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Abstract
Argumentative structure prediction aims to es-
tablish links between textual units and label
the relationship between them, forming a struc-
tured representation for a given input text. The
former task, linking, has been identified by
earlier works as particularly challenging, as
it requires finding the most appropriate struc-
ture out of a very large search space of possi-
ble link combinations. In this paper, we im-
prove a state-of-the-art linking model by using
multi-task and multi-corpora training strate-
gies. Our auxiliary tasks help the model to
learn the role of each sentence in the argu-
mentative structure. Combining multi-corpora
training with a selective sampling strategy in-
creases the training data size while ensuring
that the model still learns the desired target
distribution well. Experiments on essays writ-
ten by English-as-a-foreign-language learners
show that both strategies significantly improve
the model’s performance; for instance, we ob-
serve a 15.8% increase in the F1-macro for in-
dividual link predictions.

1 Introduction

Argument mining (AM) is an emerging area that
addresses the automatic analysis of argumentation.
Many recent studies commonly try to tackle two
major tasks (Lawrence and Reed, 2020). The first
of these is argumentative component identifica-
tion, in which argumentative units (ACs) and non-
argumentative components (non-ACs) including
their boundaries are determined. ACs can be fur-
ther classified according to their role in argumen-
tation, e.g., major claim,1 claim and premise (Stab
and Gurevych, 2017). The second task is called
argumentative structure prediction, which first es-
tablishes links from source to target ACs (this is
called the linking task) and then labels the relation-
ship between them, for instance using the support

1The major claim is the statement expressing the writer’s
view on the discussion topic; also called main stance or main
claim.

and attack relation labels (this is called the relation
labelling task) (Stab and Gurevych, 2017).

(S10) I think it will reduce
the very bad example for
children. 

(S12) Smoking is very bad
especially for children and
students.

(S16) So people shouldn't
smoke in public places, not
only in restaurants.

(S18) It is to avoid harming
other people.

(S17) We should know this
rule.

...

...  

(S2) Smoking should be completely
banned at all the restaurants in the
country.

Figure 1: Illustration of linking task, using part of an
essay discussing the topic “Smoking should be banned
at all restaurants in the country."

The linking task has been identified by earlier
works as particularly challenging (Lippi and Tor-
roni, 2016; Cabrio and Villata, 2018; Lawrence and
Reed, 2020). There are many possible combina-
tions of links between textual units, and a linking
model has to find the most proper structure out of a
very large search space. Another typical challenge
in AM is the size of annotated corpora (Schulz
et al., 2018). Corpus construction is a complex
and time-consuming process; it also often requires
a team of expert annotators. Existing corpora in
AM are relatively “small" compared with more
established fields, such as machine translation or
document classification. This hinders training AM
models when using a supervised machine learning
framework.

In this paper, we perform the linking task for
essays written by English-as-a-foreign-language
(EFL) learners. Given an essay, we identify links
between sentences, forming a tree-structured rep-
resentation of argumentation in the text. Figure 1
illustrates the task. Our contributions are twofold.
First, we propose two structural-modelling related
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auxiliary tasks to train our model in a multi-task
learning (MTL) fashion. Past studies commonly
executed several AM tasks or using discourse and
rhetorical auxiliary tasks in the MTL setting (cf.
Section 2). In comparison with other works, our
auxiliary tasks are advantageous in that they do not
require any additional annotation. Second, we com-
bine multi-corpora training with a selective sam-
pling strategy to increase the training data size. We
explore the use of mixed training data of in-domain
EFL and out-domain2 student-essay corpora that
were annotated using different schemes and of dif-
ferent quality, while ensuring that the model still
learns the properties of the target in-domain data
well.

