
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 4921–4933

August 1–6, 2021. ©2021 Association for Computational Linguistics

4921

WARP: Word-level Adversarial ReProgramming

Karen Hambardzumyan1, Hrant Khachatrian1,2, Jonathan May3

1YerevaNN, 2Yerevan State University,
3Information Sciences Institute, University of Southern California

mahnerak@yerevann.com, hrant@yerevann.com, jonmay@isi.edu

Abstract

Transfer learning from pretrained language
models recently became the dominant ap-
proach for solving many NLP tasks. A com-
mon approach to transfer learning for multiple
tasks that maximize parameter sharing trains
one or more task-specific layers on top of the
language model. In this paper, we present an
alternative approach based on adversarial re-
programming, which extends earlier work on
automatic prompt generation. Adversarial re-
programming attempts to learn task-specific
word embeddings that, when concatenated to
the input text, instruct the language model to
solve the specified task. Using up to 25K
trainable parameters per task, this approach
outperforms all existing methods with up to
25M trainable parameters on the public leader-
board of the GLUE benchmark. Our method,
initialized with task-specific human-readable
prompts, also works in a few-shot setting, out-
performing GPT-3 on two SuperGLUE tasks
with just 32 training samples.

1 Introduction

Language model pretraining has had a tremendous
impact on solving many natural language process-
ing tasks (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2019; Liu et al., 2019). The most
popular two approaches take a pretrained model
and use a straightforward supervised learning ob-
jective. In the first approach, the parameters of
the language model are frozen and a task-specific
head is trained on top of them (Peters et al., 2018).
The second approach fine-tunes all model param-
eters (Radford et al., 2018). The latter can some-
times yield better results (Peters et al., 2019),
while the first one usually offers better stability for
smaller datasets. The approach based on frozen
features does not require storing task-specific lan-
guage models.

A recent alternative is based on so called
adapters (Houlsby et al., 2019; Pfeiffer et al.,
2021), a technique that adds new weights at every
layer of the pretrained language model while the
original parameters are kept frozen. This enables
a smaller set of task-specific parameters while
achieving results comparable to the fine-tuning ap-
proach.

Another approach of leveraging pretrained lan-
guage models for downstream tasks, introduced
by Radford et al. (2019), provides “task descrip-
tions” without using any labeled examples. GPT-
3 (Brown et al., 2020) demonstrates impressive
few-shot learning performance with priming: by
providing the language model a few inputs and
outputs (“analogies”) as a context. The language
model contextually “learns” from these examples
and outputs the answer with a single forward pass
without any trainable parameters. These methods,
however, require huge language models (1.5B and
175B parameters, respectively).

The success of task reformulation-based ap-
proaches suggest that language models are capa-
ble of solving various natural language processing
tasks given a well-crafted prompt. We hypothesize
that it is possible to find such prompts. In other
words, we can discover extra tokens that, when
added to the input, can exploit language model ca-
pabilities better than the manually-designed ones.

In this paper, we introduce a novel technique to
find optimal prompts. We call our method WARP:
Word-level Adversarial RePrograming1. The
method is inspired by adversarial reprogramming
(Elsayed et al., 2019) — a method of adding ad-
versarial perturbations to an input image that re-
programs a pretrained neural network to perform
classification on a task other than the one it was
originally trained for.

1Our implementation is publicly available at: https:
//github.com/YerevaNN/WARP

https://github.com/YerevaNN/WARP
https://github.com/YerevaNN/WARP


4922

Figure 1: An example of an adversarial program that
causes Inception V3 ImageNet model to function as an
MNIST classifier, from Elsayed et al. (2019)

We show that our method, using up to 25K
trainable parameters per task, achieves 81.6 test
score on the GLUE Leaderboard, outperforming
all the other submissions that use up to three or-
ders of magnitude more trainable parameters. We
show that it is possible to inject knowledge into
WARP models using manually designed initializa-
tion of the prompt, which is especially useful on
tasks with a small number of examples. More-
over, WARP shows impressive few-shot perfor-
mance on two tasks from the SuperGLUE bench-
mark with just 32 examples, outperforming GPT-3
results. Finally, we discuss the advantages of our
method in real-life applications.

2 Related Work

2.1 Towards Fewer Trainable Parameters

Jiao et al. (2020) show that knowledge distillation
may help reduce the size of their model 7.5 times
while almost preserving the performance, but fine-
tuning such models still requires storage of sepa-
rate task-specific models. As seen in Section 6,
this approach does not scale when we want to ap-
ply it to many tasks at once.

Another approach, called Adapters (Houlsby
et al., 2019; Pfeiffer et al., 2021), introduces new
task-specific parameters that are added at every
layer of the Transformer network. Only these
newly initialized weights are trained, which allows
separation of general and task-specific knowl-
edge. In contrast, our method does not inject task-
specific knowledge inside the body of the pre-
trained language model. Instead, it focuses on
learning task-specific input-level prompts.

A_lovely_film_...

A_pretentious_mess_...

Two_hours_of_junk.

Exceeds_expectations.

[M
AS
K]

[M
AS
K]

[M
AS
K]

[M
AS
K]

13%

79%

90%

12%

87%

21%

10%

88%

negative positive

Figure 2: WARP adds a few trainable embeddings
around the input, which causes the masked language
model to predict the sentiment of the sentence.

