the dataset; while
“word” is a grammatically and logically correct
answer to the prompt, it does not show any under-
standing of hypernymy. Furthermore, the next 4
top predictions by BERT cover another 427 of the
1500 entries, suggesting that BERT is unable to
provide a meaningful hypernym for each word. In
contrast, the top hypernym on the Semeval dataset
for the “type-of” prompt is assigned to only 37 of
1500 words. So, the “type-of” prompt does not
guess the same hypernym for many words.

In light of these phenomena, it is difficult to
say whether either of these two high-performing
prompts has actually elicited knowledge of hy-
pernymy from BERT. The “such-as” prompt per-
forms well, and if not for vowel / consonant issues,
might perform even better. Unfortunately, since the
prompt does not specifically ask for the hypernym
of x, its incorrect answers leave unclear whether
BERT is failing to systematically understand hy-
pernymy, or is simply performing general language
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modeling when we would prefer that it extract a
hypernym.

The “favorite” prompt also performs well, and
even its failures are often correct, albeit too-
generic, hypernyms. The prompt also implies that
“[MASK]” is the hypernym of x. Moreover, be-
cause some of the hypernyms (e.g. “crime”) are
rather unlikely to have appeared in BERT’s training
data in the context of the prompt (i.e. because “My
favorite crime is. . . ” is not a common phrase), it
seems reasonable to attribute some of BERT’s per-
formance to genuine learning of hypernymy, rather
than simple memorization of training data. How-
ever, this is not true of all hypernyms: it is possible
that BERT’s use of generic hypernyms like “thing”
stems from a memorization of frequent construc-
tions like “my favorite thing” in the training data.

6 Conclusion

In this paper, we conduct a thorough investigation
of BERT’s knowledge of hypernymy via prompting.
Inspired by recent work on prompting, we use a
wide variety of prompts to search for knowledge
of hypernymy. We find that BERT does have some
knowledge of hypernymy, and performs better than
other unsupervised models for hypernym discovery.
Furthermore, two prompts, “[MASK], such as x”
and “My favorite [MASK]is x.”, often elicit correct
hypernyms from BERT. However, even with these
prompts, BERT occasionally fails, producing either
non-hypernyms or extremely general hypernyms.
Moreover, this prompting methodology does not
allow us to distinguish between understanding of
hypernymy and memorization of hypernyms from
training data. Thus, we conclude that while some
of the prompts elicited many correct hypernyms,
we cannot claim that BERT has fully understood
hypernymy.
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NEUREM3 grant (Neural Representations in Multi-
modal and Multi-lingual Modelling, 19-26934X).

Computational resources were supplied by
the project "e-Infrastruktura CZ" (e-INFRA CZ
ID:90140) supported by the Ministry of Education,
Youth and Sports of the Czech Republic.

References
William F. Battig and William E. Montague. 1969. Cate-

gory norms of verbal items in 56 categories a replica-
tion and extension of the connecticut category norms.
Journal of Experimental Psychology, 80(3p2):1.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli, and
Horacio Saggion. 2018. SemEval-2018 task 9: Hy-
pernym discovery. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
712–724, New Orleans, Louisiana. Association for
Computational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Allyson Ettinger. 2020. What BERT Is Not: Lessons
from a New Suite of Psycholinguistic Diagnostics for
Language Models. Transactions of the Association
for Computational Linguistics, 8:34–48.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
Volume 2: The 14th International Conference on
Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, J. Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

https://doi.org/10.1037/h0027577
https://doi.org/10.1037/h0027577
https://doi.org/10.1037/h0027577
https://doi.org/10.18653/v1/S18-1115
https://doi.org/10.18653/v1/S18-1115
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://aclanthology.org/C92-2082
https://aclanthology.org/C92-2082
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275


282

Helen Langone, Benjamin R. Haskell, and George A.
Miller. 2004. Annotating WordNet. In Proceed-
ings of the Workshop Frontiers in Corpus Annotation
at HLT-NAACL 2004, pages 63–69, Boston, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Alec Radford, Jeff Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners.

Abhilasha Ravichander, Eduard Hovy, Kaheer Suleman,
Adam Trischler, and Jackie Chi Kit Cheung. 2020.
On the systematicity of probing contextualized word
representations: The case of hypernymy in BERT. In
Proceedings of the Ninth Joint Conference on Lex-
ical and Computational Semantics, pages 88–102,
Barcelona, Spain (Online). Association for Computa-
tional Linguistics.

Laria Reynolds and Kyle McDonell. 2021. Prompt
Programming for Large Language Models: Beyond
the Few-Shot Paradigm. Association for Computing
Machinery, New York, NY, USA.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how bert works.

Timo Schick and Hinrich Schütze. 2020. Rare words: A
major problem for contextualized representation and
how to fix it by attentive mimicking. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial
Intelligence.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV
au2, Eric Wallace, and Sameer Singh. 2020. Auto-
prompt: Eliciting knowledge from language models
with automatically generated prompts.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn
from context? probing for sentence structure in con-
textualized word representations. ICLR.
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