The choice of EFL texts in this study aims to con-
tribute to a less attended area. In AM, it is common
to use well-written texts by proficient authors (e.g.,
Ashley, 1990; Peldszus and Stede, 2016). However,
student texts often suffer from many problems be-
cause they are still in the learning phase. Even
more, EFL texts are also less coherent and less lex-
ically rich, and exhibit less natural lexical choices
and collocations (Silva, 1993; Rabinovich et al.,
2016). There are more non-native English speakers
(Fujiwara, 2018), and yet, to the best of our knowl-
edge, only one preceding study in AM concerned
the EFL genre (Putra et al., 2021b). The codes
accompanying this paper are publicly available.3

2 Related Work

2.1 Argumentative Structure Prediction
A variety of formulations have been proposed for
the linking task. Traditional approaches formu-
lated it as a pairwise classification task, predicting
whether an argumentative link exists between a
given pair of ACs (Stab and Gurevych, 2014). A
further post-processing step can also be performed
to combine the local predictions into an optimised
global structure, e.g., using the minimum-spanning-
tree algorithm (Peldszus and Stede, 2015). Recent
studies proposed a more global approach instead,
considering the entire input context. For instance,
Potash et al. (2017) formulated the linking task as
a sequence prediction problem. They jointly per-
formed AC classification and AC linking at once,

2Past studies used the term domain in a broad context.
It has at least five different senses: text genre, text quality,
annotation scheme, dataset and topic (or prompt). In the rest
of this paper, we use the specific meaning whenever possible.

3https://github.com/wiragotama/
ArgMin2021

assuming that the segmentation and AC vs non-AC
categorisation have been pre-completed. They ex-
perimented on the microtext corpus (Peldszus and
Stede, 2016) and the persuasive essay corpus (PEC,
Stab and Gurevych (2017)).

Eger et al. (2017) formulated argumentative
structure parsing in three ways: as relation extrac-
tion, as sequence tagging and as dependency pars-
ing tasks. They defined a BIO tagging scheme and
performed end-to-end parsing at token-level, exe-
cuting all subtasks (i.e., segmentation, unit type
classification, linking and relation labelling) at
once. Ye and Teufel (2021) also performed end-
to-end parsing at the token-level. They proposed
a more efficient representation for the dependency
structure of arguments, and achieved the state-of-
the-art performance for component and relation
identifications on the PEC using a biaffine atten-
tion model (Dozat and Manning, 2017).

The biaffine attention model was originally de-
signed to parse token-to-token dependency, but
Morio et al. (2020) extended it to parse propo-
sition (segment) level dependency. Their model
dealt with graph-structured arguments in the
Cornell eRulemaking corpus (Park and Cardie,
2018). Using the same architecture, Putra et al.
(2021b) parsed tree-structured EFL essays in the
ICNALE-AS2R corpus (Ishikawa, 2013, 2018; Pu-
tra et al., 2021a,b). In tree-structured argumenta-
tion, it is common for groups of sentences about
the same sub-topic to operate as a unit, forming
a sub-tree (sub-argument). Putra et al. (2021b)
found that their linking model has problems in con-
structing sub-trees, that is, it splits a group of sen-
tences that should belong together into separate
sub-arguments (sub-trees) or, conversely, groups
together sentences that do not belong together into
the same sub-trees.

2.2 Low-Resource and Cross-Domain
Argument Mining

Several approaches have been applied to alleviate
the data sparsity problem in AM. Al-Khatib et al.
(2016) used a distant supervision technique to ac-
quire a huge amount of data without explicit anno-
tation. Accuosto and Saggion (2019) pre-trained a
discourse parsing model and then fine-tuned it on
AM tasks. Lauscher et al. (2018) investigated the
MTL setup of argumentative component identifi-
cation and rhetorical classification tasks. Schulz
et al. (2018) performed a cross-genre argumenta-

https://github.com/wiragotama/ArgMin2021
https://github.com/wiragotama/ArgMin2021
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tive component identification. They employed a
sequence tagger model with a shared representation
but different prediction layers for each genre.

Data augmentation can also be applied to mit-
igate the data sparsity problem. This aims to
increase the amount of training data without di-
rectly collecting more data (Liu et al., 2020; Feng
et al., 2021). A relatively straightforward strategy
is to use multiple corpora when training models.
For example, Chu et al. (2017) proposed a mixed
fine-tuning approach for machine translation; they
trained a model on an out-genre corpus and then
fine-tune it on a dataset that is a mix of the target-
genre and out-genre corpora. However, the use of
multiple corpora of different genres is challenging
in AM because argumentation is often modelled
differently across genres (Lippi and Torroni, 2016;
Lawrence and Reed, 2020). Daxenberger et al.
(2017) found that training a claim identification
model with mixed-genre corpora only perform as
good as training on each specific corpus. The use
of data augmentation may cause the distributional
shift problem as well, where the augmented data
alter the target distribution that should be learned
by the model (Feng et al., 2021).

