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Abstract

Social media contains unfiltered and unique in-
formation, which is potentially of great value,
but, in the case of misinformation, can also do
great harm. With regards to biomedical top-
ics, false information can be particularly dan-
gerous. Methods of automatic fact-checking
and fake news detection address this problem,
but have not been applied to the biomedical
domain in social media yet. We aim to fill
this research gap and annotate a corpus of
1200 tweets for implicit and explicit biomed-
ical claims (the latter also with span annota-
tions for the claim phrase). With this corpus,
which we sample to be related to COVID-19,
measles, cystic fibrosis, and depression, we
develop baseline models which detect tweets
that contain a claim automatically. Our anal-
yses reveal that biomedical tweets are densely
populated with claims (45 % in a corpus sam-
pled to contain 1200 tweets focused on the do-
mains mentioned above). Baseline classifica-
tion experiments with embedding-based classi-
fiers and BERT-based transfer learning demon-
strate that the detection is challenging, how-
ever, shows acceptable performance for the
identification of explicit expressions of claims.
Implicit claim tweets are more challenging to
detect.

1 Introduction

Social media platforms like Twitter contain vast
amounts of valuable and novel information, and
biomedical aspects are no exception (Correia et al.,
2020). Doctors share insights from their everyday
life, patients report on their experiences with partic-
ular medical conditions and drugs, or they discuss
and hypothesize about the potential value of a treat-
ment for a particular disease. This information can
be of great value – governmental administrations
or pharmaceutical companies can for instance learn
about unknown side effects or potentially beneficial
off-label use of medications.

Figure 1: Tweet with a biomedical claim (highlighted).

At the same time, unproven claims or even inten-
tionally spread misinformation might also do great
harm. Therefore, contextualizing a social media
message and investigating if a statement is debated
or can actually be proven with a reference to a re-
liable resource is important. The task of detecting
such claims is essential in argument mining and a
prerequisite in further analysis for tasks like fact-
checking or hypotheses generation. We show an
example of a tweet with a claim in Figure 1.

Claims are widely considered the conclusive and
therefore central part of an argument (Lippi and
Torroni, 2015; Stab and Gurevych, 2017), conse-
quently making it the most valuable information
to extract. Argument mining and claim detection
has been explored for texts like legal documents,
Wikipedia articles, essays (Moens et al., 2007; Levy
et al., 2014; Stab and Gurevych, 2017, i.a.), so-
cial media and web content (Goudas et al., 2014;
Habernal and Gurevych, 2017; Bosc et al., 2016a;
Dusmanu et al., 2017, i.a.). It has also been applied
to scientific biomedical publications (Achakulvisut
et al., 2019; Mayer et al., 2020, i.a.), but biomedi-
cal arguments as they occur on social media, and
particularly Twitter, have not been analyzed yet.

With this paper, we fill this gap and explore
claim detection for tweets discussing biomedical
topics, particularly tweets about COVID-19, the
measles, cystic fibrosis, and depression, to allow
for drawing conclusions across different fields.

Our contributions to a better understanding of
biomedical claims made on Twitter are, (1), to pub-
lish the first biomedical Twitter corpus manually la-
beled with claims (distinguished in explicit and im-
plicit, and with span annotations for explicit claim
phrases), and (2), baseline experiments to detect
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(implicit and explicit) claim tweets in a classifica-
tion setting. Further, (3), we find in a cross-corpus
study that a generalization across domains is chal-
lenging and that biomedical tweets pose a particu-
larly difficult environment for claim detection.

2 Related Work

Detecting biomedical claims on Twitter is a task
rooted in both the argument mining field as well as
the area of biomedical text mining.

2.1 Argumentation Mining

Argumentation mining covers a variety of differ-
ent domains, text, and discourse types. This in-
cludes online content, for instance Wikipedia (Levy
et al., 2014; Roitman et al., 2016; Lippi and Torroni,
2015), but also more interaction-driven platforms,
like fora. As an example, Habernal and Gurevych
(2017) extract argument structures from blogs and
forum posts, including comments. Apart from that,
Twitter is generally a popular text source (Bosc
et al., 2016a; Dusmanu et al., 2017). Argument
mining is also applied to professionally generated
content, for instance news (Goudas et al., 2014;
Sardianos et al., 2015) and legal or political docu-
ments (Moens et al., 2007; Palau and Moens, 2009;
Mochales and Moens, 2011; Florou et al., 2013).
Another domain of interest are persuasive essays,
which we also use in a cross-domain study in this
paper (Lippi and Torroni, 2015; Stab and Gurevych,
2017; Eger et al., 2017).

