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Abstract

Imagine you are in a supermarket. You have
two bananas in your basket and want to buy
four apples. How many fruits do you have
in total? This seemingly straightforward qu-
estion can be challenging for data-driven lan-
guage models, even if trained at scale. Ho-
wever, we would expect such generic langu-
age models to possess some mathematical abi-
lities in addition to typical linguistic compe-
tence. Towards this goal, we investigate if a
commonly used language model, BERT, po-
ssesses such mathematical abilities and, if so,
to what degree. For that, we fine-tune BERT
on a popular dataset for word math problems,
AQuA-RAT, and conduct several tests to un-
derstand learned representations better.
Since we teach models trained on natural lan-
guage to do formal mathematics, we hypothe-
size that such models would benefit from tra-
ining on semi-formal steps that explain how
math results are derived. To better accommo-
date such training, we also propose new pre-
text tasks for learning mathematical rules. We
call them (Neighbor) Reasoning Order Predic-
tion (ROP or NROP). With this new model,
we achieve significantly better outcomes than
data-driven baselines and even on-par with
more tailored models. We also show how to
reduce positional bias in such models.

1 Introduction

Automatically solving math word problems has a
long history dating back to the middle sixties (Bo-
brow, 1964). Early approaches were rule-based
matching systems that solve the problem symbo-
lically. Even though there are some impressive
symbolic systems that operate in a relatively nar-
row domain, the inability to successfully scale them
up is sometimes presented as a critique of the good-
old-fashioned AI, or GOFAI (Dreyfus et al., 1992).

∗Authors have contributed equally.

One issue is to create a formalism that covers all
the aspects needed to solve these problems. On the
other hand, deep learning (LeCun et al., 2015) aims
to develop artificial general intelligence that scales
better to various problems.

However, despite many successes in computer vi-
sion and natural language processing (Devlin et al.,
2018; He et al., 2016; Krizhevsky et al., 2012; Lan
et al., 2019; Mikolov et al., 2013), data-driven me-
thods evade our dream of building a system with
basic, every-day, mathematical skills. As large-
scale natural language models become more com-
mon (Devlin et al., 2018; Brown et al., 2020), we
would expect them to also reason mathematically.

Since natural language understanding also invo-
lves symbolic manipulation (Liang, 2016), we treat
mathematical reasoning as a language understan-
ding and revisit the data-driven paradigm. For that,
we rely on a recent language model, BERT (De-
vlin et al., 2019), and challenge it with math word
problems (Ling et al., 2017). Even though such
language models have initially shown promising
results, more recent investigation shows they may
rely on various biases in their predictions (Hen-
dricks et al., 2018; Brown et al., 2020; Bhardwaj
et al., 2020; Kurita et al., 2019). Here, we also
follow that line of investigation and show these mo-
dels can answer correctly without an understanding
of the rationale behind it.

Furthermore, as directly predicting answers to
math problems often requires multiple steps of re-
asoning, we show that we can improve BERT’s
generalization by exposing it to rationales (Ling
et al., 2017; Hendricks et al., 2016; Lei et al., 2016).
These are, however, only used during training simi-
larly to a teacher that shows a student a justification
for each answer. But then, the student is evaluated
only on the ability to answer these questions du-
ring the college exam correctly with no access to
rationales. Finally, to learn a better representation
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Figure 1: BERT (right) and our novel extension (left). We use
shared architecture but we separate question tokens (green
blocks) from rationales (blue blocks) using different segment
and positional embeddings. We show all three losses. MLM
predicts masked tokens (depicted here as PrQ,k). We use ROP
or NROP to predict if the ordering of rationale steps is correct.
For question-answering, we fine-tune the whole model with a
classification layer using softmax. We use the embedding that
corresponds to the [CLS] token as the input representation.

from rationales and to improve the generalization
even further, we introduce novel pretext tasks and
corresponding losses, which we name (Neighbor)
Reasoning Order Prediction (ROP or NROP). We
also show that permutation invariant losses can lead
to less biased representations. With that, we out-
perform other data-driven baselines, and are even
on-par with methods that are more tailored to math-
world problems and the AQuA-RAT dataset.

