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Abstract

Given the increasingly prominent role NLP
models (will) play in our lives, it is
important for human expectations of model
behavior to align with actual model behavior.
Using Natural Language Inference (NLI)
as a case study, we investigate the extent
to which human-generated explanations of
models’ inference decisions align with how
models actually make these decisions. More
specifically, we define three alignment metrics
that quantify how well natural language
explanations align with model sensitivity
to input words, as measured by integrated
gradients. Then, we evaluate eight different
models (the base and large versions of BERT,
RoBERTa and ELECTRA, as well as an
RNN and bag-of-words model), and find
that the BERT-base model has the highest
alignment with human-generated explanations,
for all alignment metrics. Focusing in
on transformers, we find that the base
versions tend to have higher alignment
with human-generated explanations than their
larger counterparts, suggesting that increasing
the number of model parameters leads, in
some cases, to worse alignment with human
explanations. Finally, we find that a
model’s alignment with human explanations
is not predicted by the model’s accuracy,
suggesting that accuracy and alignment are
complementary ways to evaluate models.

1 Introduction

NLP models often make classification decisions in
ways humans don’t expect them to. For example,
Question Answering (QA) models often choose
the correct answer for one example, but fail
catastrophically on other very similar examples
(Ribeiro et al., 2018; Wallace et al., 2019; Selvaraju
et al., 2020), such as answering “Is the rose
red?” with no, but then “What color is the rose?”

∗The work was conducted during an internship at
Facebook AI Research.

Model Importance

Oracle Importance (Hard) r = 0.14

Oracle Importance (Soft)        r = 0.31

Explanation

Target label:    Contradiction Label predicted by BERT-base:   Entailment

Oracle Importance (Expert)        r = 0.14

Figure 1: An example illustrating different token-level
importance values. “Model Importance” is color coded
by absolute value integrated gradients attribution for
BERT-base. The other three rows show the oracle
importance scores estimated by the hard, soft and
expert oracles (darker values indicate more important).

with “red” (Ribeiro et al., 2019). VQA models
often attend to different portions of images than
humans do (Das et al., 2016). NLI models often
rely on shallow heuristics, their predictions are
inappropriately affected by particular words, and
they sometimes perform unexpectedly well from
only looking at the hypothesis (Gururangan et al.,
2018; Poliak et al., 2018; Tsuchiya, 2018). Since
people generally do not expect models to base
decisions on spurious correlations in the data (cf.
McCoy et al. 2019), models that make decisions in
alignment with human expectations are less likely
to make the right decisions for the wrong reasons.

In this paper, we measure how well model
decisions are aligned with human expectations
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about those decisions. Building on work that
aims to extract or generate interpretable or faithful
descriptions of model behavior (Lipton, 2018;
Rajani et al., 2019; Kalouli et al., 2020; Silva
et al., 2020; Jacovi and Goldberg, 2020; Zhao
and Vydiswaran, 2020), we use human-generated
natural language explanations to determine which
portions of the input people expected to be
important in influencing models’ decisions. We
then use Integrated Gradients (IG, Sundararajan
et al. 2017) to determine which portions actually
influenced the models’ decisions. We term
the alignment between them as Importance
Alignment. We formulate three different methods
of using human-generated natural language
explanations to quantify human expectations
of model behavior, resulting in three different
methods for calculating importance alignment.

As a case study, we applied our method to the
Natural Language Inference task (Dagan et al.,
2006; Bowman et al., 2015; Williams et al., 2018)
in which models are tasked with classifying pairs
of sentences according to whether the first sentence
entails, contradicts, or is neutral with respect to
the second. Concretely, we measured the extent
to which the inference decisions of eight models
(six state-of-the-art transformers, an LSTM model
and a bag-of-words model) aligned with human-
generated explanations from the Adversarial NLI
dataset (ANLI, Nie et al. 2020).

In all three methods for calculating Importance
Alignment, BERT-base had the highest importance
alignment score. We also found that the smaller,
‘base’ versions of transformers tended to have
higher importance alignment scores than the
corresponding large versions. However, being
smaller doesn’t always result in higher importance
alignment, since both small non-transformer
models had lower importance alignment scores
than ‘base’ transformers. Finally, we demonstrate
that more accurate models (both for classic test
accuracy and on the diagnostic dataset HANS;
McCoy et al. 2019) do not necessarily have
higher importance alignment, suggesting that
accuracy and alignment with human expectations
are orthogonal dimensions along which models
should be evaluated.