Existing approaches differ with regards to which
tasks in the broader argument mining pipeline they
address. While some focus on the detection of
arguments (Moens et al., 2007; Florou et al., 2013;
Levy et al., 2014; Bosc et al., 2016a; Dusmanu
et al., 2017; Habernal and Gurevych, 2017), others
analyze the relational aspects between argument
components (Mochales and Moens, 2011; Stab and
Gurevych, 2017; Eger et al., 2017).

While most approaches cater to a specific do-
main or text genre, Stab et al. (2018) argue that
domain-focused, specialized systems do not gen-
eralize to broader applications such as argument
search in texts. In line with that, Daxenberger
et al. (2017) present a comparative study on cross-
domain claim detection. They observe that diverse
training data leads to a more robust model perfor-
mance in unknown domains.

2.2 Claim Detection

Claim detection is a central task in argumenta-
tion mining. It can be framed as a classification
(Does a document/sentence contain a claim?) or
as sequence labeling (Which tokens make up the
claim?). The setting as classification has been ex-
plored, inter alia, as a retrieval task of online com-
ments made by public stakeholders on pending
governmental regulations (Kwon et al., 2007), for
sentence detection in essays, (Lippi and Torroni,
2015), and for Wikipedia (Roitman et al., 2016;
Levy et al., 2017). The setting as a sequence label-
ing task has been tackled on Wikipedia (Levy et al.,
2014), on Twitter, and on news articles (Goudas
et al., 2014; Sardianos et al., 2015).

One common characteristic in most work on au-
tomatic claim detection is the focus on relatively
formal text. Social media, like tweets, can be con-
sidered a more challenging text type, which despite
this aspect, received considerable attention, also
beyond classification or token sequence labeling.
Bosc et al. (2016a) detect relations between ar-
guments, Dusmanu et al. (2017) identify factual
or opinionated tweets, and Addawood and Bashir
(2016) further classify the type of premise which
accompanies the claim. Ouertatani et al. (2020)
combine aspects of sentiment detection, opinion,
and argument mining in a pipeline to analyze argu-
mentative tweets more comprehensively. Ma et al.
(2018) specifically focus on the claim detection task
in tweets, and present an approach to retrieve Twit-
ter posts that contain argumentative claims about
debatable political topics.

To the best of our knowledge, detecting biomed-
ical claims in tweets has not been approached yet.
Biomedical argument mining, also for other text
types, is generally still limited. The work by Shi
and Bei (2019) is one of the few exceptions that
target this challenge and propose a pipeline to ex-
tract health-related claims from headlines of health-
themed news articles. The majority of other argu-
ment mining approaches for the biomedical do-
main focus on research literature (Blake, 2010;
Alamri and Stevenson, 2015; Alamri and Steven-
sony, 2015; Achakulvisut et al., 2019; Mayer et al.,
2020).

2.3 Biomedical Text Mining

Biomedical natural language processing (BioNLP)
is a field in computational linguistics which also
receives substantial attention from the bioinformat-
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Query category

Disease Names Topical Hashtags Combinations Drugs

COVID-19, #COVID-19 #socialdistancing,
#chinesevirus

COVID-19 AND cured,
COVID-19 AND vaccines

Hydroxychloroquine,
Kaletra, Remdesivir

measles, #measles #vaccineswork,
#dontvaccinate

measles AND vaccine,
measles AND therapize

M-M-R II, Priorix,
ProQuad

cystic fibrosis,
#cysticfibrosis

#livesavingdrugs4cf,
#orkambinow

cystic fibrosis AND treated,
cystic fibrosis AND heal

Orkambi, Trikafta,
Tezacaftor

depression, #depression #depressionisreal,
#notjustsad

depression AND cure,
depression AND treatment

Alprazolam, Buspirone,
Xanax

Table 1: Examples of the four categories of search terms used to retrieve tweets about COVID-19, the measles,
cystic fibrosis, and depression via the Twitter API.

ics community. One focus is on the automatic ex-
traction of information from life science articles,
including entity recognition, e.g., of diseases, drug
names, protein and gene names (Habibi et al., 2017;
Giorgi and Bader, 2018; Lee et al., 2019, i.a.) or re-
lations between those (Lamurias et al., 2019; Sousa
et al., 2021; Lin et al., 2019, i.a.).