2 Methods

We use the following methods, each initialized with
BERT-base pre-trained on Wikipedia and Books
Corpus (Devlin et al., 2018; Zhu et al., 2015). Note
that, in fine-tuning they all have the same number
of parameters.
1) BERT-base. We fine-tune BERT to predict the
correct answer and show its transfer to math word
problems.
2) BERT-AQuA. We use the MLM loss on the
AQuA-RAT questions before training to predict
correct answer.
3) BERT-AQuA-RAT. We use the MLM loss on
the AQuA-RAT questions and rationales and show
if we can inject knowledge from rationales into
BERT.
4) BERT-(N)ROP. We use the MLM loss and the
novel (N)ROP loss for coherence prediction (defi-
ned later) and show if we can improve the results
by focusing the model on rationales.

Later in this paper, we propose permutation in-
variant losses that additionally reduce positional
biases of the BERT-base model, and can work with
all the pretext tasks described above.

Figure 2: ROP or NROP with positive (left) and negative
(right) labels. We randomly swap two rationales and classify
if that change has happened.

2.1 Architectures, pretext tasks and losses

We base our architecture on BERT (Devlin et al.,
2019) that has 12 transformer blocks (Vaswani
et al., 2017). As the core, we use the standard confi-
guration described in (Devlin et al., 2019). We use
three self-supervised losses. One is the standard
Masked Language Modelling (MLM) but extended
to work on rationales. Other two are our new losses,
(Neighbour) Reasoning Order Prediction (ROP or
NROP). Figure 1 shows two variants of our models.
Note that, during fine-tuning, rationales and all the
self-supervised losses are discarded.
MLM is the Masked Language Modelling (Devlin
et al., 2019). We randomly mask 15% of the input
tokens by a special token [MASK]. The objective
of this loss is to predict the masked token using its
context casted as a classification problem over the
tokenizer vocabulary. Loss is calculated only on
masked tokens. We extend this loss to rationales.
First, we randomly choose whether we mask a qu-
estion or rationale. Next, we follow the procedure
above applied to either a question or rationale. Ho-
wever, to encourage binding between questions and
rationales, we use the whole context for the pre-
dictions. Interestingly, there are parallels between
masking numbers and solving mathematical equ-
ations, where it can be seen as solving the equation
with unknown. For example, 2 + [MASK] = 4
becomes 2 + x = 4. As a consequence, models
during training organically deal with mathematical
calculations without defining a specific loss for ma-
thematics allowing soft transitions between natural
and more formal languages.
ROP is our novel coherence loss. Since rationa-
les are sequences of consecutive reasoning steps,
the order of the execution is critical as shown in
Figure 2. Following this intuition, we introduce
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Reasoning Order Prediction (ROP) that predicts
whether the order of the rationale steps is prese-
rved. Hence it encourages the network to pay more
attention to rationales. The loss is similar to Sen-
tence Order Prediction (SOP) (Lan et al., 2019),
but ours is focused on learning reasoning steps.
NROP is an extension of ROP where only conse-
cutive rationale steps are swapped making the pre-
diction (swap or no swap) task more challenging
and, hence, it can arguably lead to a better repre-
sentation as understanding the correct ordering is
more nuanced. Indeed, we observe that our models
trained with NROP correctly predict if swap has
occurred in about 75% cases, while with ROP in
about 78% cases (both on the validation set). This
indeed, confirms our hypothesis that NROP task is
more challenging than ROP.

3 Results

Dataset. We use AQuA-RAT (Ling et al., 2017). It
has about 100k crowd-sourced math questions with
five candidate answers (one is correct). Each qu-
estion has a rationale – a step-by-step explanation
of how the answer is computed – that is only availa-
ble during training. At test time answer predictions
are based on questions. The train set has roughly
100k question-answer-rationale triples, while dev
and test about 250 question-answer pairs each.
Main results. Table 1 shows our main results. We
see that our method is the state-of-the-art among
the models with minimal inductive biases and is
very competitive to the other two models that are
more specific to handle word math problems (e.g.,
requires programs). Moreover, even though BERT
is already a stronger model than LSTM, it is better
to use its MLM pretext task and loss on the AQuA-
RAT questions (BERT-AQuA) or even better on
questions and rationales (BERT-AQuA-RAT). Ho-
wever, models with our novel coherence prediction
losses can better learn from rationales (BERT-ROP
and BERT-NROP).

