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Abstract

Chinese word segmentation (CWS) and med-
ical concept recognition are two fundamental
tasks to process Chinese electronic medical
records (EMRs) and play important roles in
downstream tasks for understanding Chinese
EMRs. One challenge to these tasks is the
lack of medical domain datasets with high-
quality annotations, especially medical-related
tags that reveal the characteristics of Chinese
EMRs. In this paper, we collected a Chinese
EMR corpus, namely, ACEMR, with human
annotations for Chinese word segmentation
and EMR-related tags. On the ACEMR cor-
pus, we run well-known models (i.e., BiLSTM,
BERT, and ZEN) and existing state-of-the-art
systems (e.g., WMSeg and TwASP) for CWS
and medical concept recognition. Experimen-
tal results demonstrate the necessity of build-
ing a dedicated medical dataset and show that
models that leverage extra resources achieve
the best performance for both tasks, which pro-
vides certain guidance for future studies on
model selection in the medical domain.1

1 Introduction

Medical language processing (MLP), i.e., natu-
ral language processing (NLP) for the electronic
medical record (EMR), has drawn significant at-
tention over the past few decades (Rector et al.,
1991; Friedman et al., 2004; Stevenson et al., 2012;
Koleck et al., 2021). EMR normally records the
entire process of a patient’s examination, diagnosis,
and treatment by clinicians in the hospital, and con-
tains a large amount of medical information, which,
if extracted properly, can be used to train a machine
learning model as an automated tool for auxiliary
diagnosis and treatment, forming the foundation of
wise information technology of medicine.

†Corresponding author.
1The resources in this paper are released at https://

github.com/cuhksz-nlp/ACEMR.

Chinese word segmentation (CWS) and medical
concept recognition are two important and related
tasks for Chinese MLP, which received much atten-
tion in previous studies (Xing et al., 2018; Wang
et al., 2019). The first task (i.e., CWS) aims to
segment Chinese text (i.e., character sequence) into
words, which is a necessary step for MLP because
the meaning of many medical terms cannot be sim-
ply inferred by its component characters. For exam-
ple, it is hard to infer the meaning of “扁桃体” (ton-
sil) from its components “扁” (flat), “桃” (peach),
and “体” (body). The second task (i.e., medical con-
cept recognition) assigns an EMR-related tag (e.g.,
Organism and Group) to the segmented words. It
is worth noting that the medical concept in this pa-
per includes not only the standard medical named
entities but also other categories that are useful for
medical text analysis. For example, “Time” is a
medical concept that can be used to represent the
disease history; “Probability” is a possible medical
concept tag for “考虑” (consider), in EMR.

To perform CWS and medical concept recogni-
tion in Chinese EMR, researchers face a challenge
that existing training data for the tasks is either
publicly unavailable or of poor quality. Although
one possible solution is to apply models trained in
the general domain to the medical text, these mod-
els always fail to have good performance because
there are many domain-specific medical terms that
rarely occur in the general domain. To address
these challenges, we collect and annotate a new
Chinese EMR corpus, named ACEMR, where texts
from 500 EMRs (7K sentences) are annotated with
CWS and medical concept recognition labels. In
addition, we test several state-of-the-art models for
CWS and medical concept recognition on the col-
lected ACEMR corpus. Experimental results show
the necessity of constructing an informative Chi-
nese medical corpus and provide certain guidance
for the model selection in medical domain.

https://github.com/cuhksz-nlp/ACEMR
https://github.com/cuhksz-nlp/ACEMR
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基本信息
(Basic Information) Patient’s name, gender, age, rea-

son for admission, time of admis-
sion

病历特点
(Case Characteristic) Detailed symptoms of the patient

before admission, past history,
physical examination results and
auxiliary examination results

初步诊断
(Preliminary Diagnosis) The type of disease initially

judged, usually several disease
names

鉴别诊断
(Differential Diagnosis) According to the main complaint

of the patient, distinguish it from
other diseases and exclude the pos-
sible diagnosis of other diseases

治疗计划
(Treatment Plan) Medical examinations to be done

in the next step, and preliminary
treatment plan

Table 1: The major five parts of information contained
in one First Course Record in Chinese EMRs.