Biomedical text mining methods have also been
applied to social media texts and web content
(Wegrzyn-Wolska et al., 2011; Yang et al., 2016;
Sullivan et al., 2016, i.a.). One focus is on the
analysis of Twitter with regards to pharmacovig-
ilance. Other topics include the extraction of ad-
verse drug reactions (Nikfarjam et al., 2015; Cocos
et al., 2017), monitoring public health (Paul and
Dredze, 2012; Choudhury et al., 2013; Sarker et al.,
2016), and detecting personal health mentions (Yin
et al., 2015; Karisani and Agichtein, 2018).

A small number of studies looked into the com-
parison of biomedical information in social media
and scientific text: Thorne and Klinger (2018) ana-
lyze quantitatively how disease names are referred
to across these domains. Seiffe et al. (2020) ana-
lyze laypersons’ medical vocabulary.

3 Corpus Creation and Analysis

As the basis for our study, we collect a novel Twit-
ter corpus in which we annotate which tweets con-
tain biomedical claims, and (for all explicit claims)
which tokens correspond to that claim.

3.1 Data Selection & Acquisition
The data for the corpus was collected in June/July
2020 using Twitter’s API1 which offers a keyword-
based retrieval for tweets. Table 1 provides a sam-
ple of the search terms we used.2 For each of the

1https://developer.twitter.com/en/docs/twitter-api
2The full list of search terms (1771 queries in total) is

available in the supplementary material.

medical topics, we sample English tweets from
keywords and phrases from four different query
categories. This includes (1) the name of the dis-
ease as well as the respective hashtag for each
topic, e.g., depression and #depression, (2) topi-
cal hashtags like #vaccineswork, (3) combinations
of the disease name with words like cure, treatment
or therapy as well as their respective verb forms,
and (4) a list of medications, products, and prod-
uct brand names from the pharmaceutical database
DrugBank3.

When querying the tweets, we exclude retweets
by using the API’s ‘-filter:retweets’ option. From
overall 902,524 collected tweets, we filter out those
with URLs since those are likely to be advertise-
ments (Cocos et al., 2017; Ma et al., 2018), and
further remove duplicates based on the tweet IDs.
From the resulting collection of 127,540 messages
we draw a sample of 75 randomly selected tweets
per topic (four biomedical topics) and search term
category (four categories per topic). The final cor-
pus to be annotated consists of 1200 tweets about
four medical issues and their treatments: measles,
depression, cystic fibrosis, and COVID-19.

3.2 Annotation

3.2.1 Conceptual Definition
While there are different schemes and models of
argumentative structure varying in complexity as
well as in their conceptualization of claims, the
claim element is widely considered the core com-
ponent of an argument (Daxenberger et al., 2017).

3https://go.drugbank.com/. At the time of creating the
search term list, COVID-19 was not included in DrugBank.
Instead, medications which were under investigation at the
time of compiling this list as outlined on the WHO website
were included for Sars-CoV-2 in this category: https://www.
who.int/emergencies/diseases/novel-coronavirus-2019/
global-research-on-novel-coronavirus-2019-ncov/
solidarity-clinical-trial-for-covid-19-treatments.

https://developer.twitter.com/en/docs/twitter-api
https://go.drugbank.com/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments
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Aharoni et al. (2014) suggest a framework in which
an argument consists of two main components: a
claim and premises. We follow Stab and Gurevych
(2017) and define the claim as the argumentative
component in which the speaker or writer expresses
the central, controversial conclusion of their argu-
ment. This claim is presented as if it were true even
though objectively it can be true or false (Mochales
and Ieven, 2009). The premise which is consid-
ered the second part of an argument includes all
elements that are used either to substantiate or dis-
prove the claim. Arguments can contain multiple
premises to justify the claim. (Refer to Section 3.4
for examples and a detailed analysis of argumenta-
tive tweets in the dataset.)

For our corpus, we focus on the claim element
and assign all tweets a binary label that indicates
whether the document contains a claim. Claims
can be either explicitly voiced or the claim property
can be inferred from the text in cases in which they
are expressed implicitly (Habernal and Gurevych,
2017). We therefore annotate explicitness or im-
plicitness if a tweet is labeled as containing a claim.
For explicit cases the claim sequence is addition-
ally marked on the token level. For implicit cases,
the claim which can be inferred from the implicit
utterance is stated alongside the implicitness anno-
tation.