Moreover, we observe a highly sensitive rela-
tionship between dev and test sets (Figure 3, left),
where small changes in the accuracies in the for-
mer set can lead to more dramatic changes at test
time. Indeed, the correlation of results between
both sets is only 0.082. As the validation set is qu-
ite small, we propose an extended dev consisting of
5000 randomly chosen samples from the training
set extended by the whole dev set. Although not
ideal, and the sensitive relationship is still present

Model Accuracy

Random chance 20.0%

LSTM (Ling et al., 2017) 20.8%

BERT-base (ours) 28.3(±2.0)%

BERT-AQUA (ours) 29.1(±1.7)%

BERT-AQuA-RAT (ours) 32.3(±1.8)%

BERT-ROP (ours) 35.4(±1.0)%

BERT-NROP (ours) 37.0(±1.1)%

AQuA-RAT (Ling et al., 2017) 36.4%

MathQA (Amini et al., 2019) 37.9%

Table 1: Comparison of data-driven (first six rows) with two
hybrid approaches that use stronger and hence more specific
inductive biases (last two rows). Standard deviation estimates
(over random initializations) is given in parentheses, where
we see our losses can reduce the variability slightly.

Figure 3: Accuracies for dev and test sets. Green lines show
the iteration that maximizes validation accuracy. The image
also shows the sensitivity of relationship between test and the
original (left) or our extended (right) validation set.

(Figure 3, right), we have increased the correlation
to 0.401. With such a new validation set, we report
37% test accuracy but we can also see that 40% is
within the reach (Figure 3, right).
Rationales. We hypothesize that rationales con-
tain information that is either missing or hard to
extract from questions. For instance, their structure
is different; they are more formal with emphasis
on the logical steps. However, testing that hypothe-
sis is non-trivial as there is a confounding factor –
adding more rationales results in more data. The-
refore, we artificially modify the dataset so that
both models (one trained only on questions, and
another one on questions and rationales) are tra-
ined on roughly the same number of data points.
For that, we have estimated that rationales have
1.7 times more tokens than questions. This means
that a question combined with rationale has around
3 times more tokens than just a question. If our
hypothesis is valid, training on 20% questions and
rationales should give better results than training
on 60% questions (counting the number of tokens).
We therefore created samples of respective sizes of
just questions and questions combined with ratio-
nales. We show our results in Figure 4. The results
suggest that adding more questions is insufficient
and only slightly improves the overall performance.
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Figure 4: Accuracy scores conditioned on the number of
tokens available for training. To support our argument that
training on rationales is qualitatively different than questions,
we align both together so that we have comparable number of
tokens in both cases. Plot shows the progression of the dataset
size. Starting with 650K of tokens - 20% dataset BERT-AQuA
and 6.66% for BERT-NROP and ending with 3.25M - 100% of
dataset for BERT-AQuA and 33.3% dataset for BERT-NROP.
This shows that training with rationales leads to a better
representation. Even better than training with more questions.

On the other hand, using rationales is more helpful.
Embeddings. To better understand the difference
between BERT and BERT+NROP, we analyze the-
irs embeddings. For our analysis, we sample 2500
questions with a single operator in rationales, and
next we visualise them with T-SNE (Van der Ma-
aten and Hinton, 2008). We show both in Figure 5.
We observe that BERT+NROP embeddings prese-
rve more information about different operators.
Permutation consistency. Random guessing on
AQuA-RAT yields 20%. With that in mind to se-
parate questions that were solved by chance, we
have constructed a new evaluation task – permuta-
tion consistency test – where each question gets 5
answers at different positions. Table 2 shows our
procedure. Here, models only score a single point
if they solve all 5 questions correctly. Hence, a
random chance is 0.032% in such experiments.

Table 3 shows our results. BERT+NROP solves
almost three times as many questions as BERT.
Additionally, further inspection shows that BERT
relies on choosing the answers that most stand out,
e.g., numbers ending with zeros or floats while
every other option is an integer. We didn’t observe
that simple patterns with BERT+NROP. Questions
solved by BERT+NROP usually contain one or
two operations and show that BERT+NROP better
understands the problem. Below, we exemplify two
math problems solved by both models.

Example of a problem solved by BERT+NROP: 8 man

work for 6 days to complete a work. How many men are

required to complete same work in 1/2 day?

