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Abstract

Linear embedding transformation has been
shown to be effective for zero-shot cross-
lingual transfer tasks and achieve surprisingly
promising results. However, cross-lingual em-
bedding space mapping is usually studied in
static word-level embeddings, where a space
transformation is derived by aligning represen-
tations of translation pairs that are referred
from dictionaries. We move further from this
line and investigate a contextual embedding
alignment approach which is sense-level and
dictionary-free. To enhance the quality of
the mapping, we also provide a deep view
of properties of contextual embeddings, i.e.,
the anisotropy problem and its solution. Ex-
periments on zero-shot dependency parsing
through the concept-shared space built by our
embedding transformation substantially out-
perform state-of-the-art methods using multi-
lingual embeddings.

1 Introduction

Cross-lingual embedding space alignment
(Mikolov et al., 2013b; Artetxe et al., 2016; Xing
et al., 2015; Conneau et al., 2018) recently has been
attracted a lot of attention because cross-lingual
model transfer is effectively facilitated by shared
semantic spaces in NLP tasks, e.g., named entity
recognition (Xie et al., 2018), part-of-speech
tagging (Hsu et al., 2019), and dependency parsing
(Schuster et al., 2019), where dependency paring
is scoped out in this paper. Compared with the
delexicalized parsers (McDonald et al., 2011),
multilingual word embeddings have been demon-
strated to significantly improve the performance
of zero-shot dependency parsing by bridging the
lexical feature gap (Guo et al., 2015).

With the remarkable development of monolin-
gual contextual pre-trained models (Peters et al.,
2018; Devlin et al., 2019; Radford et al., 2019),

which dramatically outperform static word embed-
dings (Mikolov et al., 2013a; Pennington et al.,
2014; Bojanowski et al., 2017) in broad NLP ap-
plications, increasing number of researchers have
started focusing on contextual representation align-
ment for cross-lingual dependency parsing (Schus-
ter et al., 2019; Wang et al., 2019). Moreover, with
the appearance of multilingual pre-trained models,
such as Multilingual BERT (mBERT) (Devlin et al.,
2019), zero-shot dependency parsing becomes eas-
ier by utilizing the large vocabulary of the multilin-
gual models (Kondratyuk and Straka, 2019).

Our approach is most similar to Schuster et al.
(2019), which maps a target language space into
a source language space through a linear transfor-
mation to realize zero-shot transfer in dependency
parsing. Typically, a transformation is usually de-
rived by word-level embedding alignment, while
we explore a sense-level embedding alignment
method to map bilingual spaces more precisely,
where sense-level representations are split from
multi-sense word-level embeddings. Furthermore,
our mapping approach is dictionary-free which uti-
lizes the silver token pairs from parallel corpora and
eliminates the necessity of gold dictionaries. The
experimental results of zero-shot dependency pars-
ing demonstrate that two parser evaluation scores
(UAS and LAS) of sense-level mapping are always
better than of word-level one. Moreover, we also
notice the anisotropy problem (Ethayarajh, 2019)
(defined in Section 3.2) in contextual embeddings,
which potentially deteriorate the performance of
the zero-shot transfer task. We significantly mit-
igate this drawback by leveraging a prepossess-
ing step, iterative normalization (IN) (Zhang et al.,
2019), which is originally used for improving the
performance of static embedding mapping on the
bilingual dictionary induction task.

Zero-shot dependency parsing experiments are
conducted on Universal Dependencies treebank
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Figure 1: The target tokens (left, blue) and the source tokens (right, black) are aligned by Fast Align, so their
contextual embeddings can be aligned as well.

v2.6 (Zeman et al., 2020), which shows that our
results obtain a substantial gain compared with
state-of-the-art methods using multilingual fastText
and mBERT 1.

2 Linear Cross-lingual Space Alignment

Let denote X ∈ Rd×N as the word embedding
matrix for a target language 2, and Y as the word
embedding matrix for a source language. For each
column of the target embedding matrix xi ∈ Rd,
it has one source embedding vector yi ∈ Rd cor-
responding to a source word translated from the
target word i. We aim to derive a linear transfor-
mation matrix Ŵ used for mapping from the target
language space to the source language space. This
can be learned by minimizing the Frobenius norm:

Ŵ = arg min
W∈Rd×d

‖WX − Y ‖F (1)

Furthermore, Xing et al. (2015) show that the qual-
ity of space alignment is successfully improved
with the orthogonal restriction, i.e, W TW = I .
Thus, the problem can be solved by Procrustes ap-
proach (Schönemann, 1966):

Ŵ = arg min
W∈Od×d

‖WX − Y ‖F = UV T

s.t. UΣV T = svd(Y XT )

(2)

where Od×d is the set of orthogonal matrices.