3.2.2 Guideline Development
We define a preliminary set of annotation guide-
lines based on previous work (Mochales and Ieven,
2009; Aharoni et al., 2014; Bosc et al., 2016a; Dax-
enberger et al., 2017; Stab and Gurevych, 2017).
To adapt those to our domain and topic, we go
through four iterations of refinements. In each iter-
ation, 20 tweets receive annotations by two annota-
tors. Both annotators are female and aged 25–30.
Annotator A1 has a background in linguistics and
computational linguistics. A2 has a background in
mathematics, computer science, and computational
linguistics. The results are discussed based on the
calculation of Cohen’s κ (Cohen, 1960).

After Iteration 1, we did not make any substan-
tial changes, but reinforced a common understand-
ing of the existing guidelines in a joint discussion.
After Iteration 2, we clarified the guidelines by
adding the notion of an argumentative intention as
a prerequisite for a claim: a claim is only to be
annotated if the author actually appears to be inten-
tionally argumentative as opposed to just sharing
an opinion (Šnajder, 2016; Habernal and Gurevych,

Cohen’s κ

C/N E/I/N Span

Iteration 1 .31 .43 .32
Iteration 2 .34 .24 .12
Iteration 3 .61 .42 .42
Iteration 4 .60 .68 .41

Final corpus .56 .48 .38

Table 2: Inter-annotator agreement during development
of the annotation guidelines and for the final corpus.
C/N: Claim/non-claim, E/I/N: Explicit/Implicit/Non-
claim, Span: Token-level annotation of the explicit
claim expression.

2017). This is illustrated in the following example,
which is not to be annotated as a claim, given this
additional constraint:

This popped up on my memories from two
years ago, on Instagram, and honestly I’m so
much healthier now it’s quite unbelievable. A
stone heavier, on week 11 of no IVs (back
then it was every 9 weeks), and it’s all thanks
to #Trikafta and determination. I am stronger
than I think.

We further clarified the guidelines with regards
to the claim being the conclusive element in a Twit-
ter document. This change encouraged the annota-
tors to reflect specifically if the conclusive, main
claim is conveyed explicitly or implicitly.

After Iteration 3, we did not introduce any
changes, but went through an additional iteration
to further establish the understanding of the anno-
tation tasks.

Table 2 shows the results of the agreement of
the annotators in each iteration as well as the final
κ-score for the corpus. We observe that the agree-
ment substantially increased from Iteration 1 to 4.
However, we also observe that obtaining a substan-
tial agreement for the span annotation remains the
most challenging task.

3.2.3 Annotation Procedure
The corpus annotation was carried out by the same
annotators that conducted the preliminary annota-
tions. A1 labeled 1000 tweets while A2 annotated
300 instances. From these both sets, 100 tweets
were provided to both annotators, to track agree-
ment (which remained stable, see Table 2). Anno-
tating 100 tweets took approx. 3.3 hours. Over-
all, we observe that the agreement is generally
moderate. Separating claim-tweets from non-claim
tweets shows an acceptable κ=.56. Including the
decision of explicitness/implicitness leads to κ=.48.
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Class # Instances % Length

non-claim 663 55.25 30.56
claim (I+E) 537 44.75 39.88
expl. claim 370 30.83 39.89

claim phrase 17.59
impl. claim 167 13.92 39.88

total 1200 100 % 34.73

Table 3: Distribution of the annotated classes and aver-
age instance lengths (in tokens).

incompl. blended anecdotal impl.

M 8 .16 14 .28 9 .18 14 .28
C 17 .34 15 .30 8 .16 14 .28
CF 12 .24 10 .20 26 .52 18 .36
D 16 .32 9 .18 23 .46 11 .22

total 53 .27 48 .24 66 .33 57 .29

Table 4: Manual analysis of a subsample of 50
tweets/topic. Each column shows raw counts and per-
centage/topic.

The span-based annotation has limited agreement,
with κ=.38 (which is why we do not consider this
task further in this paper). These numbers are
roughly in line with previous work. Achakulvisut
et al. (2019) report an average κ=0.63 for labeling
claims in biomedical research papers. According
to Habernal and Gurevych (2017), explicit, inten-
tional argumentation is easier to annotate than texts
which are less explicit.