2 Related Work

NLP for medical text has draw many attentions in
the recent years (Xue et al., 2012; Xu et al., 2015;
Li et al., 2019; Tian et al., 2019, 2020a; Song et al.,
2020; Wang et al., 2020; Chen et al., 2020b), es-
pecially for the EMR texts. Among different tasks
to process Chinese EMR texts, CWS and medi-
cal concept recognition are two fundamental ones
that draw much attentions from previous studies.
Due to the dramatic performance drop when ap-
plying the model trained from open source corpus
on the medical field, previous studies (Xu et al.,
2014, 2015; Li et al., 2015; Zhang et al., 2016;
He et al., 2017) always construct Chinese medical
datasets themselves and test their models on the
datasets. However, most constructed datasets used
for CWS are relatively small, where there are only
roughly 100 Chinese EMRs. Besides, the medical
concept types in most existing datasets are limited
to named entities (e.g., “Disease” and “Symptoms
and Signs”), which fails to consider other medi-
cal concept types (e.g., “Time”) in EMRs that are
potentially helpful for Chinese EMR texts analysis.

3 The ACEMR Corpus

3.1 Data Collection
We collected 500 Chinese EMRs from five depart-
ments (i.e., Respiratory, Gastroenterology, Urol-
ogy, Gynecology, and Cardiology) of a local hos-
pital, where one EMR specifically means the First
Course Record in the inpatient record for one pa-

Class Sub-class Count

物体 Organism (Ogm) 150
Thing Group (Gr) 3,059

Health Device (HD) 433

事件 Health Behavior (HB) 3,093
Event Events (E) 4,442

身体 Body Parts (BP) 19,004
Body Body Substance (BS) 1,103

Body Function (BF) 5,179

异常 Signs or symptoms (SOS) 21,263
Abnormality Disease (Di) 3,543

检查
Examination Examination Project (EP) 3,201

治疗 Treatment Project (TP) 1,579
Treatment Clinical Drug (Drug) 728

概念 Time (T) 4,514
Concept Qualitative (Ql) 14,510

Space (Sp) 7,626
Presence (Pre) 8,748
Absence (Ab) 13,642
Probability (Prob) 388
Cause and Effect (CE) 1,359

Total – 107,943

Table 2: The list of all medical concepts and counts.

tient. First Course Record refers to the first course
record written by the treating physician or on-duty
physician within eight hours after the patient is
admitted to the hospital. It contains seven fields,
namely department, ward, basic information, case
characteristics, preliminary diagnosis, differential
diagnosis, treatment plan, where the last five fields
are illustrated in Table 1. We extract the texts in
those fields and clean them by anonymizing the
text and removing invalid or garbled characters.

3.2 CWS and Medical Concept Annotation
Four specialists participated in the development
of the annotation guideline, where two of them
are junior doctors, and the other two are PhD stu-
dents in NLP. For CWS guideline, we refer to the
segmentation guidelines of the Chinese Treebank
(Xia, 2000) for the general domain as well as the
annotation guideline proposed by He et al. (2017)
for the medical domain. For medical concept an-
notation guideline, we refer to the medical taxon-
omy defined by unified medical language system
(UMLS) semantic groups (Lindberg et al., 1993)
and define 7 major medical concept classes with
20 sub-classes, which are elaborated in Table 2.
Compared to existing medical taxonomies, our pro-
posed medical concept classes are simple and clear
with fine-grained medical concept focusing on the
characteristics of Chinese EMR texts. Note that,
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Count Length
Avg. Max. Min.

Char/Types 326,098/1,595 - - -
Word/Types 205,304/4,144 2.54 13 1
Sentences 7,370 43.63 311 4

Table 3: The statistics of the ACEMR corpus.

for segmentation, we do not segment one word if it
is a defined medical concept.

According to the annotation guideline, we ask
the two junior doctors to annotate the 500 EMRs
independently and resolve their disagreements by
discussion. The consistency of labeling between
two annotators is evaluated by the F value (Hripc-
sak and Rothschild, 2005). The specific method is
to treat the labeling result of one annotator (A1) as
the standard answer, and calculate the F value of
the labeling result of the other annotator (A2). The
annotation agreement evaluated by the F value be-
tween two annotators of CWS and medical concept
tagging are 0.9409 and 0.9360, respectively. We
name the annotated corpus as Annotated Chinese
Electronic Medical Record (ACEMR) and report
its statistics in Table 3, where the lengths are com-
puted based on Chinese characters. In addition,
the number of medical concepts in ACEMR is also
reported in the last column of Table 2.