Putra et al. (2021b) provided some insights on
the possible conditions for multi corpora training
by experimenting using texts of different quality.
They trained argumentative structure prediction
models on EFL essays (in-domain) and parallel
improved version of the texts (out-domain), and
evaluated on the EFL texts. Their cross-domain
system attained 94% accuracy of end-to-end in-
domain performance. This signals the potential
to use corpora of different text quality altogether
to train a parsing model, as long as the text genre
stays the same. However, mixed-quality corpora
training has yet to be tried in practice.

In recent years, there has also been a growing
interest towards more generic AM models. For
example, Stab et al. (2018) proposed a simple an-
notation scheme for argument retrieval that is ap-
plicable in heterogeneous sources and can be per-
formed by untrained annotators. Cocarascu et al.
(2020) explored various deep learning architec-
tures and features that work well across various
datasets for the relation labelling task. They also
provided a comparison of using contextualised and
non-contextualised embeddings for the task. On the
other hand, Ruiz-Dolz et al. (2021) compared the
performance of transformer-based language mod-

els on the cross-topic relation labelling task.

3 Dataset

Our target texts are sourced from the
ICNALE-AS2R, a corpus of 434 essays written
by Asian college students with intermediate
proficiency.4 There are 6,021 sentences in total
with 13.9 sentences on average per essay. To the
best of our knowledge, this is the only currently
publicly-available AM corpus focusing on EFL
texts. The corpus is annotated at sentence-level,
that is, a sentence corresponds to one argumen-
tative unit. The corpus differentiates sentences
as ACs (5,799 sents.) and non-ACs (222 sents.),
without further classification of AC types. Links
are established between ACs to form tree structure
(avg. depth of 4.3, root at depth 0 in the corpus),
where the major claim acts as the root. Four
relation labels are employed to label the links:
support, attack, detail and restatement.

4 Proposed Method

In this work, we experiment on the linking task.
Given an entire essay of N sentences as input,
s1, ..., sN , a linking model outputs the distance
d1, ..., dN between each sentence si to its target.
For instance, if a sentence is connected to its pre-
ceding sentence, the distance is d = −1. We
consider those sentences that have no explicitly
annotated outgoing links as linked to themselves
(d = 0); this concerns major claims (roots) and
non-ACs. We do not consider labelling the links
with their relationships in this paper.
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Figure 2: Distribution of distance (in percent) between
related sentences in the ICNALE-AS2R corpus.

Figure 2 shows the distance distribution be-
tween the source and target sentences in the

4https://www.gsk.or.jp/en/catalog/
gsk2021-a. The approximated CEFR level of the essay
authors are A2 (94 essays), B1 (253) and B2 (87).

https://www.gsk.or.jp/en/catalog/gsk2021-a
https://www.gsk.or.jp/en/catalog/gsk2021-a
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ICNALE-AS2R corpus, ranging [−26, ...,+15].
Adjacent links predominate (50.4%). Short dis-
tance links (2 ≤ |d| ≤ 4) make up 21.2% of the
total. Backward long distance links at d ≤ −5
are 16.6%, whereas forward long distance links are
rare (1.0%). Self-loops make up 10.9% of the total.
Following recent advances in AM, we approach the
linking task as a sentence-to-sentence dependency
parsing.

4.1 Baseline

We use Putra et al.’s (2021b) architecture as the
state-of-the-art baseline (“BIAF" model, cf. Fig-
ure 3). In this architecture, input sentences are
first encoded into their respective sentence embed-
dings using sentence-BERT encoder (Reimers and
Gurevych, 2019). The resulting sentence embed-
dings are then passed into a dense layer for di-
mensionality reduction. The results are then fed
into a bidirectional long-short-term memory net-
work (BiLSTM) layer (#stack = 3) to produce
contextual sentence representations. These repre-
sentations are then passed into two different dense
layers to encode the corresponding sentence when
it acts as a source

(
h(source)

)
or target

(
h(target)

)
in a relation.

s1 s2 ... sN

Dense

Sentence-BERT Encoder

h1
(source)

h1
(target)

h2
(source)

h2
(target) hN

(target)

=H
(source) GU H

(target)

hN
(source)

BiLSTM

Figure 3: Biaffine attention model (BIAF).