Our corpus is available with detailed annotation
guidelines at http://www.ims.uni-stuttgart.de/data/
bioclaim.

3.3 Corpus Statistics

Table 3 presents corpus statistics. Out of the 1200
documents in the corpus, 537 instances (44.75 %)
contain a claim and 663 (55.25 %) do not. From
all claim instances, 370 tweets are explicit (68 %).
The claims are not equally distributed across topics
(not shown in table): 61 % of measle-related tweets
contain a claim, 49 % of those related to COVID-
19, 40 % of cystic fibrosis tweets, and 29 % for
depression.

The longest tweet in the corpus consists of 110
tokens4, while the two shortest consist only of two

4The tweet includes 50 @-mentions followed by a measles-
related claim: “Oh yay! I can do this too, since you’re going
to ignore the thousands of children who died in outbreaks last
year from measles... Show me a proven death of a child from
vaccines in the last decade. That’s the time reference, now?
So let’s see a death certificate that says it, thx”

id Instance

1 The French have had great success #hydroxycloro-
quine.

2 Death is around 1/1000 in measles normally, same
for encephalopathy, hospitalisation around 1/5. With
all the attendant costs, the vaccine saves money, not
makes it.

3 Latest: Kimberly isn’t worried at all. She takes #Hy-
droxychloroquine and feels awesome the next day.
Just think, it’s more dangerous to drive a car than to
catch corona

4 Lol exactly. It’s not toxic to your body idk where he
pulled this information out of. Acid literally cured my
depression/anxiety I had for 5 years in just 5 months
(3 trips). It literally reconnects parts of your brain
that haven’t had that connection in a long time.

5 Hopefully! The MMR toxin loaded vaccine I received
many years ago seemed to work very well. More
please!

6 Wow! Someone tell people with Cystic fibrosis and
Huntington’s that they can cure their genetics through
Mormonism!

Table 5: Examples of explicit and implicit claim tweets
from the corpus. Explicit claims are in italics.

tokens5. On average, a claim tweet has a length
of ≈40 tokens. Both claim tweet types, explicit
and implicit, have similar lengths (39.89 and 39.88
tokens respectively). In contrast to that, the average
non-claim tweet is shorter, consisting of about 30
tokens. Roughly half of an explicit claim corre-
sponds to the claim phrase.

We generally see that there is a connection be-
tween the length of a tweet and its class member-
ship. Out of all tweets with up to 40 tokens, 453
instances are non-claims, while 243 contain a claim.
For the instances that consist of 41 and more tokens,
only 210 are non-claim tweets, whereas 294 are la-
beled as claims. The majority of the shorter tweets
(≤ 40 tokens) tend to be non-claim instances, while
mid-range to longer tweets (≥ 40 tokens) tend to
be members of the claim class.

3.4 Qualitative Analysis

To obtain a better understanding of the corpus, we
perform a qualitative analysis on a subsample of 50
claim-instances/topic. We manually analyze four
claim properties: the tweet exhibits an incomplete
argument structure, different argument components
blend into each other, the text shows anecdotal evi-
dence, and it describes the claim implicitly. Refer
to Table 4 for an overview of the results.

In line with Šnajder (2016), we find that ar-
gument structures are often incomplete, e.g., in-

5“Xanax damage” and “Holy fuck”.

http://www.ims.uni-stuttgart.de/data/bioclaim
http://www.ims.uni-stuttgart.de/data/bioclaim
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stances only contain a stand-alone claim without
any premise. This characteristic is most prevalent
in the COVID-19-related tweets In Table 5, Ex. 1
is missing a premising element, Ex. 2 presents
premise and claim.

Argument components (claim, premise) are not
very clear cut and often blend together. Conse-
quently they can be difficult to differentiate, for
instance when authors use claim-like elements as a
premise. This characteristic is again, most preva-
lent for COVID-19. In Ex. 3 in Table 5, the last
sentence reads like a claim, especially when looked
at in isolation, yet it is in fact used by the author to
explain their claim.

Premise elements which substantiate and give
reason for the claim (Bosc et al., 2016b) tradition-
ally include references to studies or mentions of ex-
pert testimony, but occasionally also anecdotal evi-
dence or concrete examples (Aharoni et al., 2014).
We find the latter to be very common for our data
set. This property is most frequent for cystic fibro-
sis and depression. Ex. 4 showcases how a personal
experience is used to build an argument.