2 Related Work

The term “alignment” has been used in several
different contexts in AI: alignment of model

behaviour with normative notions of human ethics
(“value alignment”; Russell et al. 2015; Peng et al.
2020), alignment between tokens from source to
target in machine translation, alignment between
images and text in image-caption alignment
models, etc. In this paper, we propose a new type
of alignment, Importance Alignment: we want
models to not only generate accurate outputs, but
also to generate these accurate outputs for reasons
that align with human expectations.

High importance alignment can be valuable
because prior work has demonstrated that when
people form correct mental models of AI decision
boundaries, they make better AI-assisted decisions
(Bansal et al., 2019a,b). For example, when
annotators are provided with additional information
about model decisions, such as model accuracy (cf.
Yin et al. 2019) or model-generated explanations
(Bansal et al., 2020b), it increases their level
of trust and in some settings, can actually
improve AI-assisted decision making (Zhang et al.,
2020). Therefore, optimizing models to have
high importance alignment is a worthy goal, even
if it can initially result in models with lower
accuracy. In the words of Bansal et al. (2020a),
“predictable performance is worth a slight sacrifice
in AI accuracy,” especially on tasks with potentially
serious social implications.

3 Measuring Importance Alignment

We assume that for some input example x =
{x1, x2...xn} with n tokens and a gold label y,
there exists an annotator-generated explanation
of why the gold label is correct and/or why a
model might output an incorrect prediction. We
convert this natural language explanation into
an oracle importance score (IOm(x, y)) which
quantifies the extent to which annotators expect
each token in x to push the model’s prediction
towards or away from the gold label.1 Then, to
compute Importance Alignment we correlate the
oracle importance score for x with the model
importance (Im(x, y)), which quantifies the extent
to which each token in x actually pushes the
model’s prediction towards or away from the
gold label. A greater correlation between model
and oracle importance scores indicates a greater
alignment between how annotators expect models

1We refer to this as an “oracle”, because we
consider importance scores derived from human-generated
explanations to be the ground truth.



3

to make decisions and how these models actually
make decisions. In the remainder of this section
we describe our methods to calculate oracle and
model importance scores as well as the importance
alignment metric from correlating these two scores.

3.1 Computing model importance scores
We compute model importance scores using
Integrated Gradients (IG; Sundararajan et al. 2017).
Concretely, we define model importance (I) for
some model m and some example x (e.g., the
concatenation of the premise and hypothesis for
NLI) with the gold label y, as follows,

Im(x, y) = |IGm(x, y)| (1)

where IGm returns a vector of IG attribution scores
with respect to the gold label for each token in x
and | · | denotes component-wise absolute value.

For some token in the input xi, a positive
IG attribution score indicates that xi pushed the
model’s prediction towards the gold label, whereas
a negative IG attribution score indicates that xi
pushed the model’s prediction away from the gold
label. In a model with high importance alignment,
we would expect positive attribution scores to be
correlated with annotator expectations about why
the gold label is correct, and negative attribution
scores to be correlated with annotator expectations
about why a model might output an incorrect
prediction. In this paper, we are considering
explanations which capture both of these annotator
expectations without differentiating between them.
Therefore, we use the absolute value of the IG
attribution score.

Why Integrated Gradients? We use Integrated
Gradients because they are axiomatically both
interpretable and faithful (Sundararajan et al.,
2017), unlike attention based methods which
have been argued are not faithful explanations
of models’ decision making processes (Jain and
Wallace 2019, but see Wiegreffe and Pinter 2019
for a counterpoint). Other perturbation methods
which are more faithful than attention such as
LIME (Ribeiro et al., 2016), SHAP (Lundberg and
Lee, 2017), and their variants can be used, although
these methods have been argued to be unreliable
(Camburu et al., 2019; Slack et al., 2020; Camburu
et al., 2021). No current consensus exists on which
methods should be employed (Hase and Bansal,
2020; Ghorbani et al., 2019). Although we use IG,
crucially, our method is not dependent on it; IG

can be replaced with any method that can faithfully
assign an importance score to each token in the
input.

3.2 Computing oracle importance scores

We describe three methods of converting natural
language explanations into oracle importance
scores: hard oracle, soft oracle and expert oracle.

Hard oracle importance. Hard oracle
importance is a binary measure of token overlap
between the input and the explanation. This
measure captures the intuition that if annotators
thought that specific tokens in the input are
important for pushing the model towards or away
from the gold label, then they will use those words
in their explanation. Formally, for some input x
with gold label y and explanation e, we define hard
oracle importance as follows, where the overlap
function yields a binary vector in which the i-th
component is valued 1 if xi ∈ e and xi is not a
stop word;2 the i-th component of the vector is
valued 0 otherwise.