Finally, a biaffine transformation (Dozat and
Manning, 2017) is applied to all source and tar-
get representations to produce the final output ma-
trix G ∈ RN×N , where each cell gi,j represents
the probability (or score) of the source sentence
si pointing to sj . Equation (1) and (2) show the
biaffine transformation (f ), where U and W are

weight matrices and b is bias.

f(x1, x2) = x1
TUx2 +W(x1 ⊕ x2) + b (1)

gi,j = f
(
h
(source)
i , h

(target)
j

)
(2)

The Chu-Liu-Edmonds algorithm (Chu and Liu,
1965; Edmonds, 1967) is applied to create a mini-
mum spanning tree out of the matrix G. The links
in the tree are then converted into distance pre-
dictions between source and target sentences for
evaluation purpose.

4.2 Multi-Task Learning with Structural
Signal

We propose to extend the BIAF model in an MTL
setup using two novel structural-modelling-related
auxiliary tasks.

The first auxiliary task is a quasi argu-
mentative component type (QACT) prediction.
ICNALE-AS2R corpus does not assign AC types
per se, but we can compile the following four sen-
tence types from the tree typology:

• major claim (root): only incoming links,
• AC (non-leaf): both outgoing and incoming

links,
• AC (leaf): only outgoing links and
• non-AC: neither incoming nor outgoing links.

For example, S2 is the major claim of Figure 1, S10
is AC (non-leaf) and S17 is AC (leaf). The QACT
prediction task should help the linking model to
learn the role of sentences in the argumentative
structure, as well as the property of links for each
sentence. This auxiliary task improved a sequence-
tagger based linking model in Putra et al. (2021b),
but it has not been applied to the BIAF model yet.

The second auxiliary task concerns node depth
(ND) prediction. There are six depth categories
employed in this paper: depth 0 to depth 4,
and depth 5+. The argumentative structure in
ICNALE-AS2R corpus is hierarchical, and there
is no relations between nodes (sentences) at the
same depth. The ND prediction task should help
the model to learn the placement of sentences in the
hierarchy and guide where each sentence should
point at, that is, sentences at depth X point at sen-
tences at depth X − 1.

We also propose to use sentence position (spos)
embedding as an input feature because it has been
proved to be useful in other studies (e.g., Song
et al., 2020). The sentence position encoding is



16

s1 ... sN
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Quasi Argumentative
Component Type
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H
(source)

H
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Sentence Position (spos) Encoder

Dense

Figure 4: Our proposed extension for the BIAF model. Newly added modules are coloured.

calculated by dividing a sentence position by the
essay length. When using this feature, sentence
embeddings and spos encoding are concatenated
before being passed to the first dense layer. Fig-
ure 4 illustrates our proposed architecture.

4.3 Multi-Corpora Training

In this paper, we also consider the use of multi-
corpora training strategy, employing essays in
the PEC as additional training data. Both
ICNALE-AS2R and PEC provide argumentative
essays written by students (in English) and rep-
resents argumentative structures as trees. How-
ever, there is no information on the essay au-
thors proficiency (L1 or L2) nor the observed qual-
ity of the PEC. Hence, these two corpora might
be of different quality. The writing prompts of
ICNALE-AS2R and PEC essays are also different.

There are two settings when training using
multiple corpora. The first is to use the entire
402 essays in the PEC on top of ICNALE-AS2R
train set (“[P+I]" setting). However, PEC and
ICNALE-AS2R are different in terms of length and
annotation scheme. The PEC essays have 18.2 sen-
tences on average (15.1 ACs and 3.1 non-ACs),
while ICNALE-AS2R essays have 13.9 sentences
on average (13.4 ACs and 0.5 non-ACs). The differ-
ence in non-ACs proportion between these corpora
is likely caused by the difference in the set of re-
lation labels employed. The essays in PEC were
annotated using two relation types: support and at-
tack, while ICNALE-AS2R additionally employed

detail and restatement. Hence, there is arguably
more information in the ICNALE-AS2R corpus.
Particularly, some sentences that should have been
annotated as non-ACs (hence not linked to other
sentences) in the PEC’s scheme might have been
annotated as ACs in the ICNALE-AS2R’s scheme
by using the additional relations.