Implicitness in the form of irony, sarcasm or
rhetoric questions are common features for these
types of claims on Twitter. We observe claims
related to cystic fibrosis are most often (in our sam-
ple) implicit. Ex. 5 and 6 show instances that use
sarcasm or irony. The fact that implicitness is such
a common feature in our dataset is in line with
the observation that implicitness is a characteristic
device not only in spoken language and everyday,
informal argumentation (Lumer, 1990), but also in
user-generated web content in general (Habernal
and Gurevych, 2017).

4 Methods

In the following sections we describe the concep-
tual design of our experiments and introduce the
models that we use to accomplish the claim detec-
tion task.

4.1 Classification Tasks

We model the task in a set of different model con-
figurations.

Binary. A trained classifier distinguishes between
claim and non-claim.

Multiclass. A trained classifier distinguishes be-
tween exlicit claim, implicit claim, and non-claim.

Multiclass Pipeline. A first classifier learns to dis-
criminate between claims and non-claims (as in
Binary). Each tweet that is classified as claim is
further separated into implicit or explicit with an-
other binary classifier. The secondary classifier is
trained on gold data (not on predictions of the first
model in the pipeline).

4.2 Model Architecture

For each of the classification tasks (bi-
nary/multiclass, steps in the pipeline), we
use a set of standard text classification methods
which we compare. The first three models (NB,
LG, BiLSTM) use 50-dimensional FastText
(Bojanowski et al., 2017) embeddings trained on
the Common Crawl corpus (600 billion tokens) as
input6.

NB. We use a (Gaussian) naive Bayes with an av-
erage vector of the token embeddings as input.

LG. We use a logistic regression classifier with the
same features as in NB.

BiLSTM. As a classifier which can consider con-
textual information and makes use of pretrained
embeddings, we use a bidirectional long short-term
memory network (Hochreiter and Schmidhuber,
1997) with 75 LSTM units followed by the output
layer (sigmoid for binary classification, softmax
for multiclass).

BERT. We use the pretrained BERT (Devlin et al.,
2019) base model7 and fine-tune it using the claim
tweet corpus.

5 Experiments

5.1 Claim Detection

With the first experiment we explore how reliably
we can detect claim tweets in our corpus and how
well the two different claim types (explicit vs. im-
plicit claim tweets) can be distinguished. We use
each model mentioned in Section 4.2 in each set-
ting described in Section 4.1. We evaluate each
classifier in a binary or (where applicable) in a
multi-class setting, to understand if splitting the
claim category into its subcomponents improves
the claim prediction overall.

6https://fasttext.cc/docs/en/english-vectors.html
7https://huggingface.co/bert-base-uncased

https://fasttext.cc/docs/en/english-vectors.html
https://huggingface.co/bert-base-uncased
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NB LG LSTM BERT

Eval. Task Class P R F1 P R F1 P R F1 P R F1

bi
na

ry binary claim .67 .65 .66 .66 .74 .70 .68 .48 .57 .66 .72 .69
n-claim .75 .77 .76 .79 .72 .76 .69 .84 .75 .78 .72 .75

multiclass claim .66 .65 .66 .73 .53 .61 .75 .35 .48 .81 .49 .61
n-claim .74 .76 .75 .71 .85 .78 .66 .91 .76 .71 .91 .80

m
ul

ti-
cl

as
s multiclass

expl .55 .45 .50 .63 .39 .48 .59 .27 .37 .62 .45 .52
impl .31 .44 .36 .33 .35 .34 .18 .09 .12 .29 .09 .13
n-claim .74 .76 .75 .71 .85 .78 .66 .91 .76 .71 .91 .80

pipeline
expl .56 .45 .50 .52 .55 .53 .50 .37 .43 .54 .65 .59
impl .31 .44 .36 .28 .35 .31 .07 .04 .05 .26 .22 .24
n-claim .75 .77 .76 .79 .72 .76 .69 .84 .75 .78 .72 .75

Table 6: Results for the claim detection experiments, separated into binary and multi-class evaluation. The best F1

scores for each evaluation setting and class are printed in bold face.