Answers: A)93, B)94, C)95, D)96, E)97

Original question
How much is 27 / 3 A)13 B)9 C)3 D)12 E)17

Generated questions
How much is 27 / 3 A)9 B)13 C)3 D)12 E)17

How much is 27 / 3 A)13 B)9 C)3 D)12 E)17

How much is 27 / 3 A)13 B)3 C)9 D)12 E)17

How much is 27 / 3 A)13 B)12 C)3 D)9 E)17

How much is 27 / 3 A)13 B)17 C)3 D)12 E)9

Table 2: Our generation method for the permutation consi-
stency test. Models get a point only if they solve all them.

Correct Option: D

Example of a problem solved by BERT A ship went on a

voyage. After it had traveled 180 miles a plane started with

10 times the speed of the ship. Find the distance when they

meet from starting point.?

Answers: A)238, B)289, C)200, D)287, E)187

Correct Option: C

Model Score

Random chance 0.032%

BERT 4.33%

BERT+NROP 11.02%

BERT AUG 13.4%

BERT+NROP AUG 19.7%

BERT SEP-NC 15.0%

BERT+NROP SEP-NC 22.7%

BERT SEP-C 16.1%

BERT+NROP SEP-C 23.9%

Table 3: Our results for the permutation consistency test.

Drop from 37.0% to 11.02% (Table 3) suggests
that models rely strongly on the order of answers.
To reduce such a bias, we test several permutation
invariant losses.
1) AUG. We sample randomly 25 permutations of
all the possible answers and use them during tra-
ining. Original ordering is not used, so there is no
order bias. This is a data augmentation technique.
2) SEP-NC. The original models are trained on
a 5-class classification task, where we build the
representation by using questions and all the candi-
date answers, i.e., BERT(Q||P ). Here, || denotes
concatenation, Q is the question and P represents
the sequence of all answers. In SEP-NC, we block
the path between all the candidate answers and the
BERT-base. Next, we use a late-fusion to predict
if the given candidate answer matches with the
question. That is, we use the following formula-
tion f(BERT(Q)||BERT(C)), where C ∈ P is a
single candidate answer and f is a multi-layer per-
ception (with two layers). At test time, the model
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Figure 5: BERT and BERT+NROP embeddings. Colours represent different operators in rationales (T-SNE). BERT+NROP
embeddings better separate operators.

is prompted to score all five candidate answers and
select the one with the highest score. Appendix has
more information about this method.
3) SEP-C. As models trained with SEP-NC do not
have access to all the possible answers, their biases
to answer positions are significantly reduced. Ho-
wever, these models cannot compare each answer
to all other candidate answers. Here, we use the fol-
lowing formulation f(BERT(Q||P )||BERT(C))
to measure the compatibility of the input (question
Q and all the candidate answers P ) with the given
candidate answer C ∈ P . We also reset the po-
sitional encoding between every possible answer
in P . In such a way, we hypothesise the network
can learn a less biased representation, and on the
other hand, use relationship between the candidate
answers. Table 3 shows SEP-NC and SEP-C vastly
outperform the original model on the permutation
consistency test. Details are in the appendix.

SEP-NC and SEP-C improve permutation con-
sistency tests. Yet, they give similar results to ori-
ginal methods in accuracy measuring task. They
achieve respectively 33.5% (SEP-NC) and 35.4%
(SEP-C).
Questions difficulty. To better understand the mo-
dels’ performance, we check which questions are
difficult for the model. We categorize questions
by their difficulty for BERT-NROP and BERT. To
estimate a question’s difficulty, we have ranked the
candidate answers according to the model’s uncer-
tainties. For instance, if the correct answer has the
2nd largest probability, we assign to that question
difficulty two. With that, we group questions into
5 difficulty categories, from the easiest: D1, .., D5.

Manual inspection shows that for BERT+NROP:
D5 requires additional knowledge or implicitly de-
fined numbers (e.g., adding first 100 numbers), D4

requires geometry or non-linear equations and sys-
tems, D3 requires solving linear systems with a

few basic operations, D2 requires solving simple
equations, and D1 has one or two basic operations
with clearly written numbers. We show an example
from each group in the supplementary material. We
didn’t observe a similar pattern for BERT with the
exception of the easiest group D1 where the model
chooses the answer that is somewhat different from
other candidates. We provide an example of each
group in the supplementary materials.