IHm(x, y, e) = overlap(xm, e) (2)

This measure is model specific only to the extent
that the models differ in how they tokenize
the input x; we assume that the annotator
generated explanations themselves do not describe
expectations about specific models.

Soft oracle importance. The hard oracle is very
simple and does not capture synonyms, entities
referred to with pronouns, paraphrases, etc. To
overcome these shortcomings, we also define soft
oracle importance where we compute importance
scores from IG of explanation-informed models.
The input for these explanation-informed models
is the original input x concatenated with some
explanation e. The task of the model is to predict
not only the gold label for the original task y, but
also a binary output indicating whether e was an
explanation about the current example or about
some other example. This task requires the model
to perform not only the target task (e.g., NLI) but
also requires the model to establish a relationship
between the provided explanation and the input,
thereby incorporating information from the natural
language explanation.

2We used the list of stop words from NLTK (Bird et al.,
2009)
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Formally, for some input x with gold label y and
explanation e, we define soft oracle importance as,

ISm(x, y, e) = |IGm′ (x, e, y
′
)| (3)

where m
′

refers to the explanation-informed
model and y

′
refers to the target output of m

′
which

incorporates both y and a binary output indicating
whether e is a matched explanation (e.g., for NLI,
y
′

would have six possible values). This measure
is also model specific both because of tokenization
and because the explanation-informed model has
the same model architecture as the target model.

Expert oracle importance. The hard and soft
oracles are automatic ways of computing oracle
importance scores. To validate these automatic
measures, we also computed oracle importance
scores from experts (three of the authors on this
paper). Given the input, gold label, and annotator
generated explanation for a given example, the
expert annotators (N = 3) indicated which tokens
of the input they believed that the original annotator
(i.e., the one who generated the explanation)
thought were important for the model’s prediction.
Since generating expert annotations was very time
consuming, we computed this measure only for a
random subset of 60 examples.

Formally, for some input x with gold label
y and explanation e, we define expert oracle
importance for any given token as the proportion of
expert annotators who indicated that the token was
important according to the annotator who generated
the explanation. This is expressed as,

IEm(x, y, e) =
1

N

N∑
k

expertk(xm, e, y) (4)

where expertk returns a binary vector in which the
i-th element is valued 1 if annotator k indicated
that the i-th token was important, and 0 otherwise.

Like with hard oracle importance, this measure
is model specific only to the extent that the models
differ in how they tokenize the input x.

We could not compute oracle importance
scores from the original annotators and had
to rely on expert annotators because this
information was absent from the dataset of natural
language explanations we used. Additionally, we
argue below that collecting high-quality oracle
importance annotations from naïve annotators can
be very tricky.

Why start from human-generated natural
language explanations? We convert natural
language explanations to oracle importance scores
instead of collecting oracle importance scores
directly from naïve annotators for two reasons.
First, there already exist data sets of natural
language explanations, where annotators were
required to reason about models’ decision making
in an adversarial setting (Nie et al., 2020), and
more such data sets are being generated (Kiela
et al., 2021). Second, we contend that for most non-
expert annotators, asking them to provide verbal
descriptions is easier and more natural than asking
them to answer a question like, “For which words
do you think the model’s prediction would change
the most if that word was blanked out?”. In fact,
to pursue this angle assiduously, one would ideally
recruit annotators who know what IG is and ask
them to predict IG scores—after all, since we
are using IG scores to quantify how the models
make decisions, the best way to quantify “how
humans think models make decisions” would be to
measure what humans think the IG scores will be.
Unfortunately, such a task would be challenging for
most non-expert annotators, making it infeasible to
collect high quality annotations.

3.3 Importance Alignment Metric

For each example with input x, gold label
y and explanation e, we compute importance
alignment for some model m as the mean Fisher-
transformed product-moment (i.e., Pearson’s)
correlation (r) between the model importance and
oracle importance scores for that example as below,
where the oracle O is either the hard (H), soft (S)
or expert (E) oracles:

Cm(x, y) = arctanh(r(Im(x, y), IOm(x, y, e)))
(5)

We Fisher-transform the correlation coefficient r
to ensure that Cm(x, y) is unbiased and does not
violate normality assumptions required for the
statistical analyses we use (Fisher, 1921).3

For each example, we also compute a
random baseline for Cm(x, y) where the oracle

3Fisher transformed correlation coefficients are
approximately normally distributed when the correlation
coefficients are calculated from sample pairs drawn from
bivariate normal distributions. Although Im(x, y) and
IOm(x, y, e)) are not normally distributed, visual examination
of the resulting fisher transformed correlations revealed that
Cm(x, y) were in fact approximately normal.
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importances are calculated by pairing the input
with an explanation (eR) which was written for a
different input example and was chosen at random:

CmR(x, y) = arctanh(r(Im(x, y), IOm(x, y, eR)))
(6)

We compute this measure to control for spurious
patterns that can drive the correlation between
model and oracle importances: we can find
a non-zero correlation between the importance
scores if a certain model m, such as BERT,
(explanation informed or not) always assigned
high IG attribution values to tokens at specific
indices; we can also find a non-zero correlation if
certain tokens (e.g., “the”) received high attribution
irrespective of the context, and these tokens
occurred frequently in the input and explanation.