Due to the differences in annotation scheme and
statistical properties, there is a possibility that the
model might not properly learn the distribution of
ICNALE-AS2R in the [P+I] setting. Therefore, we
also propose a second selective sampling (“[SS]"
setting) strategy to account for the differences be-
tween these two corpora. In this setting, we only
use PEC essays that are somewhat similar to those
of ICNALE-AS2R considering the following two
criteria. First, we only use PEC essays having 17
sentences at maximum (ICNALE-AS2R avg. 13.9
+ 3.3 SD). Second, the employed PEC essays con-
tain two non-ACs at maximum (ICNALE-AS2R
avg. 0.5 + 0.9 SD). There are 110 remaining PEC
essays after the selective sampling procedure.

Note that ICNALE-AS2R was annotated at the
sentence level while PEC was annotated at the seg-
ment level. Therefore, we convert the PEC anno-
tation to the sentence level, following the strategy
described by Song et al. (2020). If a sentence con-
tains only one AC, we use the whole sentence as
an AC; if a sentence contains two or more ACs, we
split it into multiple sentences while including the
preceding tokens into each AC. Figure 5 illustrates
the splitting procedure, where a sentence contain-
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(S1)[To conclude, art could play an active role in im-
proving the quality of people’s lives,] (S2)[but I think
that governments should attach heavier weight to other
social issues such as education and housing needs]
(S3)[because those are the most essential ways enable
to make people a decent life.]

Figure 5: Illustration of conversion of PEC’s segment-
level annotation to the sentence-level (essay075). An-
notated AC segments are written in bold.

ing three ACs is split into three sentences.

5 Structural Metric

In this paper, we do not evaluate the model per-
formance only on individual link predictions but
also analyse the structural properties of the outputs,
giving more insights into the models’ ability to
learn different aspects of the argumentative struc-
ture. We also investigate whether our proposed
strategies improve the model performance concern-
ing the grouping of related sentences into the same
sub-tree, a challenge to linking models previously
(manually) observed in Putra et al. (2021b) (cf.
Section 2.1). A metric is needed to quantify the
improvement on this aspect, and we propose to use
a novel structural metric called MARdSet, that was
developed by Putra et al. (2021a).5

Given two structures A and B (i.e., predicted
and gold structures), we can quantify their simi-
larity based on the presence of common substruc-
tures. We first define a descendant set (dSet) of a
node X as the set consisting the node X itself and
its descendants. Figure 6 shows examples of dSets
(brackets given below the node ID).6 For example,
the dSet of node-2 in annotation A of Figure 6 is
{2, 3, 4, 5}. Two corresponding nodes in A and
B are required to have identical dSets in order to
score a value of 1. For example, the matching
score for node-2 between annotation A and B in
Figure 6 is 0, while the matching score for node-3
is 1. Non-AC nodes are counted as a match if they
are deemed non-argumentative in both structures.

With this formulation, we can get a vector v rep-
resenting the matching scores for all nodes in the
two structures. For example, v = [0, 0, 1, 1, 0] for
Figure 6. The similarity score between two struc-

tures are then calculated as MARdSet=
∑N

i=1 vi
N ,

5MAR stands for Mean Agreement in Recall. Descendant
set (dSet) denotes the unit of analysis.

6In the implementation, we use sentence position in the
input text as node ID.

where N denotes the number of nodes; The
MARdSet score for Figure 6 is 0.4.

1
{1, 2, 3, 4, 5}

2
{2, 3, 4, 5}

3
{3}
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{4}
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{1, 2, 3, 4}

2
{2, 3, 4}

3
{3}

4
{4}

5
{}

01

Figure 6: Example of descendant set matching between
structure A (left) and B (right). Matching scores are
written in red. Grey nodes represent non-AC.

6 Experiment and Discussion

6.1 Experimental Setting

In this experiment, the ICNALE-AS2R corpus is
split into 80% train set (347 essays , 4,841 sents.)
and 20% test set (87 essays, 1,180 sents.). We use
the same splits as Putra et al. (2021b). The num-
ber of training essays for [P+I] and [SS] settings
are 749 (12,162 sents.) and 457 (6,418 sents.), re-
spectively. We run the experiment for 20 times7

and report the average performance. Statistical test-
ing, whenever possible, is conducted using the per-
mutation test (Noreen, 1989) on the performance
scores of the 20 runs with a significance level of
α = .05. Here, we also perform an ablation study.
Appendix A shows some implementation notes.