2.2 Task Reformulation
In GPT-2, Radford et al. (2019) introduce a com-
pletely unsupervised way for transferring knowl-
edge to downstream tasks by reformulating vari-
ous natural language understanding tasks into lan-
guage modeling problems. This approach does
not make use of the available training examples.
Brown et al. (2020) demonstrate an effective few-
shot transfer by reformulating downstream tasks
into input-output analogies in the context without
a need for further fine-tuning. Nonetheless, the
number of training examples is limited to the con-
text size and is not scalable to a traditional super-
vised learning scenario.

Schick and Schütze (2021b) show the effec-
tiveness of reformulating a number of tasks into
Cloze-style tasks by fine-tuning masked language
models (Devlin et al., 2019). The method,
called Pattern Exploited Training (PET), addition-
ally uses training samples and performs few-shot
learning even without huge models such as GPT-3.

Our method is also based on masked lan-
guage models, but unlike PET, we focus on find-
ing the best prompt using the training examples.
This eliminates the need for manually-designed
prompts, however, our method can also benefit
from similar prior knowledge about the task by
careful initialization of the prompts.

2.3 Adversarial Reprogramming
Adversarial Reprogramming (Elsayed et al., 2019)
demonstrates the reprogramming of pretrained Im-
ageNet classifiers by adding input-level adversar-
ial perturbations to make them perform well on
MNIST and CIFAR-10 image classification tasks.
The adversarial perturbation is designed to be im-
age padding added to the original input, as illus-



4923

Transformer / Encoder

[CLS] [P_1] _Oil _prices _rise [P_2] [MASK] _Oil _prices _fall _back [P_5] [SEP]

MLM Head
w/o decoder

[V_1]
entailment

[V_2]
contradiction

[V_3]
neutral

Loss

[P_4][P_3]

Figure 3: Illustration of WARP. The prompt tokens [P 1], [P 2], ..., [P N] are inserted before, between, and
after the sentences. Only the prompt and class embeddings are trainable (colored in green). The Masked Language
Modeling Head is applied without the decoder; instead, the matrix of [V 1], [V 2], ..., [V N] is applied as a
linear layer. Finally, a regular task-specific loss is computed on the resulting logits.

trated in Figure 1. Then the perturbation param-
eter is trained to optimize the target classification
task objective using the annotated image data.

While in the case of image classification it is not
obvious why adversarial reprogramming should
ever work, e.g. why a network trained on Ima-
geNet should have the capacity to solve MNIST
when surrounded with a particular bitmap, for
NLP tasks, there is more intuition. Many NLP
tasks can be reformulated as language models, a
shared space for both program and data.

Adversarial reprogramming has been adapted to
text classification tasks with LSTM networks in
(Neekhara et al., 2019). They operate in the vo-
cabulary space and reprogram a model trained for
one task to perform another task. More recently,
AutoPrompt (Shin et al., 2020a) attempts to find
prompts for large language models automatically
without adding any parameters to the model. Un-
like AutoPrompt, we perform gradient-based opti-
mization in the space of word embeddings which
gives our model more degrees of freedom and
eventually better performance on the downstream
tasks (Section 6.2).

In a more general sense, guiding an NLP model
with special tokens appended to the input is an
even older idea. In particular, multilingual neu-
ral machine translation models use special tokens
in the input to control the target language (Ha
et al., 2016; Johnson et al., 2017) or politeness

of the translation (Sennrich et al., 2016). Another
method to reprogram a BERT-based model is pro-
posed by Artetxe et al. (2020), where a model
tuned on an English version of a particular task
is transformed to work in another language by
changing only the embedding matrices.

In parallel work, Li and Liang (2021) propose
a similar method and successfully apply it on
two text generation tasks. Apart from the dif-
ferent types of tasks and our characterization of
the task as a form of Adversarial Reprogramming,
the main difference between their approach and
ours is that they use an additional parameteriza-
tion trick to stabilize the training.

3 WARP

We follow a setup similar to Elsayed et al. (2019)
with some NLP-specific modifications depicted in
Figure 2.

Our goal is to find the best prompt that will
make a pretrained masked language model pre-
dict the desired answer (verbalizer token) for a
training example’s masked token2. We search
for such prompts in the (continuous) embedding
space. In other words, we want to find parameters
Θ = {ΘP ,ΘV } for prompt and verbalizer embed-

2This approach can be easily extended to autoregressive
language modeling.



4924

dings, respectively, such that:

Θ∗ = arg max
Θ

(− logPΘ(y|x))

and the probabilities are given by:

PΘ(y|x) =
exp ΘV

y f(TΘP (x))∑
i∈C

exp ΘV
i f(TΘP (x))

where TΘP (x) is the template that inserts the
prompt embeddings ΘP into predefined positions,
C is the set of classes, and f(x) is the masked
language model output (without the last decoder
layer, which is simply the transposed word embed-
ding matrix). Both ΘP and ΘV are vectors in the
same embeddings space as the word embeddings.