Finally, we also compare the difficulty of qu-
estions with the difficulty perceived by humans.
For that, we have conducted a small-group human
study, where we have asked participants to solve
some AQuA-RAT questions and rate their difficulty.
We find a positive correlation between the difficulty
measured by our models (as described above) to
the difficulty judged by humans. We give more
details in the appendix.
Conclusions. We have investigated if BERT (De-
vlin et al., 2019) – a pre-trained, large language
model – can deal with mathematical reasoning. We
find that its representation is biased (Brown et al.,
2020; Bhardwaj et al., 2020; Kurita et al., 2019)
also in mathematics. We investigate and describe
that bias. Our novel pretext tasks and losses re-
duce that bias, but the network still finds shortcuts.
We hope our work will spark interest of the com-
munity in developing language models capable of
mathematical reasoning.
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Impact Statement

Our research follows the data-driven paradigm for
creating general-purpose language models with
some mathematical skills. We expect that mathe-
matically aware language models will broaden the
spectrum of topics they can understand, increasing
their reliability and making them more useful.

Improving mathematical abilities and coherence
in language models is likely to affect question-
answering or dialogue systems, search engines or
text summarization systems.

One considerable risk in developing language
models at scale is that they could use various worka-
rounds and biases to achieve their results. We have
shown that issues in the context of mathematical
reasoning. Such problems can become hazardous
when wrong numbers could lead to bad decisions.
Additionally, a person could easily fall into the fal-
lacy that the order of magnitude is correct even if
the answer is incorrect. As we showed, the model
can favour round numbers over the ones close to
the right answer. To mitigate the risk, we enco-
urage considering additional tests and investigating
the models more rigorously.
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A AQuA-RAT example
Question: A starts a business with Rs.40,000. After 2 months,
B joined him with Rs.60,000. C joined them after some more
time with Rs.120,000. At the end of the year, out of a total
profit of Rs.375,000, C gets Rs.150,000 as his share. How
many months after B joined the business, did C join?
Options: A) 30, B) 32, C) 35, D) 36, E) 40
Rationale:

Assume that C was there in the business for x months
A : B : C = 40000 ∗ 12 : 60000 ∗ 10 : 120000 ∗ x
= 40 ∗ 12 : 60 ∗ 10 : 120x = 40 : 5 ∗ 10 : 10x

= 8 : 10 : 2x
= 4 : 5 : x

C’s share = 375000 ∗ x/(9 + x) = 150000
=> 375x/(9 + x) = 150

=> 15x = 6(9 + x)
=> 5x = 18 + 2x

=> 3x = 18
=> x = 18/3 = 6

It means C was there in the business for 6 months. Given that
B joined the business after 2 months. Hence C joined after 4

months after B joined
Answer is B

Additional examples are in the supplementary
material.

B Input representation

All BERT variants use the representation that corre-
sponds to a special token [CLS] that we put at the
beginning of the whole input sequence consisting
of question tokens followed by rationale tokens,
and in the downstream, question-answering task,
rationale tokens are replaced by the answer options.
With that, the classification uses the contextual em-
bedding of [CLS] that captures the entire input.
MLM classifies over the entire vocabulary of possi-
ble words while the other two losses use a binary
cross-entropy loss for the predictions.

C Training protocol

We train all our architectures on AQuA-RAT using
the following training phases. In all cases, we cho-
ose our best model based on the performance on
the validation set (dev set), and report the final
performance on the test set.

Pre-training. Each model is pre-trained on a
large corpus of texts written in natural language
sampled from English Wikipedia and BooksCor-
pus (Devlin et al., 2018; Zhu et al., 2015). We
use this as the base (BERT-base) model that is also
used in all other variants of BERT. In practice, we
initialize all the models with the weights using the
HuggingFace library (Wolf et al., 2019) and don’t
keep final layer for fine-tuning. Our model there-
fore has the same number of weights as BERT-base.

Self-supervision. Here, we use our newly intro-
duced losses, ROP and NROP, where our models
use questions and possibly rationales from the
AQuA-RAT dataset. Both questions and rationales
use the same word embeddings. However, to distin-
guish between both modalities we use two segment
embeddings. The first one for all the question to-
kens, and the second one for all the rationale tokens.
That is, the segment embedding is shared among
all the question tokens, and separately among all
the rationale tokens. We use dynamic masking (Liu
et al., 2019). Here, tokens are randomly masked
for each batch. We naturally extend this approach
to other losses that we use in this phase. That is,
ROP and NROP negative examples are randomly
recreated every k epochs, where k = 2 in our case.