6.2 Quantitative Analysis

Table 1 shows the experimental results on individ-
ual link predictions and MARdSet. Training the
BIAF model using the QACT task improved the
performance over the baseline, particularly in terms
of F1-macro (non significant difference). In addi-
tion, using both QACT+ND auxiliary tasks signifi-
cantly improved the performance over the baseline
in terms of F1-macro. This signals that the pro-
posed MTL setting benefits model performance.

We next look at how spos encoding affects
the model performance. Introducing spos to
the BIAF+QACT+ND model improves accuracy
and MARdSet. However, the difference is not
significant. Similarly, the difference between

7Twenty experiments were repeated on the same dataset
splits to account for random initialisation in neural networks.
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Model Acc. F1-macro MARdset

Baseline
BIAF .471 .323 .419

MTL
BIAF+QACT .473 .333 422
BIAF+QACT+ND .472 .338 423

Spos
BIAF+QACT+spos .472 .327 .421
BIAF+QACT+ND+spos .475 .336 426

Multi-corpora Training
BIAF+QACT+ND [P+I] .468 .360 .455
BIAF+QACT+ND [SS] .489† .374† .452

Table 1: Results of individual link predictions (Acc.
and F1-macro) and MARdSet. The best result is shown
in bold-face. The † symbol indicates that the difference
to the second-best result (underlined) is significant.

BIAF+QACT+spos and BIAF+QACT is not signif-
icant. There are two possible explanations for this
phenomenon. First, studies in contrastive rhetoric
found that non-native speakers tend to structure and
organise their texts differently from native speak-
ers (Kaplan, 1966; Silva, 1993). Some students
might have used the writing customs and rhetorical
strategies of their first language instead of using
the common English writing patterns. For example,
Asian students sometimes put a claim after its rea-
son, which is not common in Anglo-Saxon cultures
(Silva, 1993; Johns, 1986). We observe that some
texts in the ICNALE-AS2R corpus are written in
the “claim-support" structure but some are written
in the “support-claim" structure. Sentences on the
same topic are sometimes distantly separated as
well. These inconsistencies might have negated the
effect of the spos encoding. Second, the output of
the BIAF model is a graph G which considers the
directed links between all pairs of sentences. The
spos feature might not affect the biaffine transfor-
mation much in this context.

The models trained using multiple corpora attain
the best performance for individual link and sub-
structure (MAR) predictions. BIAF+QACT+ND
[P+I] achieves the best performance of .455 in
terms of MARdSet, and BIAF+QACT+ND [SS]
achieves the best performance of .489 and .374
in terms of accuracy and F1-macro. The [SS]
model also achieves the second-best performance
of .452 in terms of MARdSet. These improve-
ments are significant over the baseline and the
BIAF+QACT+ND model. Note that when using
the [SS] setting, the model performance is consis-

tently improved with regard to all metrics, while
the accuracy of the [P+I] model is lower than the
baseline. In general, the [SS] model attains a bet-
ter performance compared with the [P+I] model
despite fewer training instances. This means that
when training a model using multiple corpora, it is
essential to consider training instances having the
same properties as our goal. Simply having more
training data does not guarantee improvement.
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To gain deeper insights into the individual link
prediction improvement brought by the [SS] model
over the baseline, Figure 7 shows F1 score per
target linking distance. BIAF+QACT+ND [SS]
is better than the baseline model, particularly at
predicting short-distance links (2 ≤ |d| ≤ 4, avg.
F1 = .24 vs .17), which is the weakest range of the
baseline model. However, this is still the weakest
range even for the [SS] model.

Figure 8 shows the performance across depths,
that is, whether the model places each node
at the proper depth in the predicted structure.
BIAF+QACT+ND [SS] performs better than the
baseline particularly in [0,3] and [6,8] ranges. This
plot indicates that the model performance declines
as one moves further down the tree.