3 Method

3.1 Contextual Embedding Transformation
An unsupervised bidirectional word alignment al-
gorithm based on IBM Model 2 (Brown et al.,

1Code is available at: https://github.com/
fe1ixxu/ZeroShot-CrossLing-Parsing.

2Different from usual settings, we use x-related symbols
for target data and y-related ones for source data.

1993), Fast Align (Dyer et al., 2013), is first ap-
plied to a parallel corpus to derive silver aligned
token pairs. We then respectively feed the parallel
corpus to the BERTs of the target and the source
languages and extract the outputs as contextual em-
beddings. As shown in Figure 1, Fast Align bridges
“links” between silver token pairs, and between the
embeddings of the token pairs as well. Thus, for
each target type, a collection of its contextual em-
beddings can be obtained, as well as a collection of
contextual embeddings of its aligned source tokens.
Vectors are normalized to satisfy the orthogonal
condition.

Motivated by the assumption that multiple senses
of a type can construct multiple distinct clusters
in its collection (Schuster et al., 2019), we derive
several sense-level (cluster-level) embeddings for
a type by averaging vectors in each cluster. This
splits the representations of multi-sense words and
helps the anchor-driven space mapping in a finer
resolution. To find clusters, we utilize k-means to
cluster contextual embeddings in the vector collec-
tion of each type, and adaptively find the optimal
k by an elbow-based method Satopaa et al. (2011).
Contextual vectors are only clustered in the tar-
get side to obtain sense-level embeddings, while
the aligned sense-level embeddings in the source
side can also be simultaneously derived because
embeddings have been already “linked” by Fast
Align. We next build a sense embedding matrix
Xs for the target language by putting the sense-
level embeddings in each column, and meanwhile
construct a column-wise aligned sense embedding
matrix Ys in the source side. Finally, we obtain
the optimal linear mapping Ŵ from Xs to Ys by
Equation 2. Pseudo code of transformation method
is in Appendix A.

https://github.com/fe1ixxu/ZeroShot-CrossLing-Parsing
https://github.com/fe1ixxu/ZeroShot-CrossLing-Parsing
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(a) (b)

Figure 2: (a) Spanish vectors (purple arrows) cannot
well fit to English vectors (pink arrows) by a linear
transformation because they gather in different degrees
of cones (different angles between vectors), where dash
lines are mapped vectors. (b) After iterative normal-
ization, Spanish and English vectors are uniformly dis-
tributed (same angles between vectors). They can be
perfectly fit after mapping now.

3.2 Anisotropy in Embedding Spaces

Our findings show that contextual embeddings al-
ways hold anisotropic property, i.e., they are not
uniformly distributed in the space and gather to-
ward a narrow range of orientations. Importantly,
degrees of anisotropy across languages are various,
which undermines the quality of cross-lingual map-
pings. A toy example of how the anisotropy affect
mappings is illustrated in Figure 2a. One metric for
anisotropy is to calculate the average cosine simi-
larity distance of randomly selected vectors. The
higher the distance is, the narrower directions vec-
tors point to. Note that the distance for an isotropic
space is 0. To mitigate this problem, we introduce
iterative normalization. For each token i, the em-
bedding vector xi is forced to be zero-mean firstly
in each iteration:

xi = xi −
1

N

N∑
i=1

xi (3)

and then normalize it to a fixed length:

xi =
xi
‖xi‖2

(4)

The two steps are repeated until convergence. N
is the total number of embeddings. The iterative
preprocessing enforces the space to be uniformally
distributed, and relative angles between vectors
across languages to be more similar (Figure 2b).

3.3 Zero-shot Transfer

A parser is first trained on a source language tree-
bank, where outputs of a frozen BERT are used as
embeddings. To apply the pre-trained parser to the

Figure 3: The workflow of how zero-shot transfer pro-
cesses in our model architecture.

target languages, we first replace the source BERT
with the target BERT. Then, iterative normalization
is operated to enforce contextual embeddings in a
near-isotropic space. At last, we map the embed-
dings to the source language space. Specifically,
for each target token i, its contextual representation
xi is mapped by Ŵxi. The processing of zero-shot
dependency parsing is visualized in Figure 3. Note
that the space of pre-trained model has already fit
to be near-isotropic by utilizing iterative normaliza-
tion during training.

4 Experiment

Our parser is the deep biaffine model from Dozat
and Manning (2016) where hyperparameters are
almost unchanged. The settings of all hyperparam-
eters are listed in Appendix B. English is set as the
source language and other languages are targets.
In our experiments, we select 6 target languages
from 4 language families for which we have off-
the-shelf monolingual pre-trained BERT models
(base-size). We train the parsing model only in the
English treebank, and directly evaluate zero-shot
transfer performance on the target languages.

