
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 4884–4896

August 1–6, 2021. ©2021 Association for Computational Linguistics

4884

Parameter-Efficient Transfer Learning with Diff Pruning

Demi Guo
Harvard University

dguo@college.harvard.edu

Alexander M. Rush
Cornell University
arush@cornell.edu

Yoon Kim
MIT CSAIL

MIT-IBM Watson AI
yoonkim@mit.edu

Abstract

The large size of pretrained networks makes
them difficult to deploy for multiple tasks in
storage-constrained settings. Diff pruning en-
ables parameter-efficient transfer learning that
scales well with new tasks. The approach
learns a task-specific “diff” vector that ex-
tends the original pretrained parameters. This
diff vector is adaptively pruned during train-
ing with a differentiable approximation to the
L0-norm penalty to encourage sparsity. As
the number of tasks increases, diff pruning re-
mains parameter-efficient, as it requires stor-
ing only a small diff vector for each task. Since
it does not require access to all tasks dur-
ing training, it is attractive in on-device de-
ployment settings where tasks arrive in stream
or even from different providers. Diff prun-
ing can match the performance of finetuned
baselines on the GLUE benchmark while only
modifying 0.5% of the pretrained model’s pa-
rameters per task and scales favorably in com-
parison to popular pruning approaches.

1 Introduction

Task-specific finetuning of pretrained deep net-
works is the dominant paradigm in contemporary
NLP, achieving state-of-the-art results across a
suite of natural language understanding tasks (De-
vlin et al., 2019; Liu et al., 2019c; Yang et al., 2019;
Lan et al., 2020). While straightforward and em-
pirically effective, this approach is difficult to scale
to multi-task, memory-constrained settings (e.g.
for on-device applications), as it requires shipping
and storing a full set of model parameters for each
task. Inasmuch as these models are learning gen-
eralizable, task-agnostic language representations
through self-supervised pretraining, finetuning the
entire model for each task seems especially profli-
gate.

Code: https://github.com/dguo98/DiffPruning

A popular approach to parameter-efficiency is
to learn smaller compressed models for each
task (Gordon et al., 2020; Sajjad et al., 2020; Zhao
et al., 2020; Sanh et al., 2020). Such approaches
face a steep sparsity/performance tradeoff and keep
a substantial amount of nonzero parameters per task
(e.g. 10%-30%). Multi-task learning and feature-
based transfer allow for more parameter-efficient
transfer learning per task (Liu et al., 2019b; Clark
et al., 2019; Stickland & Murray, 2019; Reimers &
Gurevych, 2019). These methods train a small num-
ber of additional parameters (e.g. a linear layer) on
top of a shared model. However, multi-task learn-
ing generally requires access to all tasks during
training to prevent catastrophic forgetting (French,
1999), while feature-based transfer learning (e.g.
based on task-agnostic sentence representations) is
typically outperformed by finetuning (Howard &
Ruder, 2018).

An appealing middle ground is to finetune an
extension of the base model for specific tasks. This
approach captures the training benefits of fine-
tuning while maintaining the task modularity of
feature-based transfer. For example, Adapters (Re-
buffi et al., 2018) use smaller, task-specific modules
that are inserted between layers of a model This
approach does not require access to all tasks during
training, targeting realistic settings where as new
tasks arrive in stream (Houlsby et al., 2019; Pfeiffer
et al., 2020a,b,c). Houlsby et al. (2019) find that
adapter layers can match the performance of fully
finetuned BERT on the GLUE benchmark while
requiring 3.6% additional parameters (on average)
per task.

Diff pruning is a new extension to pretrained
models with the goal of even more parameter-
efficient transfer learning. Instead of modifying
the architecture of the model, diff pruning extends
the base model through a task-specific difference
vector.

https://github.com/dguo98/DiffPruning


4885

In order to learn this vector, we reparameter-
ize the task-specific model parameters as θtask =
θpretrained + δtask, where the pretrained parameter
vector θpretrained is fixed and the task-specific diff
vector δtask is finetuned. The diff vector is regu-
larized with a differentiable approximation to the
L0-norm penalty (Louizos et al., 2018) to encour-
age sparsity.

Diff pruning can become extremely parameter-
efficient, as it only requires storing the nonzero
positions and weights of the diff vector for each
task. The cost of storing the shared pretrained
model remains constant and is amortized across
multiple tasks. On the GLUE benchmark (Wang
et al., 2019a), diff pruning can match the perfor-
mance of the fully finetuned BERT baselines while
finetuning only 0.5% of the pretrained parameters
per task. As the number of tasks increase, diff prun-
ing outperforms popular pruning-based methods in
amount of storage required.