Table 4 shows two annotated example sentences,
where Chinese words are split by white spaces2.
The medical concept tag attached to a specific word
is highlighted in red color (“/” is a delimiter be-
tween a word and its medical concept tag).

3.3 The Corpus Properties

ACEMR is an informative Chinese medical dataset.
It contains 500 Chinese EMR texts that are anno-
tated with CWS labels and medical concepts from
20 sub-classes. Due to space limitations, among
20 sub-classes, we introduce three sub-classes (i.e.,
Group, Health Behavior, and Qualitative) in the
following texts. Group includes the patient’s gen-
der, age, and name. It generally appears at the
beginning of Chinese EMRs as part of the basic in-
formation, indicating the group the patient belongs
to. In addition, it can also act as a participant in
medical and health activities (i.e. patients and doc-
tors). Health Behavior means medical-related be-
haviors. It mainly includes examination behaviors,
diagnostic behaviors, and broad non-specific treat-

2If a Chinese word is translated into multiple English
words, we use “*” in the English translation to mark its bound-
ary in Table 4. E.g., “3天” is translated into “*3 days*”.

患者/Gr 老年/Gr 女性/Gr ， 慢性/Ql 病程/Di ， 急
性/Ql加重/SOS。患者/Gr主/Ql因/CE "反复/Ql咳
嗽/SOS、咳痰/SOS ,加重/SOS 3天/T "入院/E。

Patient/Gr elderly/Gr female/Gr , chroic/Ql course/Di ,
acute/Ql exacerbation/SOS . The main/Ql cause/CE of the
patient/Gr was " repeated/Ql cough/SOS and sputum/SOS
, which became worse/SOS for *3 days*/T " and was
*admitted to the hospital*/E .

Table 4: An example of annotated medical sentence in
ACEMR with the corresponding English translations.
The abbreviations of tags are used for annotation.

ment behaviors. E.g., “予” (given), “入院治疗”
(admission to hospital for treatment). Qualitative
emphasizes a qualitative description of something,
rather than a direct measurement and can be used
to describe the body, abnormalities, etc. E.g., “胃
肠型感冒” (gastrointestinal cold) where “胃肠型”
(gastrointestinal) are Qualitative medical concepts.

4 Methods

A good text representation is highly important in
achieving a promising performance in many NLP
tasks (Song et al., 2017; Liu and Lapata, 2018;
Song and Shi, 2018). Therefore, we select several
well-known models for CWS and medical concept
recognition tasks and test them on ACEMR corpus.

4.1 CWS for Chinese EMR

For CWS, we follow the convention in previous
CWS studies (Sun and Xu, 2011; Song et al., 2012;
Song and Xia, 2013; Chen et al., 2015; Zhang et al.,
2016; Qiu et al., 2019) to regard it as a sequence
labeling task with the “BIES” scheme. We select
four well-know models, namely, BiLSTM, BERT
(Devlin et al., 2019), ZEN (Diao et al., 2020), and
WMSeg (Tian et al., 2020d) with softmax and CRF
decoder. Herein, BERT and ZEN are pre-trained
language models that have achieved state-of-the-art
performance in many NLP tasks (Liang et al., 2020;
Tian et al., 2020c; Yu et al., 2020; Nie et al., 2020;
Luoma and Pyysalo, 2020; Chen et al., 2020a;
Helwe et al., 2020; Tian et al., 2021a,b). WMSeg
is CWS model that leverages key-value memory
networks (KVMN) (Miller et al., 2016) to incor-
porate wordhood information to improve model
performance, which achieves state-of-the-art per-
formance on many CWS benchmark datasets.

4.2 Medical Concept Recognition

Similarly, for medical concept recognition, we re-
gard it as a character-based sequence labeling task
and perform it in a similar way with named entity
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Figure 1: The auto-generated syntactic information
(i.e., POS labels, dependency relations, and syntactic
constituents) of a sentence with English translation.