4.1 Baseline

Aligned fastText: Our first baseline is multilin-
gual fastText aligned by the RCSLS method (Joulin
et al., 2018; Bojanowski et al., 2017) which is
straightforwardly employed to the embedding layer
for the corresponding language.



207

lang (treebank) en (ewt) es (gsd) pt (gsd) ro (rrt) pl (lfg) fi (tdt) el (gdt)
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

aligned fastText 88.55 86.36 73.57 65.13 72.41 60.69 60.27 46.79 75.88 59.48 62.32 40.78 71.51 61.46
mBERT uncased 93.45 91.52 82.11 72.51 80.89 68.90 72.08 56.91 85.27 69.76 72.76 49.64 81.72 68.35
mBERT cased 93.32 91.34 82.83 74.08 80.80 68.68 70.76 56.04 83.77 68.01 71.82 48.84 78.24 65.92

word-level 93.70 91.78 82.43 73.86 79.77 67.35 71.13 57.28 84.58 69.53 74.65 51.06 82.29 69.88
sense-level 82.55 73.92 80.34 67.80 71.46 57.57 84.71 69.56 74.81 51.14 82.33 70.10

word-level + IN 94.21 92.01 83.70 75.14 81.48 69.04 74.65 59.68 84.32 70.45 75.07 51.75 83.76 71.11
sense-level + IN 83.91 75.39 81.99 69.49 74.78 59.83 84.57 70.52 75.31 51.99 84.05 71.26

Table 1: UAS and LAS of zero-shot evaluation for various languages on test files. The highest scores are bolded
and the second highest scores are underlined. Language families are split by dash lines. lang = language, en =
English, es = Spanish, pt = Portuguese, ro = Romanian, pl = Polish, fi = Finnish, el = Greek.

(a) (b)

Figure 4: (a) Discrepancy of anisotropic degrees for all tested language pairs, where scores of anisotropic degree
are calculated by the mean cosine similarity between 1000 randomly selected vectors in their language spaces. (b)
The isotropic degrees basically decrease to 0 at the first iteration and converge afterwards.

mBERT: We compare our approach with both
uncased and cased version of mBERT. Outputs of
mBERT are directly used for the embedding layer.

4.2 Settings

Following the analysis that top layers of BERT
contain more semantic information (Jawahar et al.,
2019), our contextual representation are normal-
ized mean vector of the last 4 layers of BERT. The
parallel corpora used to extract contextual embed-
dings are obtained from ParaCrawl v6.0 3. For each
language pairs, we select 1M parallel sentences
whose length is shorter than 150. Since some noisy
alignments are produced during Fast Align, we only
take one-to-one token alignment into consideration.
The dataset used for cross-lingual dependency pars-
ing is the Universal Dependencies treebank v2.6 4

(Zeman et al., 2020).
We store up to 10K contextual vectors extracted

from BERT for non-OOV tokens 5. Vectors in the
collection of a target type are clustered to derive

3www.paracrawl.eu
4https://lindat.mff.cuni.cz/

repository/xmlui/handle/11234/1-3226
5We do not use the composition of subword vectors to

approximately represent OOV tokens, because our preliminary
results show this hurts the mapping.

sense-level embeddings only if the token occurs
more than 100 times. Otherwise, the representation
for the token is the basic word-level embedding,
i.e., the mean vector of its vector collection. Ex-
periments of word-level embedding alignment are
also conducted to compare with sense-level results.

4.3 Iterative Normalization Preprocessing

Forcing contextual embedding vectors in Xs and Ys
to be zero-mean is straightforward. Nevertheless,
it is difficult to look for the universal mean vector
of contextual embeddings when we train the En-
glish parser, because we do not have such an exact
mean vector for all possible contextual embeddings.
Thus, to successfully implement IN for pre-training
the parser, we calculate the approximate universal
mean vector by averaging all contextual vectors of
every occurrence of tokens from the given training
dataset in each iteration. IN runs for 5 iterations,
which is sufficient for convergence.

5 Discussion

5.1 Why Contextual Embedding Mapping?

Compare with Previous Methods: Overall re-
sults are shown in Table 1. In the first place, our
contextual-aware embedding mapping (row 4 - 7)

www.paracrawl.eu
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3226
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3226
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exceeds the aligned fastText (row 1) by a large mar-
gin. Moreover, our sense-level mapping without
IN preprocessing outperforms uncased and cased
mBERT by 0.67% and 1.42% on LAS on average,
and mapping with preprocessing further outper-
forms them by 2.07% and 2.82% on average.

Dictionary-free Mapping: Typically, aligned
embeddings take a static dictionary as reference
but high-quality manual dictionaries are still rare
(Ruder et al., 2019). Our mapping skips the word-
level alignment in dictionaries, and directly aligns
the embeddings from parallel corpora which offers
a large scope of token alignments.