To measure the extent to which model and oracle
importances are correlated with each other over and
above spurious correlations, we measure the mean
difference (∆A) between Cm(x, y) and CmR(x, y)
for all examples in some dataset D and back-
transform it to the correlation scale:

∆A = tanh

 1

| D |
∑

(x,y)∈D

Cm(x, y)− CmR(x, y)


(7)

To measure whether ∆A is significantly greater
than 0, we use paired t-test between Cm(x, y)
and CmR(x, y) for all examples in D. We
compute a different measure of ∆A for each oracle
importance score.

4 Experimental details

4.1 Models
Target models. We measured the importance
alignment for six pretrained Transformer language
models: BERT base and large (Devlin et al., 2019);
RoBERTa base and large (Liu et al., 2019); and
ELECTRA base and large (Clark et al., 2020).
We fine-tuned these models on the combination
of the following NLI datasets: SNLI (Bowman
et al., 2015), MultiNLI (Williams et al., 2018),
NLI-recast FEVER (Thorne et al., 2019) and ANLI
rounds 1–3 (Nie et al., 2020). We used the
hyperparameters in the ANLI codebase for fine-
tuning.4

We used the same datasets to also train two
non-transformer models: a bag-of-words (BOW)

4https://github.com/facebookresearch/
anli/blob/master/script/example_scripts/

Target Explanation informed
models models

BERT-Base 48.02 44.85
RoBERTa-Base 50.47 60.93
ELECTRA-Base 52.33 51.93
BERT-Large 49.24 49.01
RoBERTa-Large 55.37 74.21
ELECTRA-Large 58.06 74.93
BInferSent 40.00 20.97
BOW 35.82 18.70

Table 1: Accuracy on the development partition of the
ANLI dataset for target models (finetuned on MNLI
+ SNLI + ANLI + re-cast FEVER) and models used
as the soft oracle (finetuned on 6-way NLI and reason
classification on a subset of ANLI).

model and a RNN based model we call BInferSent
for ‘BERT-InferSent’. The BOW model has a
single max pooling layer on top of BERT token
embeddings. The BInferSent model combines the
InferSent architecture of Conneau et al. (2017)
with Short-Stacked Sentence Encoders of Nie
and Bansal (2017), using 3 layers of BiLSTMs
(Hochreiter and Schmidhuber, 1997) with residual
connections on top of BERT token embeddings.

Explanation informed models. To compute
soft oracle importance, we trained explanation
informed models for each target model architecture
on a six-way classification task. We trained three
models per architecture using different random
seeds. In this task, the input to the model was
a context-hypothesis pair concatenated with an
annotator-generated explanation. The output of
the model was a joint label indicating whether
the context entails, contradicts or is neutral
with respect to the hypothesis, and whether the
explanation matches the context-hypothesis pair.

We generated the training (n = 19043) and
development (n = 2116) datasets for these
classifiers by subsetting the portion of the ANLI
training set for which an explanation was provided
— i.e., the examples in the training set in which the
ANLI annotators had successfully fooled the model.
We presented each of the 19043 examples twice
when training the explanation informed models:
once with a matched explanation (i.e., the original
one written by the annotator for that explanation)
and once with a randomly selected explanation (see
§3.3 above). We trained all models for two epochs.

The accuracy of these explanation informed
models either matched or surpassed that of the
target model despite being trained on only a

https://github.com/facebookresearch/anli/blob/master/script/example_scripts/
https://github.com/facebookresearch/anli/blob/master/script/example_scripts/
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Model Importance Alignment Acc.
∆AH ∆AS ANLI

BERT-Base 0.21*** 0.11*** 48.02
RoBERTa-Base 0.11*** 0.02* 50.47
ELECTRA-Base 0.17*** 0.06*** 52.33
BERT-Large 0.18*** -0.02 49.24
RoBERTa-Large 0.04* 0.01 55.37
ELECTRA-Large 0.07 0.01 58.06