In Figure 2, the template TΘP (x) prepends ΘP
1

and appends ΘP
2 , ΘP

3 , ΘP
4 parameters to the word

embeddings and uses ΘV
+ and ΘV

− to calculate the
probabilities on the masked token position for pos-
itive and negative classes.

3.1 Method
Similar to Elsayed et al. (2019), we employ
stochastic gradient descent to find the best adver-
sarial perturbation on the text that will minimize
the task objective. First, we insert special prompt
tokens [P 1], [P 2], ... [P K] and an additional
[MASK] token into the input sequence. These to-
kens might be placed before or after the sentences,
depending on the prompt template.

We set the optimization objective to a cross-
entropy loss between the head output of the
masked language model and the verbalizer tokens
[V 1], [V 2], ..., [V C] for classes 1...C ac-
cordingly.

The only trainable parameters are the word em-
beddings for [P 1], ..., [P K] and [V 1], ...
[V C]. In case we want to train models for mul-
tiple tasks, these are the only task-specific param-
eters we need to store. The entire “body” of the
large language model (all attention layers, feed-
forward layers, and all other word embeddings)
remains untouched.

Note that, unlike most adversarial attacks, we
do not update the embeddings of the original to-
kens of the input. This follows the intuition from
Elsayed et al. (2019), when the pixels of MNIST
or CIFAR images are left untouched, and only
padding pixels are updated.

We train these parameters by minimizing the
loss on the training set of the downstream task.

3.2 Implementation Details

WARP is implemented in the AllenNLP frame-
work. For all the GLUE benchmark tasks we
use the roberta-large (Liu et al., 2019)
model from the PyTorch implementation of
huggingface transformers (Wolf et al.,
2020) library. For the few-shot experiments, we
use albert-xxlarge-v2 in order to directly
compare to iPET (Schick and Schütze, 2021b).
For the GLUE and SuperGLUE tasks we use
dataset loaders and metrics implementations from
the huggingface datasets library.

The prompt tokens are initialized either with
word embeddings of [MASK] or similar to the
vectors from the word embedding layer. For the
answer prompts, we use the masked language
model head, which usually consists of a feed-
forward network and a decoder on top of it, where
the weights of the decoder are shared with the
word embeddings used for the input. We calcu-
late the softmax over the verbalizer tokens [V 1],
... [V C].

We choose the Adam optimizer with a slanted
triangular schedule for the learning rate with 6%
warm-up steps and train for 10-20 epochs on each
task. Each batch consists of examples containing
at most 1024 tokens and 8 examples.

In order to speed up the training, we disable the
dropout of the pretrained language model. All the
experiments are performed on two Titan Vs and
two RTX 3080 GPUs, with mixed precision train-
ing. In practice, WARP is 2.5-3 times faster than
regular fine-tuning and 2 times slower than frozen-
features experiments in terms of epoch duration
with the same batch sizes.

Details about the hyperparameters can be found
in the Supplementary material.

4 Experiments on GLUE

Following prior work, we evaluate our method on
the GLUE Benchmark (Wang et al., 2019b), which
consists of 9 natural language understanding tasks.
Generally, we perform single-task WARP training,
with early stopping and model selection using the
original validation sets, if not stated otherwise.

4.1 Tasks

Almost all the tasks from the GLUE Benchmark
are either sentence classification or sentence pair
classification tasks, so WARP requires very few
modifications to adapt to each of the tasks.



4925

MNLI QNLI QQP RTE SST MRPC CoLA STS-B AVG #
Human Baselines 92.0 / 92.8 91.2 59.5 / 80.4 93.6 97.8 86.3 / 80.8 66.4 92.7 / 92.6 87.1

DeBERT3 91.9 / 91.6 99.2 76.2 / 90.8 93.2 97.5 94.0 / 92.0 71.5 92.9 / 92.6 90.8 3 · 109

RoBERTa 90.8 / 90.2 95.4 74.3 / 90.2 88.2 96.7 92.3 / 89.8 67.8 92.2 / 91.9 88.1 355 · 106

BERTlarge 86.7 / 85.9 92.7 72.1 / 89.3 70.1 94.9 89.3 / 85.4 60.5 87.6 / 86.5 80.5 355 · 106

BERTbase 84.6 / 83.4 90.5 71.2 / 89.2 66.4 93.5 88.9 / 84.8 52.1 87.1 / 85.8 78.3 110 · 106

TinyBERT6 84.6 / 83.2 90.4 71.6 / 89.1 70.0 93.1 87.3 / 82.6 51.1 85.0 / 83.7 78.1 67 · 106

TinyBERT4 82.5 / 81.8 87.7 71.3 / 89.2 66.6 92.6 86.4 / 81.2 44.1 81.9 / 80.4 75.9 15 · 106

ELECTRAsmall 81.6 / 81.2 88.3 70.4 / 88.0 63.6 91.1 89.0 / 84.9 55.6 85.6 / 84.6 77.4 14 · 106

Adapters (BERT) 85.4 / 85.0 92.4 71.5 / 89.4 71.6 94.3 88.7 / 84.3 59.2 87.3 / 86.1 80.2 1.2 · 106

WARP (RoBERTa) 88.0 / 88.2 93.5 68.6 / 87.7 84.3 96.3 88.2 / 83.9 53.9 89.5 / 88.8 81.6 < 25K

Table 1: Test set results on GLUE Benchmark. The results are obtained from the GLUE Evaluation server. The
subscript next to TinyBERT corresponds to the number of layers in the model. WARP for RTE, STS-B and MRPC
are intialized from the MNLI parameters. Results for WNLI are not shown, although they are counted in the
averaged GLUE score (AVG column). The last column # shows the number of trainable parameters. WARP’s
average performance is higher than all models with up to three orders of magnitude more trainable parameters.
Fully fine-tuned RoBERTa and the current state-of-the-art method (DeBERT) score higher by 6.5 and 9.2 points,
respectively.