5.1.1 Experimental Setting

From our corpus of 1200 tweets we use 800 in-
stances for training, 200 as validation data to opti-
mize hyperparameters and 200 as test data. We tok-
enize the documents and substitute all @-mentions
by “@username”. For the LG models, we use
an l2 regularization. For the LSTM models, the
hyper-parameters learning rate, dropout, number
of epochs, and batch size were determined by a
randomized search over a parameter grid and also
use l2 regularization. For training, we use Adam
(Kingma and Ba, 2015). For the BERT models,
we experiment with combinations of the recom-
mended fine-tuning hyper-parameters from Devlin
et al. (2019) (batch size, learning rate, epochs), and
use those with the best performance on the valida-
tion data. An overview of all hyper-parameters is
provided in Table 9 in the Appendix. For the Bi-
LSTM, we use the Keras API (Chollet et al., 2015)
for TensorFlow (Abadi et al., 2015). For the BERT
model, we use Simple Transformers (Rajapakse,
2019) and its wrapper for the Hugging Face trans-
formers library (Wolf et al., 2020). Further, we
oversample the minority class of implicit claims to
achieve a balanced training set (the test set remains
with the original distribution). To ensure compa-
rability, we oversample in both the binary and the
multi-class setting. For parameters that we do not
explicitly mention, we use default values.

5.1.2 Results

Table 6 reports the results for the conducted experi-
ments. The top half lists the results for the binary
claim detection setting. The bottom half of the ta-
ble presents the results for the multi-class claim
classification.

For the binary evaluation setting, we observe that
casting the problem as a ternary prediction task is
not beneficial – the best F1 score is obtained with
the binary LG classifier (.70 F1 for the class claim
in contrast to .61 F1 for the ternary LG). The BERT
and NB approaches are slightly worse (1 pp and
4pp less for binary, respectively), while the LSTM
shows substantially lower performance (13pp less).

In the ternary/multi-class evaluation, the scores
are overall lower. The LSTM shows the lowest
performance. The best result is obtained in the
pipeline setting, in which separate classifiers can
focus on distinguishing claim/non-claim and ex-
plicit/implicit – we see .59 F1 for the explicit claim
class. Implicit claim detection is substantially more
challenging across all classification approaches.

We attribute the fact that the more complex mod-
els (LSTM, BERT) do not outperform the linear
models across the board to the comparably small
size of the dataset. This appears especially true
for implicit claims in the multi-class setting. Here,
those models struggle the most to predict implicit
claims, indicating that they were not able to learn
sufficiently from the training instances.

5.1.3 Error Analysis
From a manual introspection of the best performing
model in the binary setting, we conclude that it
is difficult to detect general patterns. We show
two cases of false positives and two cases of false
negatives in Table 7. The false positive instances
show that the model struggles with cases that rely
on judging the argumentative intention. Both Ex. 1
and 2 contain potential claims about depression
and therapy, but they have not been annotated as
such, because the authors’ intention is motivational
rather than argumentative. In addition, it appears
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id G P Text

1 n c #DepressionIsReal #MentalHealthAwareness #men-
talhealth ruins lives. #depression destroys people.
Be there when someone needs you. It could change
a life. It may even save one.

2 n c The reason I stepped away from twitch and gaming
with friends is because iv been slowly healing from
a super abusive relationship. Going to therapy and
hearing you have ptsd isnt easy. But look how far iv
come, lost some depression weight and found some
confidence:)plz stay safe

3 c n Not sure who knows more about #COVID19, my
sister or #DrFauci. My money is on Stephanie.

4 c n How does giving the entire world a #COVID19 #vac-
cine compare to letting everyone actually get #covid?
What would you prefer? I’m on team @username
#WHO #CDC #math #VaccinesWork #Science

Table 7: Examples of incorrect predictions by the LG
model in the binary setting (G:Gold, P:Predictions; n:
no claim; c: claim).

that the model struggles to detect implicit claims
that are expressed using irony (Ex. 3) or a rhetorical
question (Ex. 4).

5.2 Cross-domain Experiment

We see that the models show acceptable perfor-
mance in a binary classification setting. In the
following, we analyze if this observation holds
across domains or if information from another out-
of-domain corpus can help.

As the binary LG model achieved the best re-
sults during the previous experiment, we use this
classifier for the cross-domain experiments. We
work with paragraphs of persuasive essays (Stab
and Gurevych, 2017) as a comparative corpus. The
motivation to use this resource is that while they
are a distinctly different text type and usually lin-
guistically much more formal than tweets, they are
also opinionated documents.8 We use the resulting
essay model for making an in-domain as well as
a cross-domain prediction and vice versa for the
Twitter model. We further experiment with com-
bining the training portions of both datasets and
evaluate its performance for both target domains.