All Base Trans. 0.17 0.07 50.27
All Large Trans. 0.11 -0.003 54.56

BInferSent 0.12*** <0.01 40.00
BOW 0.01*** 0.01*** 35.82

Table 2: Importance Alignment between model
importance scores and oracle importance scores (both
AH and AS metrics) across 5 random seeds on the
ANLI dataset. ∆A was computed over the examples
that the models got wrong. Average model accuracy
across seeds and different rounds of ANLI is also
provided. ‘*’s indicate whether ∆A is significantly
greater than 0. ‘***’ indicates p < 0.001, ‘**’
indicates p < 0.01 and ‘*’ indicates p < 0.05.

small subset of the original data (see Table 1).
This suggests that these models did learn to
incorporate information about explanations, and
that the information present in the explanations
was useful for NLI.

4.2 Evaluation Datasets

ANLI. We measured importance alignment on
the development set of the ANLI dataset. In this
dataset, annotators were given a context and a
label and were asked to write a hypothesis that
fooled a target model; if the model was fooled,
annotators explained in natural language why the
provided label was correct and why they thought
model was fooled into generating an incorrect
prediction. While other datasets with natural
language explanations for NLI exist, (e.g., e-SNLI;
Camburu et al. 2018), the explanations in these
datasets only address why the gold label is correct,
and not why the annotators thought the model
generated an incorrect prediction. Additionally, the
adversarial setting in which ANLI was collected
encourages the annotators to reason about models’
decision making. These two factors make
ANLI more suitable for our purposes than other
explanation datasets.

Since annotators provided explanations only
when the model generated an incorrect prediction,
to allow for an apples-to-apples comparison, we

Model Importance Alignment
∆AH ∆AS ∆AE

BERT-Base 0.21*** 0.14*** 0.39***

RoBERTa-Base 0.10*** 0.04*** 0.31***

ELECTRA-Base 0.15*** 0.09*** 0.33***

BERT-Large 0.15*** -0.03 0.27***

RoBERTa-Large 0.02 -0.01 0.21***

ELECTRA-Large 0.08 0.02 0.20*

All Base Trans. 0.16 0.09 0.34
All Large Trans. 0.09 -0.01 0.23

BInferSent 0.14*** -0.003*** 0.29***

BOW 0.02 0.03 0.04

Table 3: Importance Alignment between model
importance scores and oracle importance scores (AH ,
AS and AE metrics) across 5 random seeds on the
ANLI dataset. ∆A was computed over the 60
examples with expert annotations. ‘*’s indicate
whether ∆A is significantly greater than 0. ‘***’
indicates p < 0.001, ‘**’ indicates p < 0.01 and ‘*’
indicates p < 0.05.

only compute importance alignment for examples
in which our target models generate an incorrect
prediction. As a consequence, the specific
examples used to measure importance alignment
differs across models: different models fail on
different examples. To ensure that our results are
not driven by the differences between examples,
we repeated our analyses on a subset of examples
that all models failed on, and we found that our
results were nearly identical (compare Table 2 and
Table 3).

We collected expert annotations (see §3.1) on
60 randomly sampled examples from the set of
examples that all the models failed on, 20 from
each round of ANLI. We computed the expert
importance alignment score (AE) for this subset of
examples and repeated our analyses.

HANS. We measured the extent to which
importance alignment scores correlated with
accuracy on the HANS diagnostic dataset (McCoy
et al., 2019). This dataset measures the extent
to which NLI models rely on non-human like
heuristics when performing inference, such as
inferring that the context entails the hypothesis
if all of the words in the hypotheses are in the
context: models which do not rely on these non-
human like heuristics have higher accuracy on the
this dataset. If we assume that naïve annotators in
general do not expect NLI models to rely on such
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heuristics, then we might expect models with high
importance alignment (i.e., models which make
inference decisions in ways annotators expect them
to) to also have high accuracy on the HANS dataset.

5 Results

In Table 2, we report the importance alignment
scores for the hard and soft oracles computed
over all the examples the models generated an
incorrect prediction for, averaged across the
five random seeds. In Table 3, we report the
importance alignment scores for hard, soft and
expert oracles computed over the subset of 60
examples with expert annotations. Since the
importance alignment scores for the hard and soft
oracles are nearly identical across both tables, we
focus our discussion of the results from the subset
of examples with expert annotations.We repeated
the reported analyses with hard and soft oracles on
all the examples, and found qualitatively similar
results (see Appendix A).

Effect of model size on Importance Alignment.
Across all three types of Importance Alignment
scores (AH , AS and AE) the base versions of
the transformer models had higher importance
alignment than their larger counterparts, with
BERT-base having the highest importance
alignment. To test the statistical significance of this
this observation, we fit three linear mixed effect
regression models: one for each type of oracle.