SST-2 (Sentence Sentiment Treebank, Socher
et al., 2013) is a single sentence binary classifica-
tion task. For the prompt, we put a [MASK] token
after the sentence, and the trainable prompt tokens
are both appended and prepended to the sentence.

CoLA (Corpus of Linguistic Acceptability,
Warstadt et al., 2019) is a single sentence classifi-
cation task as well, so we treat both the same way
with the only difference that as a validation metric
we use accuracy for SST-2, and Matthew’s corre-
lation for CoLA.

MNLI (MultiNLI, Multi-Genre Natural Lan-
guage Inference, Williams et al., 2018), QNLI
(Question Natural Language Inference, Rajpurkar
et al., 2016) and RTE (Recognizing Textual En-
tailment, Dagan et al., 2006; Bar Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009) are sentence pair classification tasks. Sim-
ilar to Schick and Schütze (2021a), we may have
prompt tokens before, after and between the two
sentences, but the [MASK] token is always put be-
tween the sentences. For MNLI, we use matched
accuracy as a validation metric and use the same
model for the mismatched version. In our few-shot
attempt for the RTE task, we use a different train-
ing and evaluation setup discussed in Section 5.2.
QQP (Quora Question Pairs4) and MRPC (Mi-
crosoft Research Paraphrase Corpus, Dolan and
Brockett, 2005) follow the same prompt pattern as
NLI tasks. As a validation metric F1 score is used.

STS-B (Semantic Textual Similarity Bench-

4https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

mark, Cer et al., 2017), unlike the other tasks in
the benchmark, is formulated as a regression task.
The prompt pattern is the same, but instead of in-
troducing new embeddings for [V 1], [V 2],
..., [V C] verbalizer tokens, we add a regres-
sion head to the last hidden state of MLM head
and use Mean Squares Error optimization objec-
tive, similar to (Liu et al., 2019). Pearson Cor-
relation is used as the validation metric. During
inference, we clip the scores within [1, 5].

We follow Liu et al. and train models for
MRPC, STS-B, and RTE tasks initialized with the
parameters from the best MNLI model but do not
apply any task-specific tricks to WNLI (Winograd
Schema Challenge NLI, Levesque et al., 2011) and
always predict the majority label.

4.2 Results

Table 1 presents the results on the test set obtained
from the GLUE evaluation server. Besides our
best WARP models, we also include the human
baselines, current state-of-the-art model (He et al.,
2020), the regular fine-tuned pretrained model we
use, and also include relatively small language
models, including (Jiao et al., 2020), (Clark et al.,
2020), (Houlsby et al., 2019).

With the GLUE Score, WARP outperforms all
the models that train less than 25 million parame-
ters on the leaderboard. We explain the relatively
strong WARP results on textual entailment tasks
by the easier reformulation of such tasks. Like-
wise, we explain the relatively weak performance
on CoLA by the difficulties of reformulating the



4926

MNLI QNLI QQP RTE SST MRPC CoLA STS-B
AVG #

train size 392702 104743 363846 2490 67349 3668 8551 5749

Fine-Tuning 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9 355 · 106

Adapters 90.4 94.7 88.5 83.4 96.3 92.9 67.4 92.5 88.3 3 · 106

Linear Classifier 64.2 78.1 74.9 59.2 88.4 82.5 48.9 71.8 71.0 ≤ 3072

WARP0 70.9 78.8 77.1 72.2 89.8 83.8 32.8 73.8 72.4 ≤ 3072

WARP1 83.9 87.6 81.6 72.6 93.8 84.7 46.1 80.4 78.8 ≤ 4096

WARP2 85.4 88.0 81.5 69.7 94.3 85.3 54.4 80.8 79.9 ≤ 5120

WARP4 86.9 92.4 83.1 68.2 95.9 85.0 56.0 75.5 80.4 ≤ 7168

WARP8 87.6 93.0 83.8 72.9 95.4 85.6 57.4 81.0 82.1 < 11K

WARPinit 86.8 90.4 83.6 80.1 96.0 86.0 51.7 86.9 82.7 < 11K

WARP20 88.2 93.5 84.5 75.8 96.0 90.8 60.6 88.6 84.8 < 25K

WARPMNLI 86.3 91.2 91.0 86.4 < 25K

Table 2: Dev set results on GLUE tasks. The last column shows the number of trainable parameters only. WARPi

corresponds to WARP training with prompt consisting of i prompt tokens. WARPMNLI corresponds to WARP
training initialized with the best MNLI parameters. All the models are based on pretrained roberta-large,
and for Adapters and WARP-based approaches require to store 355 · 106 frozen parameters shared across all
the GLUE tasks. We show the primary validation metric for each task, described at Subsection 4.1. The AVG
column shows the average of shown metrics and is not comparable to the Test server GLUE Score. The number
of parameters for WARP methods may vary because of a difference in the number of classes. Underlined numbers
correspond to our GLUE submission.

task into a Cloze task.
To further analyze WARP, we conduct several

experiments and focus on dev set results. In order
to directly compare WARP with existing methods,
we report in Table 2 different methods that use
RoBERTa, including fine-tuning, linear classifiers
on top, AutoPrompt, and Adapters.5 For WARP
experiments, we compare performance with dif-
ferent numbers of prompt tokens.