We next look at the models’ ability to predict
the role of each node (QACT task) based on the
predicted hierarchical structures. Table 2 shows
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Model Major Claim AC (non-leaf) AC (leaf) Non-AC F1-macro

Baseline
BIAF .730 .639 .599 .437 .601

MTL
BIAF+QACT .739 .639 .601 .453 .608
BIAF+QACT+ND .734 .636 .601 .454 .606

Spos
BIAF+QACT+spos .725 .641 .602 .438 .602
BIAF+QACT+ND+spos .738 .638 .603 .460 .610

Multi-corpora Training
BIAF+QACT+ND [P+I] 748 .606 .634† .420 .602
BIAF+QACT+ND [SS] .767† .633 .628 .462 .622†

Table 2: Results for the QACT prediction. Node labels are automatically identified from the predicted topology in
the main task. This table shows F1 score per node label and F1-macro. Bold-face, † and underline as above.

the results. The MTL models perform better com-
pared with the baseline model. Both BIAF+QACT
and BIAF+QACT+ND achieve a significant im-
provement over the baseline in terms of non-AC
prediction and F1-macro. This reconfirms that both
of our proposed MTL tasks are useful to improve
linking performance. Similar to the previous re-
sult on individual links, the spos feature does not
provide much improvement. We notice that the
BIAF+QACT+ND [P+I] model performs worse
than the baseline in some aspects, particularly in
terms of AC (non-leaf) and non-AC predictions.
On the other hand, BIAF+QACT+ ND [SS] consis-
tently achieves better performance compared with
the baseline model. It attains the highest score of
.622 in F1-macro, which is a significant improve-
ment over other configurations. This confirms our
hypothesis that the difference between annotation
schemes and statistical properties between PEC
and ICNALE-AS2R affects the model in terms of
the distribution learned. The proposed selective
sampling strategy helps to alleviate this problem.

We also analyse the overall shape of the pre-
dicted structures by all models, as shown in Ta-
ble 3. The gold standard trees in ICNALE-AS2R
have a particular shape, expressed as the average
depth of 4.3 (SD = 1.4) and the leaf ratio of
.439 (SD = 0.11). The baseline model tends to
produce trees that are deeper and narrower than
the ICNALE-AS2R gold trees. Our MTL auxil-
iary tasks help to improve the leaf ratio to become
closer to the gold standard (significant difference
between BIAF+QACT+ND and BIAF), while spos
embedding does not provide additional improve-
ment. When we introduce the multi-corpora train-
ing strategy, the predicted structures become shal-

Model Average Depth Leaf Ratio

Dataset
ICNALE-AS2R 4.3±1.4 .439±.11
PEC [all] 2.8±.63 .540±.09
PEC [after SS] 2.7±.53 .565±.08

Baseline
BIAF 5.1 .404

MTL
BIAF+QACT 5.1 .410
BIAF+QACT+ND 5.0 .418

Spos
BIAF+QACT+spos 5.2 .407
BIAF+QACT+ND+spos 5.0 .412

Multi-corpora Training
BIAF+QACT+ND [P+I] 4.1 .486
BIAF+QACT+ND [SS] 4.5† .446†

Table 3: Structural-output qualities of linking models.
Bold-face, † and underline as above.

lower and wider compared with the baseline, par-
ticularly when using the [P+I] setting. We believe
this is due to the shallower trees in the PEC com-
pared with the ICNALE-AS2R (i.e., the distribu-
tional shift problem). However, this is less of an
issue for the [SS] model as it produces the most
similar structure to the ICNALE-AS2R essays.

We conclude BIAF+QACT+ND [SS] as the best
model in this experiment, achieving the new state-
of-the-art performance for the linking task. It con-
sistently performs better compared with other con-
figurations across all evaluation aspects.

6.3 Qualitative Analysis

We conducted a qualitative analysis on some
random outputs of our best model, namely
BIAF+QACT+ND [SS]. Some prediction errors
are likely caused by the inability of the model to re-
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solve anaphora. Figure 9 shows an output example.
The model successfully groups sentences S5–S7 as
a single sub-argument, as the gold annotation does.
However, it connects S7 to S6, while the gold an-
notation connects S7 to S5 (with the support label).
The link from S7 to S5 is the correct interpreta-
tion because the statement in S7 can be broadly
applied to “skills of working and cooperating," not
only to some specific instantiations mentioned in
S6 (“set the working agenda and get help from
colleagues"). A possible direction to alleviate this
problem is to equip the model with a better ability
to resolve anaphora. Another direction is to per-
form an anaphora resolution step before parsing
the argumentative structure.