We predicted the pair-wise difference between
Cm(x, y) and CmR(x, y) (see Equation 5 and
Equation 6) as a function of the following
predictors: model size (base vs. large), model type
(BERT vs. ELECTRA and BERT vs. RoBERTa)
and the interaction between the two. We included
model type and its interaction with model size
as predictors to measure the effect of model size
over and above the differences between specific
models. We also included a random intercept and
random slope of model size for every example to
incorporate the following assumptions: first, the
difference Cm(x, y) and CmR(x, y) can differ for
every example; second, the difference between base
and large models can also differ for every example.
The results described below were significant at a
threshold of p < 0.005 unless specified otherwise.
For further details see Appendix A.

The analyses indicated that across all measures
importance alignment, ∆A was significantly
greater for the base models when compared to

their larger counterparts. Additionally, ∆A was
significantly greater in BERT models than in
RoBERTa and ELECTRA models (base and large).

Although the results suggest that smaller models
have stronger importance alignment than their
larger counterparts, our experiments with the
BInfersent and BOW models suggest that smaller
models do not always have higher importance
alignment: the importance alignment for both these
models is lower than the alignment for BERT-base
model (the smallest of the transformer models
when taking into consideration both the number
of parameters and pre-training size).

To test the statistical significance of this
numerical result, we fit another set of linear
mixed effects model where we predicted the pair-
wise difference between Cm(x, y) and CmR(x, y)
as a function of model type (BERT-base vs.
BInferSent and BERT-base vs. BOW). We also
included a random intercept of item. As expected,
the importance alignment for the BERT-base
model was significantly greater than that for the
BInferSent and BOW models for all the measures.

ANLI accuracy and Importance Alignment.
Based on the results from Table 2 and Table 3,
we wondered whether importance alignment might
be negatively correlated with NLI accuracy: the
base versions of the models which have higher
importance alignment have lower accuracy on
ANLI compared to their larger counterparts. To
test this, we computed a separate value of AH , AS

and AE for each random seed of the target model
and for each round of ANLI. Then, we computed
the product moment (i.e., Pearson’s) correlation
between model accuracy on NLI and AH , AS and
AE . We found a significant correlation between
accuracy andAE (r = 0.42; p = 0.008). However,
this correlation was being driven entirely by the
BOW models, which had both low accuracy and
low importance alignment scores. When repeating
the analysis with the BOW models excluded, we
found that none of the measures of importance
alignment were significantly correlated with NLI
accuracy (AH : r = −0.09 and p = 0.61; AS :
r = 0.04 and p = 0.80; AE r = −0.04 and
p = 0.83; see Figure 2a). We repeated the analyses
for AH and AS for all wrong examples and found
that only AH was significantly correlated with
accuracy (r = 0.39, p = 0.01; see Appendix A.2)
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(a) Accuracy on ANLI is not correlated with importance
alignment (AH and AS). The cross, circle, and triangle refer
to rounds 1, 2, and 3 of ANLI, respectively.
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(b) Accuracy on HANS is not correlated with importance
alignment. Alignment values are averaged across rounds
because HANS is not divided into rounds.

HANS accuracy and Importance Alignment.
As discussed earlier, we hypothesized that high
importance alignment might result in models
relying less on non-human-like heuristics, thereby
resulting in higher accuracy on the HANS dataset.
We found no such correlation, however (AH : r =
0.04 and p = 0.82; AS : r = −0.21 and p = 0.21;
AE r = 0.23 and p = 0.17; see Figure 2b).5

This lack of correlation is likely a result of
the mismatch between how human-likeness is
defined in HANS and in our importance alignment
measures. In HANS, the targeted heuristics are
simple (i.e., can be articulated with a rule), and
describe general principles of how models ought
not behave if they are to be human-like. In contrast,
our measures of importance alignment are derived
from example level explanations of how naïve
annotators expected models to behave, and as
such are not based on any overarching easy-to-
articulate principles. When evaluating whether
models make decisions as humans expect them to,
jointly considering both these definitions of human-
likeness can be useful.

Comparing the Importance Alignment Scores.
We used hard and soft oracles to automatically
measure oracle importance scores. To validate
these methods, we computed the Spearman rank
correlation between the importance scores derived
from these methods and from the manually
annotated expert oracle. The hard oracle was
moderately correlated with the expert oracle (r =
0.24, p < 0.0001), whereas the soft oracle was

5When we considered the heuristics separately, we found
some marginally significant correlations (see Appendix A.2)

more weakly correlated (r = 0.14, p < 0.0001).
Additionally, the hard and soft oracle importance
scores were also weakly correlated with each other
(r = 0.11, p < 0.0001).6 Taken together, these
results suggest that neither the hard nor the soft
oracle measures are perfect proxies for expert
human importance scores. This imperfection does
not impact the conclusions we draw in this paper,
however: the results we discussed held true across
all the measures.