The WARP0 model does not introduce any
prompt parameters. The only difference between
WARP0 and Linear Classifier is that for WARP0,
[MASK] is added to the input of each sample, and
we get sentence representations from the MLM
head at the masked position. By contrast, in the
case of the Linear Classifier, we use the average of
non-special token embeddings as sentence repre-
sentations. As we can see, pooling with MLM is
significantly better.

Table 2 shows that, as we decrease the num-
ber of trainable prompt parameters, the perfor-
mance decreases, but the model still works. Simi-
lar behavior was observed by Elsayed et al. (2019)
in experiments with different padding parameter
sizes. However, in contrast to WARP, the num-
ber of trainable parameters in that work are much
greater than the size of the input.

An important benefit of using WARP is that

5Unlike in Table 2, Adapters in Table 1 are built on
bert-large-uncased model.

it can be initialized with manual prompts. In
addition to the regular models where we initial-
ize with [MASK] tokens, we performed a run
on the GLUE datasets with the same prompt
[CLS] “S1”? [MASK]. “S2”! [SEP] for all the tasks

(without S2 for single-sentence tasks). We denote
these results as WARPinit in Table 2. WARPinit
outperforms WARP8 on tasks with relatively few
training examples — RTE, MRPC and STS-
B, which indicates its potential in the low-data
regime.

5 Few-Shot Experiments

The fact that WARP can be initialized using man-
ually designed natural prompts suggests that we
can similarly benefit from such human attribution
similar to iPET (Schick and Schütze, 2021b), es-
pecially in scenarios with limited training data.

5.1 Setup

For our few-shot experiments we build WARP
on top of ALBERT (Lan et al., 2020), the
same pretrained model used by PET and iPET.
To initialize WARP prompts, we use the same
Prompt-Verbalizer Patterns (PVP) from Schick
and Schütze (2021b): the embeddings for [P 1],
[P 2]... [P N] are initialized with PVP’s
prompt token embeddings, and embeddings
for [V 1], [V 2]... [V C] are initialized
with verbalizer token embeddings for their corre-



4927

sponding classes. Unlike roberta-large, the
alberta-xxlarge-v2 uses word embeddings
of size 128 (8 times smaller than RoBERTa).

5.2 Tasks

In order to compare with GPT-3, PET, and iPET,
we use two tasks from FewGLUE (Schick and
Schütze, 2021b), which is a few-shot subset of the
SuperGLUE benchmark (Wang et al., 2019a) con-
sisting of 32 examples for each task. The dataset
also provides 20000 additional unlabeled exam-
ples, however, we do not make use of them and
work in a purely supervised setup.

CB: CommitmentBank (de Marneffe et al.,
2019) is a textual entailment task which we
treat like the other sentence pair classification
tasks. To initialize the prompt we use the
template [CLS] “h”? [MASK]. “p” [SEP] . We also
initialize [V 1], [V 2], [V 3] token embed-
dings with yes, no and maybe (respec-
tively for entailment, contradiction and
neutral).

RTE: Unlike experiments on the RTE task for
the full-sized training in the GLUE benchmark,
we do not initialize the model with vectors from
MNLI. Instead, the prompt is initialized exactly
the same way as in the CB task. The only differ-
ence is that we have only the two tokens [V 1]
and [V 2] initialized with yes and instead
(for entailment and not entailment, re-
spectively).

5.3 Model Selection

Although all trainable parameters are manually
initialized in this setup, different random seeds
can yield different results because of the order the
training examples appear during an epoch.

In the few-shot setup we cannot access the orig-
inal validation set. Thus, we disable early stopping
and simply pick the last checkpoint.

In order to find the best initial learning rate, we
conduct 20 runs of WARP with the same learn-
ing rate each time by randomly choosing 16 train-
ing examples and taking the rest for a development
set. We repeat this for all candidate learning rates
and choose the one with the best average valida-
tion performance across all the random seeds.

Finally, in order to eliminate the effect of dif-
ferent random seeds, we build an ensemble model
from 20 WARP runs using simple majority vote.

Model CB RTE
F1 / Acc. Acc.

de
v

GPT-3 Small 26.1 / 42.9 52.3
GPT-3 Med 40.4 / 58.9 48.4
GPT-3 57.2 / 82.1 72.9
PET (ALBERT) 59.4 / 85.1 69.8
iPET (ALBERT) 92.4 / 92.9 74.0
WARPinit (ALBERT) 84.0 / 87.5 71.8

te
st

GPT-3 52.0 / 75.6 69.0
PET (ALBERT) 60.2 / 87.2 67.2
iPET (ALBERT) 79.9 / 88.8 70.8
WARPinit (ALBERT) 70.2 / 82.4 69.1

Table 3: Results on SuperGLUE benchmark. The re-
sults for the test set are obtained from SuperGLUE
evaluation server. We only show systems performing
in a similar few-shot training setup using 32 examples.