Fine-tuning is the last training phase. Here, once
our models have learnt the representation during
the self-supervised phase, we tune such a represen-
tation to the question-answering downstream task.
In this task, our input consists of question tokens
and possible answer options. There are five such
options that comes with the dataset. Like other
methods, we tread this as a five-class classification
task where the classification head is added on top
of the final embedding of the input. We consider
the embedding corresponding to the first (from the
left) [CLS] token as such the final representation.

D Implementation details

In our experiments, we use four TITAN V GPUs.
We use a multi-gpu setup. In the pre-training phase,
we use batch size equals to four for each GPU de-
vice. Therefore the effective batch size equals to
sixteen. We use the learning rate 5 · 10−5 and tra-
ined the models for 24 epochs. In the fine-tuning
phase, we use early stopping criteria, based on the
accuracy score on the validation set. We use the fol-
lowing criteria. If the model does not improve the
performance in 15 consecutive epochs, we stop tra-
ining, and evaluate a model that yields the highest
validation performance. We use ADAM optimizer
with learning rate 10−5 and gradient clipping that
sets the maximal gradient’s norm to one. All our
settings use the same hyper-parameters but they
differ due to the random initialization of our self-
supervised networks (during the self-supervised tra-
ining phase) and the classification networks (during
the fine-tuning phase). Self-supervision phase ta-
kes around 4 days on 4 GPUs, whereas fine-tuning
takes 8 hours on a single GPU.
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E Permutation invariant methods

In the main paper, we have shown that typical mo-
dels can use positional biases in achieving answers.
This results in a low permutation consistency score
(Table 3 in the main paper). To handle that issue,
we have defined extra variants that do not use posi-
tional encodings for the answer options and instead
they rely on the retrieval mechanics where input
representations are matched against the candidate
answers. Here, we describe two such variants.

E.1 Original methods
Original models create an embedding of a sentence
extended by possible questions. This embedding
is then transformed by a linear layer to predict the
correct answer. That is,

o1 = f1(BERT(Q||P ))

where o1 is a 5-dimensional vector with probabi-
lities for each possible answer, Q is a question, P
are all possible answers, || represents concatena-
tion, f1 is a single fully connected layer from 768-
dimensional space to 5-dimensional space with the
softmax activation. BERT is a BERT-base sen-
tence embedding. The same approach is used for
BERT+(N)ROP.

E.2 SEP-NC
In SEP-NC and SEP-C, we use separate embed-
dings for a question and SEParate embedding for a
candidate answer. They differ, however, in the fact
that SEP-C has access to all five possible answers,
while SEP-NC has access only to one prompted
candidate answer. Therefore NC stands for ńo can-
didates", while C stands for ćandidates".

We train the SEP-NC model on a binary clas-
sification task to predict whether each candidate
answer C is correct. The method produces two
embeddings, one for question and another one for
a candidate answer C ∈ P , and next concatenates
them. That is,

o2 = f2(BERT(Q)||BERT(C))

where o2 is an estimated probability that C is a
correct answer, P is the sequence of all possible
answers, f2 is a single fully connected layer from
1536 (768 * 2) dimensional space to 1-dimensional
space with the sigmoid activation. Note that, all
candidate answers are independent of the question.
That is, BERT cannot use positional biases in deri-
ving an answer. At test time, the model is prompted

to score all five candidate answers and select the
one with the highest score. We naturally extended
that approach to BERT+ROP and BERT+NROP.
Table 3 (the main paper) shows a significant impro-
vement over the baseline method.

E.3 SEP-C

SEP-NC method could be too restrictive as it does
not allow the model to compare against different
answers. Therefore, we propose another approach
that 1) alleviate the issue with positional biases, but
2) can compare between different answer options.
We call that approach SEP-C.

Originally for each token, a positional encoding
is assigned based on its position. In SEP-C, be-
fore assigning positional encoding, we artificially
reset the position at the beginning of each possi-
ble answer. For example, if possible answers are:
a)10, b)20, c)30, d)40, e)50 they are changed into
10; 20; 30; 40; 50 and after the tokenization, we get
the following list of tokens: [’1’,’0’, ’;’, ’2’, ’0’,
’;’, ’3’, ’0’, ’;’ ,’4’, ’0’, ’;’, ’5’, ’0’]. Modified po-
sitional encoding will assign value based only on
the relative position to the beginning of the current
possible answer. Therefore, in the example above,
each ’0’ will receive the same positional encoding,
and ’1’ will get the same positional encoding as
’2’, ’3’, and so on.