Dataset Word Counts Word Types

Train 169,047 3,833
Test 36,257 1,529

Table 5: The statistics (i.e., word count and word type)
of the training and test sets of ACEMR.

recognition, where the medical concept tags for
the input characters follow the “BIOES” scheme.
For example, “支气管” (“virus”) has a medical
tag sub-class “BP”, and thus the tags for the three
characters are “B-BP”, “I-BP”, and “E-BP”, re-
spectively. We try BiLSTM, BERT, ZEN, as well
as TwASP (Tian et al., 2020b) with the CRF de-
coder for medical concept recognition. TwASP
is a model that leverages the auto-generated syn-
tactic information (e.g., the POS tags (POS), the
dependency relations (Dep.), and the syntactic con-
stituents (Syn.)) through a two-way attention mech-
anism to improve model performance for sequence
labeling tasks. To obtain the syntactic information
of the input sentence required by TwASP, we use
Stanford CoreNLP Toolkits (Manning et al., 2014)
to obtain the POS tags, the dependency tree, and the
constituent syntax tree. Figure 1 shows an example
sentence (with English translation) and the three
types of the auto-generated syntactic information.

5 Experiments

In the experiments, we use two datasets. The first
is the in-domain ACMER corpus introduced in Sec.
3; the second is CTB6 (Xue et al., 2005), which is
a benchmark CWS dataset of the general domain
text. We split the ACMER corpus into training/test
sets and report the statistics in Table 5. For all
experiments, we use precision (Prec.), recall, and
F1 scores to evaluate different models.

5.1 Performance on Medical CWS
For medical CWS, we try BiLSTM, BERT, ZEN,
and WMSeg3. For BiLSTM, we use pre-trained

3https://github.com/SVAIGBA/WMSeg

Methods Prec. Recall F1

CTB Only

WMSeg 77.60 76.85 77.22
*ZEN is the base model

CTB+ACEMR

BiLSTM 98.01 98.09 98.05
+ CRF 98.22 98.30 98.26
+ Tencent Embedding 98.75 98.68 98.72

BERT 98.32 98.65 98.48
+ CRF 98.40 98.66 98.53
+ KVMN 98.55 98.78 98.69

ZEN 98.51 98.89 98.70
+ CRF 98.70 98.81 98.76
+ KVMN 98.86 98.84 98.85

ACEMR Only

ZEN 99.01 99.00 99.00
+ CRF 98.99 98.91 98.94
+ KVMN 99.03 99.04 99.03

Table 6: CWS performance for different composition
of training data where +CRF, +KVMN, +Tencent Em-
bedding represent the use of CRF layer, memory net-
work (WMSeg) and Tencent Embedding respectively.

character embeddings from Tencent Embedding4

(Song et al., 2018), with the training epoch, batch
size, and learning rate set to 50, 32, and 0.001,
respectively. For BERT, ZEN, and WMSeg, we
use the official settings (e.g., 768 dimensional hid-
den vectors with 12 multi-head self-attentions for
BERT), where the number of training epoch is 50,
the batch size is 16, and the learning rate is 1e-5.

The experimental results of CWS are presented
in Table 6 with three different settings (i.e., CTB
Only, CTB+ACEMR, and ACEMR Only). The CTB
Only setting displays the results of WMSeg model
(with ZEN encoder) when it is trained on CTB6
only and evaluated on the ACEMR test set. The
inferior results confirm the big gap between the
texts and guidelines in general and medical do-
mains, which indicates the challenge to perform
transfer learning from the general domain to the
medical domain. The CTB+ACEMR setting shows
the results of all models trained on the combination
of ACEMR and CTB6 datasets, where all mod-
els have a high improvement compared with the
WMSeg model trained on CTB6 only, emphasizing
the necessity of constructing an annotated dataset
in medical domain. Compared with BERT and
ZEN baseline, adding the KVMN module at the top
of the BERT/ZEN encoder to leverage wordhood
information (which is exactly the architecture of

4We use the official release from https://ai.
tencent.com/ailab/nlp/zh/embedding.html.

https://github.com/SVAIGBA/WMSeg
https://ai.tencent.com/ailab/nlp/zh/embedding.html
https://ai.tencent.com/ailab/nlp/zh/embedding.html
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Methods Prec. Recall F1

BiLSTM-CRF 95.65 95.41 95.53
BERT-CRF 97.62 97.84 97.73
ZEN-CRF 97.00 97.87 97.82

Table 7: The results on three different well-known
models on medical concept recognition.