5.4 Results

As seen in Table 3, WARP outperforms PET and
GPT-3 baselines, but stays behind iPET on both
tasks. GPT-3 has 170B parameters, but none of
them is being trained for the given tasks. PET and
iPET have 255M parameters, and all of them are
trained for these tasks. Additionally, they lever-
age unlabeled examples using distillation. WARP
has roughly the same 255M parameters, but only
1024 of them are trained for any single model. An
ensemble of 20 WARP models has slightly more
than 20K trainable parameters.

6 Discussion

6.1 Interpreting tokens learned by WARP

WARP learns prompt embeddings in a continuous
space. In this section, we explore those embed-
dings by looking at the nearby token vectors. Ta-
ble 6 in the Supplementary material lists the clos-
est tokens (in terms of cosine similarity) to the
learned embeddings. All GLUE tasks are initial-
ized with [MASK] token, except for RTE, MRPC,
and STS-B, which are initialized from the pre-
trained MNLI model. The prompt tokens of the
solutions for those three tasks are quite close to
the ones from the MNLI solution. We have seen
similar behavior on SuperGLUE experiments with
manual initializations. The solution for CoLA
(which is one of the worst-performing tasks) is
close to the initialized point.

We do not see any prompt tokens that are mean-
ingful in the context of the tasks. As expected,
the verbalized tokens are more interpretable. For



4928

101 102 103

Number of Training Instances

0.3

0.5

0.7

0.9
A

cc
ur

ac
y

WARP10

AutoPrompt
Fine-Tuning

WARPinit
Manual

Figure 4: The effect of the training data size for SST-2
task (dev set). Horizontal axis is the number of training
examples. Solid lines represent median over 10 runs,
and the error bars show minimum and maximum per-
formance. All methods use roberta-large model.
The results for AutoPrompt and fine-tuning are taken
from (Shin et al., 2020b)

.

example, the embedding for the “contradiction”
class of MNLI is close to the token “Unless”. The
embeddings for “negative” and “positive” classes
of SST-2 task are close to “defective” and “im-
portant”, respectively. Other verbalized tokens are
non-interpretable (e.g. “470” or word pieces with
non-Latin characters).

6.2 Comparison with AutoPrompt

AutoPrompt (Shin et al., 2020b) learns a prompt
for the given task in the finite space of vocabu-
lary tokens. Their best version uses 3 or 6 prompt
tokens and reaches 91.2% accuracy on the devel-
opment set of SST-2. The search space of WARP
is significantly larger, which allows WARP to get
better performance with just a single prompt token
(93.8%).

AutoPrompt does not achieve meaningful re-
sults on RTE or CB tasks. WARP succeeds on
both without manual initialization. Moreover,
with manual initialization, WARP gets good per-
formance on both tasks even with just 32 examples
(Table 3).

Figure 4 shows the dependence of the accu-
racy on SST-2 development set from the number
of training samples. Both WARP and AutoPrompt
use 10 prompt tokens. With a few hundred train-
ing samples or fewer, the difference between the
two algorithms is not significant. WARP starts to
perform better with more training samples.

Approach # of parameters to store
Linear probing M + ECN
Full fine-tuning MN
Single layer M + NE(E + C)
TinyBERT M0N
Adapters M + NEE′

WARP M + NE(C + K)

Table 4: The number of parameters to be stored to serve
N text classification tasks with at most C classes each,
using a pretrained language model with M parameters.
E is the dimension of embeddings (1024 in the case of
RoBERTa). In TinyBERT, M0 can be up to 10 times
less than M . In Adapters, E′ is roughly equal to E,
as the number of layers to which adapters are attached
roughly compensates the smaller size of the bottleneck
layer. In WARP, K is the number of prompts (usually
fewer than 10).

Shin et al. (2020b) include results with a manu-
ally designed prompt6 which performs pretty well
(shown as a dashed line). We also compare with
the manually initialized7 version of WARP, which
performs very well with just 100 examples.

6.3 Real-world applications

The importance of NLP systems like WARP can
be demonstrated by the following application.
Suppose we want to build a system that needs to
serve N >> 1 classification tasks simultaneously.
Let the number of classes for each task be bounded
by C. The system can be based on a large pre-
trained language model with M parameters, using
word embedding size E. How many parameters
should the system store in the device memory to
be able to serve all N tasks?

If we take the approach with frozen features, we
can reuse M parameters for all tasks and store ad-
ditional ECN task-specific parameters. This is
optimal in terms of storage but will not perform
well. The other extreme is to fine-tune the whole
model for each task and store at least MN pa-
rameters. Table 4 shows the trade-offs offered by
the other solutions. Methods like TinyBERT de-
crease the number of parameters from MN by
only M . WARP, on the other hand, needs to store
only M + NE(C + K) parameters, where K is
the number of trainable prompt tokens.