Formally, we have

o3 = f3(BERT(Q||Pm)||BERT(C))

where Pm is the sequence of all the possible an-
swers but modified as explained above. Note that,
in this formulation, the model can use the informa-
tion for all the possible answer options, but their
order is not taken into account. Table 3 (the main
paper) shows a significant improvement over the
baseline method.

E.4 Human study

We carried an initial human study on the group of
16 volunteers from University of Warsaw. Volun-
teers were Mathematics and Informatics students
from the Faculty of Mathematics, Informatics and
Mechanics. We asked the participants to solve
questions sampled from the AQuA-RAT dataset.
We are interested in the relation between BERTs
difficulty, BERT+NROP difficulty and human dif-
ficulty. Therefore to have a full image we would
like to have 2 questions for each question difficulty
pair, for example (D1 BERT, D2: BERT+NROP)
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Figure 6: The average human-judged difficulty for questions
from each model difficulty group.

. However, that would give 25 combinations and
50 questions if we wanted to have 2 questions per
combination. That would be too much to ask from
a volunteer participant. In order to reduce the num-
ber of questions, we group our 5 difficulty groups
into 3 categories as follows.

• Easy: D1

• Medium: D2 and D3 combined

• Hard: D4 and D5 combined

Because of that we have only 9 possible com-
binations and by sampling 2 questions from each
combination we still have a feasible number of
questions (18).

Apart from solving the question, we asked to rate
question difficulty on a scale from 1 (the simplest)
to 10 (the most challenging). In general, our parti-
cipants were knowledgeable in math and solved all
the questions correctly. With that grouping we now

The average human-rated difficulty for each of
9 combinations is presented in Figure 6. The re-
sults show that the progression of human difficulty
is correlated with the difficulty judged by the mo-
dels. Additionally, the human difficulty seems to
be more sensitive to BERT+NROP difficulty than
to BERTs. In other words, increasing the diffi-
culty of BERT+NROP will increase the human dif-
ficulty more than the increasing difficulty of BERT.
This observation fits our previous observations that
BERT+NROP solves the most straightforward qu-
estions while BERT is looking for some leaks, like
looking for the roundest answer.

dataset A B C D E

train 21.03% 22% 22.87% 19.95% 14.15%

dev 27.17% 25.98% 16.93% 19.69% 10.24$

test 24.80% 22.83% 20.87% 18.11% 13.38%

Table 4: Answer distribution in each dataset.

F Distribution of answers

Table 4 shows the distribution of the answers in
the AQuA-RAT (Ling et al., 2017) dataset in all
the folds. Imbalance in distributions could poten-
tially be used by models to find easy, shortcut solu-
tions. For instance, a constant classifier that always
choose the first answer (A) gets about 24% test
accuracy.

G Negative results

While developing our self-supervised losses, we
have developed another loss that turned out to be
unhelpful. Here, we describe that loss as some
its parts could be insightful for others. (N)ROP
is a local loss focusing on rationales but not on
the connections between questions and rationales.
For that, we have developed Question Rationale
Alignment (QRA). QRA changes a rationale with
50% probability to a randomly chosen rationale
from the current batch. However, simply changing
rationales would result in trivially solvable task in
most cases. All the model would have to do is
check whether numbers in the rationale and the qu-
estion match. Hence, we mask number tokens with
a special token QRA alone or QRA combined with
NROP does not improve the results, it gives it gives
33.9% accuracy on the test in the best combination,
so we didn’t include it in the main results.