6 Discussion

In this paper, we argued that it is important to not
only evaluate models on how accurate they are on
a given task, but also on whether the decisions that
the models make align with how humans expect
them to make these decisions. We introduced
a measure called Importance Alignment which
quantifies the extent to which the parts of the input
that non-expert annotators expected to influence
models’ decisions actually influenced the decisions.
To quantify which parts of the input influenced
model decisions (model importance), we used
Integrated Gradients. To quantify annotator
expectations (oracle importance), we proposed
three methods of quantifying annotator generated
natural language explanations of model behaviour:
two automatic and one that relied on expert input.

As a case study, we applied this method to
measure Importance Alignment in eight NLI
models (six transformers, an LSTM and a BOW
model), using annotator generated explanations
from the ANLI dataset. We found that, across

6The results are comparable with Pearson’s correlation.
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all three measures of importance alignment, the
base versions of the transformer models had
significantly higher importance alignment than
their larger counterparts, with BERT-base having
the highest importance alignment. Smaller
models do not always result in higher importance
alignment, however: the BERT-base model had
higher alignment than the LSTM and BOW models.
Additionally, importance alignment scores were
not correlated with model accuracy on ANLI or
the HANS diagnostic dataset in most cases. This
suggests that importance alignment and accuracy
are complementary methods of evaluating models.

Future work. There are at least four directions
in which this work can be extended. First, future
work can evaluate whether our conclusions about
model size in NLI models generalizes to smaller
transformer models (Turc et al., 2019; Warstadt
et al., 2020) and to models trained on other NLP
tasks.

Second, future work can build on our methods
of calculating model and oracle importance. The
two methods of automatically computing oracle
importance we proposed as a starting point were
only moderately correlated with the method that
relies of expert input. Future work can develop
better methods of measuring oracle importance
incorporating the strengths of both. Future work
can also explore other existing ways of calculating
model importance (e.g., LIME, SHAP and their
variants).

Third, future work can generate more detailed
datasets of natural language explanations of model
behaviour. For example, in the dataset we used,
the explanations the annotators provided were
an amalgamation of both why the the label was
correct and why the model might have been fooled.
Additionally, annotators generated explanations
only when the model generated an incorrect output.
By disentangling these two types of explanations
and collecting explanations for when models
generate correct outputs future work can separately
study whether models succeed and fail in ways
people expect them to. Similarly in the dataset
we used, each context-hypothesis-label triplet was
associated with only one annotator generated
explanation. However, it is possible that there
are several explanations of model behaviour that
are equally valid. Collecting more explanations
per triplet can improve our understanding of how
people expect models to succeed and fail.

Fourth, future work could explore which factors
drive higher importance alignment. For example,
we observed that transformer models with fewer
parameters had higher importance alignment than
models with more parameters. Does this finding
apply to non-transformer architectures too? Is
there a threshold for model parameters, where
this inverse relationship between model size and
alignment score breaks down? Additionally, can
other factors like model architecture, type of
training objective or the types of sentences the
models were trained on influence importance
alignment? Such exploration can not only result
in models better aligned with human expectations,
but also improve our understanding of what drives
importance alignment.

7 Conclusion

We proposed a novel metric, Importance
Alignment, to measure the extent to which
human-generated explanations of model decisions
align with how models actually make these
decisions. As a case study, we used this metric to
evaluate eight different models trained on NLI and
found that the BERT-base model had the highest
alignment with human-generated explanations.
We also found that our metric was not correlated
with model accuracy, suggesting that accuracy and
Importance Alignment are complementary ways of
evaluating models.
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A Details about statistical analyses

A.1 Effect of model size
Formula for Transformer models

smf.mixedlm("fisher_cor_diff ~ C(model_size, Treatment(reference=’base’))

*C(model,Treatment(reference=’bert’))",
data = transformer_dat, groups = transformer_dat["ex_id"],
re_formula="~model_size")

Formula for smaller models (BERT-base, InferSent and BOW)

smf.mixedlm("fisher_cor_diff ~ C(model,Treatment(reference=’bert’))",
data = small_dat, groups = small_dat["ex_id"],
re_formula="~model_size")

Fit Coefficient All wrong examples Expert annotated subset
∆AH ∆AS ∆AH ∆AS ∆AE

Transformer models Large (vs. Base) -0.32*** -0.142*** -0.057** -0.173*** -0.115***