Concept F1 Count OOV

Top 3 sub-classes

Probability (Prob) 100.00 372 0.000
Group (Gr) 99.84 2,440 0.177
Absence (Ab) 99.74 10,964 0.053

Bottom 3 sub-classes

Treatment Project (TP) 90.91 1,380 0.291
Clinical Drug (Drug) 88.20 648 0.462
Body Substance (BS) 74.24 976 0.400

Total 97.82 - -

Table 8: The top and bottom 3 results of ZEN-CRF on
each sub-classes of medical concept recognition, where
the number of medical concepts belonging to each sub-
class in training set and the out-of-vocabulary (OOV)
rate in test set are reported in last two columns.

WMSeg) can improve the performance on CWS. In
addition, models with ZEN encoder achieve higher
performance than the ones with BERT, which may
result from the fact that ZEN leverage n-gram in-
formation during pre-training and thus can obtain
a better contextual representation. Moreover, if we
train the model on ACEMR only (i.e., the ACEMR
only setting), models with ZEN encoder can be fur-
ther improved. This observation is not surprising
because the texts in CTB6 from the general domain
could introduce noise into the model.

5.2 Performance on Concept Recognition

For medical concept recognition (MCR) task where
the gold CWS results are given, the results from
BiLSTM, BERT, and ZEN encoder with CRF de-
coder are reported in Table 7, where ZEN-CRF
achieves the highest performance. In addition, we
rank the F1 scores of all sub-class labels obtained
by ZEN-CRF and present the results of the top
and bottom 3 ones in Table 8, where the number
of medical concepts belonging to each sub-class
in the training set as well as the rate of out-of-
vocabulary (OOV) medical concepts in the test set
is also reported. It is observed that the model does
not perform well on sub-classes with fewer train-
ing instances and higher OOV rate (e.g., Body Sub-
stance), which suggests that the OOV issue is a
challenge for Chinese medical concept recognition.

Methods Prec. Recall F1

BERT-CRF 97.62 97.84 97.73
TwASP (POS) 97.74 98.04 97.89
TwASP (Dep.) 97.85 98.02 97.94
TwASP (Syn.) 97.65 97.93 97.79

ZEN-CRF 97.00 97.78 97.82
TwASP (POS) 97.77 98.00 97.85
TwASP (Dep.) 97.64 98.01 97.90
TwASP (Syn.) 97.52 97.74 97.63

Table 9: The results of TWASP on medical concept
recognition with auto-generated POS labels, dependen-
cies (Dep.), and syntactic constituents (Syn.).

In addition, we run TwASP5 with three different
types of auto-generated syntactic information (i.e.,
POS labels, dependency relations, and syntactic
constituents). The results are reported in Table 9,
where we find that MCR can benefit from syntactic
information and obtain improvement in most cases,
although BERT-CRF and ZEN-CRF baselines have
already achieve outstanding performance.

6 Conclusion
In this paper, we collect a new Chinese medical cor-
pus, named ACEMR, which contains 500 EMRs
from a local hospital, and annotate the corpus with
CWS and medical concept labels. ACEMR fea-
tures in the rich types of medical concept, in which
20 sub-classes of medical concepts are annotated.
We test several state-of-the-art models for CWS
and medical concept recognition on the annotated
ACEMR. The results on CWS show that models
trained on general domain dataset (i.e., CTB6) can-
not perform well on medical domain, which con-
firms the necessity of constructing the ACEMR
corpus. Furthermore, WMSeg with wordhood in-
formation and TwASP with auto-generated syntac-
tic information outperforms strong baselines on
word segmentation and medical concept recogni-
tion, respectively, which demonstrates the benefit
of leveraging extra resources (i.e., wordhood infor-
mation and syntactic information) for CWS and
medical concept recognition.
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