5.2.1 Experimental Setting
The comparative corpus contains persuasive es-
says with annotated argument structure (Stab and
Gurevych, 2017). Eger et al. (2017) used this cor-

8An essay is defined as “a short piece of writing on a
particular subject, often expressing personal views” (https:
//dictionary.cambridge.org/dictionary/english/essay).

Train Test P R F1

Twitter Twitter .66 .74 .70
Essay Twitter .51 .69 .59
Twitter+Essay Twitter .58 .75 .66
Essay Essay .96 1.0 .98
Twitter Essay .94 .74 .83
Twitter+Essay Essay .95 1.0 .97

Table 8: Results of cross-domain experiments using the
binary LG model on the Twitter and the essay corpus.
We report precision, recall and F1 for the claim tweet
class.

pus subsequently and provide the data in CONLL-
format, split into paragraphs, and predivided into
train, development and test set.9 We use their ver-
sion of the corpus. The annotations for the es-
say corpus distinguish between major claims and
claims. However, since there is no such hierar-
chical differentiation in the Twitter annotations,
we consider both types as equivalent. We choose
to use paragraphs instead of whole essays as the
individual input documents for the classification
and assign a claim label to every paragraph that
contains a claim. This leaves us with 1587 essay
paragraphs as training data, and 199 and 449 para-
graphs respectively for validation and testing.

We follow the same setup as for the binary set-
ting in the first experiment.

5.2.2 Results
In Table 8, we summarize the results of the cross-
domain experiments with the persuasive essay cor-
pus. We see that the essay model is successful
for classifying claim documents (.98 F1) in the in-
domain experiment. Compared to the in-domain
setting for tweets all evaluation scores measure
substantially higher.

When we compare the two cross-domain experi-
ments, we observe that the performance measures
decrease in both settings when we use the out-of-
domain model to make predictions (11pp in F1

for tweets, 15pp for essays). Combining the train-
ing portions of both data sets does not lead to an
improvement over in-domain experiments. This
shows the challenge of building domain-generic
models that perform well across different data sets.

6 Discussion and Future Work

In this paper, we presented the first data set for
biomedical claim detection in social media. In our

9https://github.com/UKPLab/acl2017-neural_end2end_
am/tree/master/data/conll/Paragraph_Level

https://dictionary.cambridge.org/dictionary/english/essay
https://dictionary.cambridge.org/dictionary/english/essay
https://github.com/UKPLab/acl2017-neural_end2end_am/tree/master/data/conll/Paragraph_Level
https://github.com/UKPLab/acl2017-neural_end2end_am/tree/master/data/conll/Paragraph_Level
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first experiment, we showed that we can achieve an
acceptable performance to detect claims when the
distinction between explicit or implicit claims is not
considered. In the cross-domain experiment, we
see that text formality, which is one of the main dis-
tinguishing feature between the two corpora, might
be an important factor that influences the level of
difficulty in accomplishing the claim detection task.

Our hypothesis in this work was that biomedi-
cal information on Twitter exhibits a challenging
setting for claim detection. Both our experiments
indicate that this is true. Future work needs to
investigate what might be reasons for that. We
hypothesize that our Twitter dataset contains partic-
ular aspects that are specific to the medical domain,
but it might also be that other latent variables lead
to confounders (e.g., the time span that has been
used for crawling). It is important to better under-
stand these properties.

We suggest future work on claim detection mod-
els optimize those to work well across domains. To
enable such research, this paper contributed a novel
resource. This resource could further be improved.
One way of addressing the moderate agreement be-
tween the annotators could be to include annotators
with medical expertise to see if this ultimately fa-
cilitates claim annotation. Additionally, a detailed
introspection of the topics covered in the tweets for
each disease would be interesting for future work
since this might shed some light on which topi-
cal categories of claims are particularly difficult to
label.

The COVID-19 pandemic has sparked recent
research with regards to detecting misinformation
and fact-checking claims (e.g., Hossain et al. (2020)
or Wadden et al. (2020)). Exploring how a claim-
detection-based fact-checking approach rooted in
argument mining compares to other approaches is
up to future research.
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