ELECTRA (vs. BERT) -0.044*** -0.057*** -0.048 ** -0.067*** -0.054*

RoBERTa (vs. BERT) -0.099*** -0.101*** -0.106*** -0.105*** -0.083***

ELECTRA : Large -0.070*** 0.085*** -0.014 0.109*** -0.051
RoBERTa : Large -0.044*** 0.127*** -0.016 0.134*** 0.012

Smaller models BOW (vs. BERT-base) -0.203*** -0.104*** -0.184*** -0.125*** -0.184***

BInferSent (vs. BERT-base) -0.094*** -0.120*** -0.080*** -0.154*** -0.080***

Table 4: ***, **and *indicate p < 0.0001, 0.001 and 0.01 respectively and ‘:’ indicates an interaction effect. A
separate mixed effects regression model was fit for each column. Negative coefficients for the main effects indicate
that the baseline value was greater than the comparison (e.g., Base was greater than Large).
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A.2 Correlation with accuracy

Evaluation dataset All wrong examples Expert annotated subset
∆AH ∆AS ∆AH ∆AS ∆AE

ANLI Dev 0.39* 0.10 0.23 0.10 0.42**(-0.04)

HANS (all) 0.18 -0.19 0.04 -0.21 0.22
HANS (constituent) 0.30+ -0.11 -0.19 -0.26 -0.18
HANS (lexical overlap) 0.20 -0.17 -0.25 -0.27 -0.19
HANS (subsequence) -0.006 -0.31+ -0.29+ -0.39* -0.27

Table 5: ‘+’, ‘*’ and ‘**’ indicate p < 0.1, 0.05 and 0.01 respectively. Values in parentheses indicate correlation
without the BOW models in cases where they were outliers (see Figure 2a)

0.05 0.00 0.05 0.10 0.15 0.20 0.25
A

0.4

0.6

0.8

1.0

M
ea

n 
ac

cu
ra

cy

Hard Oracle

0.0250.000 0.025 0.050 0.075 0.100 0.125 0.150
A

0.4

0.6

0.8

1.0

M
ea

n 
ac

cu
ra

cy

Soft Oracle

BERT-base R1
BERT-base R2
BERT-base R3
RoBERTa-base R1
RoBERTa-base R2
RoBERTa-base R3
ELECTRA-base R1
ELECTRA-base R2
ELECTRA-base R3
BERT-large R1
BERT-large R2
BERT-large R3

RoBERTa-large R1
RoBERTa-large R2
RoBERTa-large R3
ELECTRA-large R1
ELECTRA-large R2
ELECTRA-large R3
BInfersent R1
BInfersent R2
BInfersent R3
BOW R1
BOW R2
BOW R3

(a) Correlationg accuracy on ANLI with importance alignment
(AH and AS) for all wrong examples. The cross, circle, and
triangle refer to rounds 1, 2, and 3 of ANLI, respectively.

0.05 0.00 0.05 0.10 0.15 0.20
A

0.4

0.6

0.8

1.0

HA
NS

 a
cc

ur
ac

y

Hard Oracle

0.025 0.000 0.025 0.050 0.075 0.100 0.125
A

0.4

0.6

0.8

1.0

HA
NS

 a
cc

ur
ac

y

Soft Oracle

BERT-base
RoBERTa-base
ELECTRA-base
BERT-large
RoBERTa-large
ELECTRA-large
BInfersent
BOW

(b) Correlating accuracy on HANS with importance alignment
for all wrong examples. Alignment values are averaged across
rounds because HANS is not divided into rounds.

Figure 3

0.0 0.1 0.2
AH

0.4

0.6

0.8

1.0

HA
NS

 a
cc

ur
ac

y

Lexical overlap

0.0 0.1 0.2
AH

0.4

0.6

0.8

1.0
Subsequence

0.0 0.1 0.2
AH

0.4

0.6

0.8

1.0
Constituent

0.00 0.05 0.10
AS

0.4

0.6

0.8

1.0

HA
NS

 a
cc

ur
ac

y

0.00 0.05 0.10
AS

0.4

0.6

0.8

1.0

0.00 0.05 0.10
AS

0.4

0.6

0.8

1.0
BERT-base
RoBERTa-base
ELECTRA-base
BERT-large
RoBERTa-large
ELECTRA-large
BInfersent
BOW

(a) Correlating accuracy on ANLI with importance alignment
(AH and AS) for all wrong examples. The cross, circle, and
triangle refer to rounds 1, 2, and 3 of ANLI, respectively.
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