6 SENT. this movie was . as a prompt, and “terrible”
and “fantastic” as verbalizer tokens

7 SENT, and finally, the movie overall was very !
as a prompt, and “good” and “bad” as verbalizer tokens



4929

In practice, WARP additionally allows perform-
ing inference on inputs for different tasks in paral-
lel, using samples of multiple tasks in the same
batch. Every input sentence can be concatenated
with task-specific pretrained prompts in advance.
Then, the forward pass of the network is identical
for all tasks. The final task-specific linear layers
can be concatenated to form a single large linear
layer with at most NC output neurons.

This approach can be especially useful in the
systems that provide machine learning models as
a service. By storing one copy of a pretrained lan-
guage model, it is possible to serve a large number
of user-specific models in parallel with little over-
head.

7 Conclusion

In this paper we have proposed an alternative way
to transfer knowledge from large pretrained lan-
guage models to downstream tasks by appending
carefully optimized embeddings to the input text.
The method outperforms existing methods with
significantly more trainable parameters on GLUE
benchmark tasks and shows an impressive perfor-
mance in a few-shot setting on two SuperGLUE
tasks. On the sentiment analysis task, the perfor-
mance is comparable to the fully fine-tuned lan-
guage models. This method can save a lot of
storage in software applications designed to serve
large numbers of sentence classification tasks.

Acknowledgments

This work is based in part on research sponsored
by Air Force Research Laboratory (AFRL) under
agreement number FA8750-19-1-1000. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwith-
standing any copyright notation therein. The
views and conclusions contained herein are those
of the authors and should not be interpreted as
necessarily representing the official policies or en-
dorsements, either expressed or implied, of Air
Force Laboratory, DARPA or the U.S. Govern-
ment.

The work was supported by the RA Science
Committee, in the frames of the research project
No. 20TTAT-AIa024. Most experiments were per-
formed on GPUs donated by NVIDIA.

References
Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.

2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623–4637, Online. Asso-
ciation for Computational Linguistics.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second PASCAL recognising
textual entailment challenge.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth PASCAL recognizing textual entailment chal-
lenge.

T. Brown, B. Mann, Nick Ryder, Melanie Subbiah,
J. Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, G. Krüger,
T. Henighan, R. Child, Aditya Ramesh, D. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, E. Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, J. Clark, Christopher Berner, Sam
McCandlish, A. Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot
learners. ArXiv, abs/2005.14165.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancou-
ver, Canada. Association for Computational Lin-
guistics.

Kevin Clark, Minh-Thang Luong, Quoc Le, and
Christopher D. Manning. 2020. Pre-training trans-
formers as energy-based cloze models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
285–294, Online. Association for Computational
Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifica-
tion, and recognising tectual entailment, pages 177–
190. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/2020.emnlp-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.20
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


4930

William B Dolan and Chris Brockett. 2005. Auto-
matically constructing a corpus of sentential para-
phrases. In Proceedings of the International Work-
shop on Paraphrasing.

Gamaleldin F. Elsayed, Ian Goodfellow, and Jascha
Sohl-Dickstein. 2019. Adversarial reprogramming
of neural networks. In International Conference on
Learning Representations.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pages 1–9. Association for Com-
putational Linguistics.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine transla-
tion with universal encoder and decoder.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. DeBERTa: Decoding-
enhanced bert with disentangled attention. arXiv
preprint arXiv:2006.03654.

N. Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and S. Gelly. 2019.
Parameter-efficient transfer learning for nlp. In
ICML.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Interna-
tional Conference on Learning Representations.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
Tuning: Optimizing continuous prompts for genera-
tion. arXiv preprint arXiv:2101.00190.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv, abs/1907.11692.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The CommitmentBank: In-
vestigating projection in naturally occurring dis-
course. Proceedings of Sinn und Bedeutung,
23(2):107–124.

Paarth Neekhara, Shehzeen Hussain, Shlomo Dubnov,
and Farinaz Koushanfar. 2019. Adversarial repro-
gramming of text classification neural networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5216–
5225, Hong Kong, China. Association for Computa-
tional Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 7–14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 487–503, Online. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the

https://openreview.net/forum?id=Syx_Ss05tm
https://openreview.net/forum?id=Syx_Ss05tm
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.18653/v1/D19-1525
https://doi.org/10.18653/v1/D19-1525
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://www.aclweb.org/anthology/2021.eacl-main.39
https://www.aclweb.org/anthology/2021.eacl-main.39
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/2021.eacl-main.20
https://www.aclweb.org/anthology/2021.eacl-main.20
https://www.aclweb.org/anthology/2021.eacl-main.20


4931

16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 255–269, Online. Association for Com-
putational Linguistics.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also
few-shot learners. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2339–2352, Online. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40, San
Diego, California. Association for Computational
Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020a. Auto-
Prompt: Eliciting Knowledge from Language Mod-
els with Automatically Generated Prompts. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 4222–4235, Online. Association for Compu-
tational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020b. Auto-
Prompt: Eliciting Knowledge from Language Mod-
els with Automatically Generated Prompts. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 4222–4235, Online. Association for Compu-
tational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of EMNLP, pages 1631–1642.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019a. SuperGLUE:
A stickier benchmark for general-purpose language
understanding systems. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judg-
ments. Transactions of the Association for Compu-
tational Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. As-
sociation for Computational Linguistics.

https://www.aclweb.org/anthology/2021.naacl-main.185
https://www.aclweb.org/anthology/2021.naacl-main.185
https://www.aclweb.org/anthology/2021.naacl-main.185
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/N16-1005
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


4932

A Hyperparameters

For each of the tasks, we performed hyperparam-
eter search in the following space:

• Learning rate is chosen from the set
{10−2, 3 · 10−3, 10−3, 3 · 10−4, 10−4, 3 ·
10−5},

• Number of epochs is chosen as either 10
or 20. This determines the behavior of the
slanted triangular learning rate scheduler.