Sense-level Mapping: Different from static em-
beddings whose words only have one unique repre-
sentation, our contextual embeddings also take ad-
vantage of multiple representations for multi-sense
words to improve the quality of anchor-driven map-
ping. In Table 1, the performance of sense-level
mapping always surpasses word-level mapping.

5.2 Effect of Iterative Normalization

Figure 4a illustrates the various degrees of
anisotropy among different language pairs. As we
expect, the anisotropic degree for English (pink,
right) is basically constant, but there is large dis-
crepancy between other target languages (blue,
left). After IN preprocessing, all language spaces
are approximately isotropic, where their scores of
anisotropy dramatically reduce near to zero. One
example of how the anisotropic degree drops down
in each iteration of IN for the Spanish-English pair
is illustrated in Figure 4b. IN assists the aligned em-
beddings in building more similar relative angles
across embeddings in different language spaces.
As shown in Table 1, this preprocessing improves
an absolute gain of 1.37% for word-level mapping
and 1.40% for sense-level mapping on average.

6 Conclusion

We proposed a linear, dictionary-free and sense-
level contextual mapping approach by exploiting
parallel corpus which has shown promising results
and substantial improvement compared with mul-
tilingual fastText and mBERT in the zero-shot de-
pendency parsing task. We also revealed that vari-
ous degrees of anisotropy hurts the performance of
mapping, and introduced iterative normalization to
alleviate it by enforcing contextual embeddings to

be uniformly distributed, which also has indicated
the benefits of isotropy.
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Östling, Lilja Øvrelid, Şaziye Betül Özateş, Arzu-
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A Pseudo Code of Contextual
Embedding Transformation

Pseudo Code is shown in Alogirthm 1.

B Hyperparamters

Here we list all hyperparamters for our pre-trained
parser in Table 2.

Hyperparameters Value
Batch size 128

Arc representation dim 500
Tag representation dim 100

Dropout 0.3
LSTM hidden size 500

LSTM # layers 3
Pos tag embedding dim 100

Grad norm 5
# epochs 200
Patience 25

Optimizer Dense Sparse ADAM
Learning rate 0.0008

Encoding Layer Bi-LSTM

Table 2: Hyperparameters for deep biaffine dependency
parser training.

C pre-trained Monolingual BERTs

In Table 3, we list the names of pre-trained mono-
lingual BERTs from huggingface 6 that we used in
our experiments.

Language Model name
mbert uncased bert-base-multilingual-uncased

mbert cased bert-base-multilingual-cased
en bert-base-uncased
es dccuchile/bert-base-spanish-wwm-uncased
pt neuralmind/bert-base-portuguese-cased
ro dumitrescustefan/bert-base-romanian-uncased-v1
pl dkleczek/bert-base-polish-uncased-v1
fi bert-base-finnish-uncased-v1
el nlpaueb/bert-base-greek-uncased-v1

Table 3: Names of Pre-trained BERT models.

6https://huggingface.co/models

https://huggingface.co/models


213

Algorithm 1 Contextual Embedding Transformation
Require: Target Corpus X , source Corpus Y , target pre-trained BERT Bx, source pre-trained BERT By , where X is the

translation corpus of Y

1: function CONTEXTUAL-TRANSFORMATION(X , Y , Bx, By)
2: # Part 1: Collect embeddings
3: I ← FAST-ALIGN(X , Y) . I is an index-aligned corpus, where each line is composed of index pairs of aligned tokens

for each parallel sentence.
4: Initialize C ← Empty Hash Map
5: for index i in LENGTH(X ) do . number of sentences in the corpus
6: X ← X [i], Y ← Y[i], I ← I[i]
7: EX ← Bx(X) . Contextual embeddings of tokens:
8: EY ← By(Y )
9: for index j in LENGTH(X) do . number of tokens in the sentence

10: x← X[j], ex ← EX [j]
11: ey ← EY [I(j)] . Find the aligned embedding by looking at I , where I(j) is the index of aligned source token.
12: C[x].append((ex, ey))
13: end for
14: end for
15:
16: # Part 2: Obtain aligned sense-level embeddings
17: Initialize Empty matrix Xs, Ys

18: for target type x in C.keys() do
19: cx← all target embeddings ex in C[x]
20: cy ← all target embeddings ey in C[x]
21: k ← ELBOW-BASED(cx) . Find optimal number of clusters
22: for Subcluster cxi in K-MEANS(k, cx) do
23: Get subcluster cyi due to aligned pair ((ex, ey)) in C[x]
24: meanx ← mean vector of cxi

25: meany ← mean vector of cyi
26: Put meanx in Xs as a column
27: Put meany in Ys as a column
28: end for
29: end for
30:
31: # Part 3: Derive embedding transformation
32: UΣV T = svd(Y XT )

33: Ŵ = UV T

34: return Ŵ
35: end function