2 Background: Transfer Learning

Transfer learning in NLP mostly uses a pretrain-
and-finetune paradigm, which initializes a subset
of the model parameters for all tasks from a pre-
trained model and then finetunes on a task-specific
objective. Pretraining objectives include context
prediction (Mikolov et al., 2013), autoencoding
(Dai & Le, 2015), machine translation (McCann
et al., 2017), and more recently, variants of lan-
guage modeling (Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2019) objectives.

Here we consider applying transfer learning to
multiple tasks. We consider a setting with a po-
tentially unknown set of tasks (which may arrive
in stream), where each task τ ∈ T has an asso-
ciated training set Dτ = {x(n)τ , y

(n)
τ }Nn=1. For all

tasks, the goal is to produce (possibly tied) model
parameters θτ to minimize the empirical risk,

min
θτ

1

N

N∑
n=1

C
(
fτ (x(n)τ ;θτ ), y(n)τ

)
+ λR(θτ )

where fτ (·;θτ ) is a parameterized function over
the input (e.g. a neural network), C(·, ·) is a loss
function (e.g. cross-entropy),1 and R(·) is an op-
tional regularizer with hyperparameter λ.

We can use the pretrain-finetune approach by
simply learning independent parameters for each

1While the loss function can be in principle task-specific,
in practice we use cross entropy for all tasks and hence omit
the subscript in C(·, ·).

task. However, the large size of pretrained models
makes this approach exceedingly parameter ineffi-
cient. For example, widely-adopted models such
as BERTBASE and BERTLARGE have 110M and
340M parameters respectively, while their contem-
poraries have parameter counts in the billions (Raf-
fel et al., 2020; Shoeybi et al., 2019; Rajbhandari
et al., 2019). Storing the fully finetuned models
therefore becomes difficult even for a moderate
number of tasks.2 A classic approach to tackling
this parameter-inefficiencyis to train a single shared
model (along with a task-specific output layer)
against multiple tasks through joint training (Caru-
ana, 1997). However, the usual formulation of
multi-task learning requires the set of tasks T to be
known in advance in order to prevent catastrophic
forgetting (French, 1999),3 making it unsuitable for
applications in which the set of tasks is unknown
or when tasks arrive in stream.

3 Diff Pruning
Diff pruning formulates task-specific finetuning as
learning a diff vector δτ that is added to the pre-
trained model parameters θ, which remain fixed.
We first reparameterize the task-specific model pa-
rameters,

θτ = θ + δτ ,

which results in the following empirical risk mini-
mization problem,

min
δτ

L(Dτ , fτ ,θ + δτ ) + λR(θ + δτ ),

where for brevity we define L(Dτ , fτ ,θτ ) as

L(Dτ , fτ ,θτ ) =
1

N

N∑
n=1

C
(
fτ (x(n)τ ;θτ ), y(n)τ

)
.

This trivial reparameterization shows that the cost
of storing the pretrained parameters θ is amortized
across tasks, and the only marginal cost for new
tasks is the diff vector. If we can regularize δτ
to be sparse such that ‖δτ‖0 � ‖θ‖0, then this
approach can become more parameter-efficient as

2An intriguing line of work suggests that large-scale lan-
guage models can be used without finetuning for a variety of
tasks if given the appropriate context (Radford et al., 2019;
Brown et al., 2020). While interesting, these models generally
underperform task-specific models and require billions of pa-
rameters, though recent work suggests that they can be made
substantially smaller (Schick & Schutze, 2020).

3However, work on continual learning mitigates these
issues to an extent (Shin et al., 2017; Lopez-Paz & Ranzato,
2017; Lee et al., 2017; Kirkpatrick et al., 2017).



4886

the number of tasks increases. We can specify this
goal with an L0-norm penalty on the diff vector,

R(θ + δτ ) = ‖δτ‖0 =

d∑
i=1

1{δτ,i 6= 0}.