(S3) The importance of a part-time job is
recognized by a great number of people,
including me.

(S4) Most students
go to the university
to prepare
themselves to blend
into the society in
the future.

(S7) Without these skills, even if
the student gets a good occupation
upon his graduation, they will
possible feel it difficult to get used
to the job, and thus their
performance will be unsatisfactory.

(S5) Being successful in the society calls for
skills of working and cooperating, which can be
developed by working at part-time jobs

(S6) For instance,
one can learn
how to set the
working agenda
and get help from
colleagues.

Figure 9: An excerpt of prediction for essay
“W_HKG_PTJ0_029_B2_0_EDIT". The essay was
written in response to a prompt “It is important for
college students to have a part-time job." The dashed
line illustrates an erroneous link, while the dotted line
(grey) illustrates the corresponding gold link.

(S7) Those who have
a part-time job are
more likely to get in
touch with various
people in society.

(S6) To begin with, a
part-time job will
provide more social
experience.

(S10) In addition, a
part-time job will
show them the
significance of
cooperation.

(S5) Generally speaking, it's important for
college students to have a part-time job.

Figure 10: An excerpt of prediction for essay
“W_CHN_PTJ0_242_B2_0_EDIT". The essay was
written in response to a prompt “It is important for col-
lege students to have a part-time job." Dashed lines and
dotted lines as above.

Another source of error is the difficulty in judg-
ing whether two statements argue at the same con-

ceptual level (hence the same depth in the tree).
Figure 10 shows an illustration. S7 and S10 are ex-
emplifications of S6, and therefore, they should be
placed lower than S6. However, the model recog-
nises S6, S7 and S10 arguing at the same concep-
tual level. The exemplifications are probably not
obvious for the model because S7 is not accompa-
nied by a discourse marker (e.g., “for example").
In general, EFL essays are often challenging to
process due to improper use (can be excessive or
limited too) of discourse markers.

7 Conclusion

In this paper, we presented a study on the argumen-
tative linking task; given an essay as input, a linking
model outputs the argumentative structure in a tree
representation. We conducted experiments using
an EFL corpus, namely ICNALE-AS2R. We ex-
tended the state-of-the-art biaffine attention model
using a novel set of structural auxiliary tasks in the
multi-task learning setup. Additionally, we also
proposed a multi-corpora training strategy using
the PEC to increase training instances. It has to
be noted that simply increasing the training data
size does not guarantee improvement. We need to
ensure that the model still learns the desired target
distribution as well. To this end, we filtered PEC
essays using a selective sampling technique. These
two strategies provided useful supervision signals
to the biaffine model and significantly improved
its performance. The F1-macro for individual link
predictions was boosted to .374 from .323. Our
strategies also improved the model performance
on the structural aspects, achieving the MARdset

of .452 from .419, and the F1-macro of .622 from
.601 for the QACT task.

A possible future direction is to evaluate whether
our proposed methods are beneficial for more com-
plex discourses, such as scientific articles. It is also
necessary to provide an even richer supervision
signal to improve the linking performance. One
possibility is to pre-train the model on the anaphora
resolution task.
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A Implementation Notes

Hidden Units and Model Implementation 512
units for the first dense layer, 256 LSTM unit,
and 256 units for the second dense layer after the
BiLSTM layer. Dropout is applied between all
layers. For a fair comparison, we follow Putra
et al. (2021b) in using the sentence-BERT encoder
fine-tuned on the NLI dataset (“bert-base-nli-mean-
tokens", https://github.com/UKPLab/
sentence-transformers). All models are
trained using Adam optimiser (Kingma and Ba,
2015), and implemented in PyTorch (Paszke et al.,
2019) and AllenNLP (Gardner et al., 2018).

Loss The MTL loss is defined as L =∑
t

1
2σ2

t
Lt+ln(σt), where the loss Lt of each task t

is dynamically weighted, controlled by a learnable
parameter σt. The loss for the main task (sentence
linking) is computed using max-margin criterion,
while losses for auxiliary tasks are computed using
cross-entropy.
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