H Related work

We are inspired by the following research.
BERTology. We use BERT (Devlin et al., 2019)
as our core. It uses Transformers (Vaswani et al.,
2017); powerful neural architectures that applies a
trainable function to all the pairs of input embed-
dings. It also uses masking that covers a fraction
of the input words and requires the network to pre-
dict the hidden words based on the context. With
both ingredients, the meaning (representation) of a
word emerges from the “company it keeps” (Firth,
1961). In practice, often, such representations are
pre-trained on large textual corpora with no need
for annotations, and next fine-tuned on the down-
stream tasks. BERT’s strong performance has re-
sulted in the Cambrian explosion of studies of the
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inner working mechanisms and various modifica-
tions (Clark et al., 2019; de Vries et al., 2019; Lan
et al., 2019; Liu et al., 2019; Sanh et al., 2019; Rad-
ford et al.; Raffel et al., 2019; Yang et al., 2019).
Finally, our Reasoning Order Prediction (ROP) is
inspired by Sentence Order Prediction (SOP) (Lan
et al., 2019). However, ROP works with multiple
rationale sentences, where by changing the order
we force the network to understand the consecutive
“reasoning” steps. We have also further extended
ROP to a more difficult Neighbor Reasoning Order
Prediction (NROP).
Language and math. Development psychologi-
sts (Cocking et al., 1988; Mestre, 2013) often argue
for the necessity of learning languages and point
out that those with limited language skills are in
danger of under-performing at school. Moreover, it
is also believed that language studies involve disci-
pline in learning and manipulating formal structu-
res, and thus may promote the development of the
organization of thoughts also required in mathema-
tical reasoning. The similarity between linguistic
competence and mathematics is especially pronoun-
ced when solving math word problems (Fuchs et al.,
2006, 2008; Wang et al., 2016). Interestingly, atten-
tion appears to be crucial in problem solving (Fuchs
et al., 2006; Pasolunghi et al., 1999). (Crossley
et al., 2017) show that language skills are corre-
lated with the performance in mathematical tests
also among the university students. In particular,
they pointed out that ability to use complex syn-
tactic structures and cohesion devices are linked
to better scores in a blended discrete mathematics
course. We take inspiration from all such studies
and decide to build our mathematical model based
on language models.
Math word problems. Solving math word pro-
blems is a significant component of the mathema-
tics curriculum and is taught very early, thoroughly,
and universally. Such the emphasize is often moti-
vated by that solving them is among the best pre-
dictors of employability, and is considered as a
distinct area of mathematical competence (Mur-
nane et al., 2001; Wang et al., 2016). Since so-
lving such problems is unique to human intelli-
gence, math word problems are also interesting for
the AI community. This results in various appro-
aches, more traditional symbolic methods, neural
networks, and neuro-symbolic methods. (Bobrow,
1964; Charniak, 1969; Shi et al., 2015; Ling et al.,
2017; Amini et al., 2019; Parisotto et al., 2016;

Wang et al., 2018; Zou and Lu, 2019) as well as
datasets (Ling et al., 2017; Amini et al., 2019; Hu-
ang et al., 2016; Saxton et al., 2019) An interesting
approach is proposed in (Rabe et al., 2020), in
which authors use self-supervised tasks on parsing
trees of formal expressions. This approach requires
syntax trees, and hence we would have to use an
external parser. As our goal was to make an end to
end model, we did not experiment with it, but there
are no obstacles against using it in symbiosis with
our methods. (Geva et al., 2020) also proposes
self-supervised training for improving mathema-
tical abilities in language models. We, however,
focused on a data-driven approach to exclude cho-
ice biases and therefore restricted ourselves from
using generated data.
Rationales. In human communication, we always
expect there is some rationale behind each decision.
Hence, we set the same expectations to our artificial
agents. Symbolic or semi-symbolic architectures
naturally produce justifications as a sequence of for-
mulas in some formal language (Lane et al., 2005;
Core et al., 2006; Lomas et al., 2012; Johnson;
Liang, 2016; Malinowski and Fritz, 2014). Ideally,
such rationales would also be shared and commu-
nicated to us through some language. The latter
approach is especially appealing when applied to
black-box neural networks. For instance, (Hen-
dricks et al., 2016) propose a system that classifies
the input image as well as it produces a textual
explanation on “why this class is suitable for the
given image”.

Systems that produce explanations either in the
form of the language (Ling et al., 2017; Hendricks
et al., 2016), attention (Bahdanau et al., 2014; Mnih
et al., 2014; Gulcehre et al., 2016; Malinowski
et al., 2018; Xu and Saenko, 2016; Yang et al.,
2016), phrase selection (Lei et al., 2016), distilla-
tion into programs (Hajipour et al., 2020), or deci-
sion trees (Alaniz and Akata, 2019) can potentially
increase the transparency of the black-box neural
networks. However, most of these approaches cre-
ate rationales posthoc where the justification is con-
ditioned on answers or by querying the network. In
our work, we use rationales to learn a finer represen-
tation that can potentially lead to better decisions.
In this sense, our technique is conceptually closer
to methods that derive answers based on the pro-
gram and use rationales paired with questions to
guide the program induction process (Ling et al.,
2017).