3.1 Differentiable approximation to the
L0-norm

This regularizer is difficult to optimize as it is non-
differentiable. In order to approximate this L0 ob-
jective, we follow an approach for gradient-based
learning with L0 sparsity using a relaxed mask vec-
tor (Louizos et al., 2018). This approach involves
relaxing a binary vector into continuous space, and
then multiplying it with a dense weight vector to
determine how much of the weight vector is ap-
plied during training. After training, the mask is
made deterministic, and a large portion of the diff
vector is zero.4

To apply this method we first decompose δτ into
a binary mask vector multiplied with a dense vector,

δτ = zτ �wτ , zτ ∈ {0, 1}d,wτ ∈ Rd.

We now lower bound the true objective and op-
timize an expectation with respect to zτ , whose
distribution p(zτ ;ατ ) is initially Bernoulli with
introduced parameters ατ ,

min
ατ ,wτ

Ezτ∼p(zτ ;ατ )
[
L(Dτ , fτ ,θ + δτ ) + λ‖δτ‖0

]
.

This objective is still complicated by the discrete
nature of zτ ’s, but the expectation provides some
guidance for empirically effective relaxations. We
follow prior work (Louizos et al., 2018; Wang et al.,
2019b) and relax zτ into continuous space [0, 1]d

with a stretched Hard-Concrete distribution (Jang
et al., 2017; Maddison et al., 2017), which allows
for the use of pathwise gradient estimators. Specif-
ically, zτ is now defined to be a deterministic and
(sub)differentiable function of a sample u from a
uniform distribution,

u ∼ U(0,1),

sτ = σ (logu− log(1− u) + ατ ) ,

s̄τ = sτ × (r − l) + l,

zτ = min(1,max(0, s̄τ )).

Here l < 0 and r > 1 are two constants used
to stretch sτ into the interval (l, r)d before it is

4It is also possible to learn sparse diff vectors through other
penalties such as the L1-norm. We chose to work with the
relaxed L0-norm formulation as past work has shown that
SGD-based optimization works well in this setting.

clamped to [0, 1]d with the min(1,max(0, ·)) op-
eration. In this case we have a differentiable closed-
form expression for the expected L0-norm,

E [‖δτ‖0] =
d∑
i=1

σ

(
ατ,i − log

−l
r

)
.

Thus the final optimization problem is given by,

min
ατ ,wτ

Eu∼U [0,1] [L(Dτ , fτ ,θ + zτ �wτ )]

+λ
d∑
i=1

σ

(
ατ,i − log

−l
r

)
,

and we can now utilize pathwise gradient estima-
tors to optimize the first term with respect to ατ

since the expectation no longer depends on it.5 Af-
ter training we obtain the final diff vector δτ by
sampling u once to obtain zτ (which is not nec-
essarily a binary vector but has a significant num-
ber of dimensions equal to exactly zero due to the
clamping function), then setting δτ = zτ �wτ .6

3.2 L0-ball projection with magnitude
pruning for sparsity control

Differentiable L0 regularization allows us to
achieve a high sparsity rate. However, it would be
ideal to set an exact sparsity rate, especially consid-
ering applications which require parameter budgets.
As the regularization coefficient λ is a Lagrangian
multiplier for the constraint E [‖δτ‖0] < η for
some η, this could be achieved in principle by
searching over different values of λ. However we
found it more efficient and empirically effective to
achieve an exact sparsity rate by projecting onto a
target L0-ball after training.

Specifically, we use magnitude pruning on the
diff vector δτ and target a sparsity rate t% by only
keeping the top t% × d values in δτ .7 Note that
unlike standard magnitude pruning, this is based
on the magnitude of the diff vector values and not
the model parameters. We found it important to
further finetune δτ with the nonzero masks fixed
to maintain good performance, as is often the case

5To reduce notation clutter we subsume the parameters of
the task-specific output layer, which is not pretrained, into
θ. We do not apply the L0-norm penalty on these parameters
during training.

6We found sampling once to work as well as other alterna-
tives (e.g. based on multiple samples).

7Wang et al. (2019b) show that it also is possible to inject
such a constraint softly into the training objective by regular-
izing the expected model size towards a certain rate. However,
since the constraint is soft this approach also makes it difficult
to target an exact sparsity rate.



4887

in magnitude pruning (Han et al., 2016). Since
this type of parameter-efficiency through projection
onto the L0-ball can be applied without adaptive
diff pruning,8 such an approach will serve as one
of our baselines in the empirical study.

3.3 Structured Diff Pruning
To allow diff pruning to adapt to the model archi-
tecture, we consider a structured extension which
incorporates dependence between dimensions. We
hypothesize that this approach can allow the model
to learn to modify parameters in local regions, as
opposed to treating each parameter independently.