• Initialization is performed either with the
embedding of the [MASK] token, or ran-
domly initialized from a normal distribution,
with the mean and variance taken from the
matrix of RoBERTa’s word embeddings.

The hyperparameter search took roughly 4 days
on two Titan V GPUs. The final choices for each
task are shown in Table 5. Initialization with
[MASK] performed better than the random initial-
ization.

We disable all dropouts inside Transformer. We
use huggingface implementation of AdamW op-
timizer with weight decay disabled. The gradi-
ent is normalized to the value 1.0. For the batch
sampling we use bucketing with padding noise of
0.1. In order to use the device memory more ef-
fectively, we also set maximum number of tokens
per batch to 2048. The maximum sequence length
is truncated to 512 tokens. We enable mixed preci-
sion and pad all sequence lengths to the multiples
of 8 for the effective usage of TensorCores8.

8https://docs.nvidia.com/deeplearning/performance/mixed-
precision-training/index.html

Task Learning rate Epochs Init.
MNLI 0.001 10 [MASK]
QNLI 0.001 10 [MASK]
QQP 0.0003 20 [MASK]
RTE 0.001 20 MNLI

SST-2 0.003 20 [MASK]
MRPC 0.001 20 MNLI
CoLA 0.001 20 [MASK]
STS-B 0.001 20 MNLI

Table 5: Hyperparameters of our best-performing mod-
els. [MASK] means the prompts are intialized with the
word embedding of same token, and MNLI means the
prompt is initialized with the prompts of out best MNLI
run.

B Learned Tokens

Table 6 lists the closest vocabulary words to the
learned embeddings. Most tasks have two input
sentences, so the prompts consist of three parts:
one is added before the first sentence, the sec-
ond one is added between the sentences and the
third one is appended next to the second sentence.
For the single-sentence tasks, the second and third
parts of the prompt are simply concatenated. Each
task has trainable verbalizer tokens, one per output
class.

The prompts of RTE, MRPC and STS-B are
pretty similar to MNLI’s prompts, as the mod-
els for these tasks were initialized from pretrained
MNLI models. The other tasks were initialized
with [MASK] tokens. The final model for CoLA
didn’t move too far from its initialization.



4933

MNLI

Prompts
before A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A- Tomorrow Ale .aGj *.

between MUCH irin [/ a (@ [MASK] dL aHJ E [MASK] aKH

after <!– informing inyl entit dim

Verbalizers
entailment categories

neutral gomery

contradiction Unless

QNLI
Prompts

before *. neigh [MASK] U {{
between aG—aG— [MASK] olitan pronouns [MASK] [MASK] [MASK]

@@@@ [MASK] Choi [MASK]

after

Verbalizers entailment VIDE

not entailment 470

QQP
Prompts

before resembling swarm Paramount Calm Membership

between derive rics [MASK] alias iary [MASK] omnip [MASK] [MASK]
[MASK] sham

after [MASK] forb [MASK] Firefly THEY

Verbalizers not duplicate ende

duplicate sugg

RTE
Prompts

before A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A- Tomorrow ALE .aGj *.

between MUCH irin [/ a (@ [MASK] aHJ femin [MASK] aK

after ahiahi informing # entit OOOO

Verbalizers entailment e!

not entailment blames

SST-2
Prompts

before choes charms sorely ”... akijakij

between a afe Pae charred masked [MASK] Fall babys smartest ik /

after dL forums bio mang A+-

Verbalizers negative defective

positive important

MRPC
Prompts

before A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A- Tomorrow rison .aGj *.

between MUCH irin [/ a jay [MASK] dL aHJ femin [MASK] .?

after > informing # entit OOOO

Verbalizers entailment categories

neutral gomery

CoLA
Prompts

before [MASK] [MASK] [MASK] [MASK] [MASK]

between [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
[MASK] [MASK] [MASK] [MASK]

after [MASK] [MASK] [MASK] [MASK] [MASK]

Verbalizers unacceptable additionally

acceptable o

STS-B Prompts
before A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A- Tomorrow Ale .aGj

[MASK]

between Kers irin [/ a (@ [MASK] dL AhAHAhAH femin [MASK] aKH

after A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A- repertoire inyl Idea dim

Verbalizers regression cH

Table 6: The closest words to the prompt and verbalizer token embeddings for the best model for each task. We
use cosine distance to measure the distance. [MASK] tokens highlighted in bold indicate the positions we use to
output the prediction.