We modify the regularizer to first partition the
parameter indices into G groups {g(1), . . . , g(G)}
where g(j) is a subset of parameter indices gov-
erned by group g(j).9 We then introduce a scalar
zjτ (with the associated parameter αj

τ ) for each
group g(j), and decompose the task-specific pa-
rameter for index i ∈ g(j) as δjτ,i = zτ,i · zjτ ·wτ,i.
The expected L0-norm is then given by

E [‖δτ‖0] =
G∑
j=1

∑
i∈g(j)

E [1{zτ,i · zgτ > 0}]

=
G∑
j=1

∑
i∈g(j)

σ

(
ατ,i − log

−l
r

)
· σ
(
αj
τ − log

−l
r

)
.

We can train with gradient-based optimization as
before. Parameters in a group are encouraged by
the regularizer to be removed jointly.

4 Experiments

4.1 Model and datasets
For evaluation we use the GLUE benchmark (Wang
et al., 2019b) as well as the SQuAD extractive
question answering dataset (Rajpurkar et al., 2016).
Following Adapters (Houlsby et al., 2019), we test
our approach on the following subset of the GLUE
tasks: Multi-Genre Natural Language Inference
(MNLI), where the goal is two predict whether
the relationship between two sentences is entail-
ment, contradiction, or neutral (we test on both
MNLIm and MNLImm which respectively tests on
matched/mismatched domains); Quora Question
Pairs (QQP), a classification task to predict whether
two question are semantically equivalent; Ques-
tion Natural Language Inference (QNLI), which

8Concretely, one can obtain θτ through usual finetuning,
set δτ = θτ − θ, and then apply magnitude pruning followed
by additional finetuning on δτ .

9While groups can be defined in various ways, we found
that defining groups based on each matrix/bias vector of the
pretrained model was simple and worked well enough.

must predict whether a sentence is a correct an-
swer to the question; Stanford Sentiment Treebank
(SST-2), a sentence classification task to predict the
sentiment of movie reviews; Corpus of Linguistic
Acceptability (CoLA), where the goal is predict
whether a sentence is linguistically acceptable or
not; Semantic Textual Similarity Benchmark (STS-
B), which must predict a similarity rating between
two sentences; Microsoft Research Paraphrase Cor-
pus (MRPC), where the goal is to predict whether
two sentences are semantically equivalent; Rec-
ognizing Textual Entailment (RTE), which must
predict whether a second sentence is entailed by
the first. The benchmark uses Matthew’s correla-
tion for CoLA, Spearman for STS-B, F1 score for
MRPC/QQP, and accuracy for MNLI/QNLI/SST-
2/RTE.

For the main experiments and analysis, we use
the BERTLARGE model from Devlin et al. (2019)
to compare against the adapter-based approach of
Houlsby et al. (2019). Our implementation is based
on the Hugging Face Transformer library (Wolf
et al., 2019).

4.2 Baselines
We compare both structured and non-structured
variants of diff pruning against the following
baselines: Full finetuning, which fully finetunes
BERTLARGE as usual; Last layer finetuning,
which only finetunes the penultimate layer (along
with the final output layer)10; Adapters from
Houlsby et al. (2019), which train task-specific bot-
tleneck layers between each layer of a pretrained
model, where parameter-efficiency can be con-
trolled by varying the size of the bottleneck lay-
ers; and Non-adaptive diff pruning, which per-
forms diff pruning just based on magnitude prun-
ing (i.e., we obtain θτ through usual finetuning,
set δτ = θτ − θ, and then apply magnitude prun-
ing followed by additional finetuning on δτ ). For
diff pruning we set our target sparsity rate to 0.5%
and investigate the effect of different target sparsity
rates in section 6.1.

4.3 Implementation details and
hyperparameters

Diff pruning introduces additional hyperparame-
ters l, r (for stretching the Hard-Concrete distri-
bution) and λ (for weighting the approximate L0-
norm penalty). We found l = −1.5, r = 1.5, λ =
1.25 × 10−7 to work well across all tasks. We

10Wu et al. (2020) observe that finetuning later layers gen-
erally performs better than finetuning earlier layers



4888

Total New params
QNLI∗ SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg

params per task

Full finetuning 9.00× 100% 91.1 94.9 86.7 85.9 60.5 89.3 87.6 70.1 72.1 80.9
Adapters (8-256) 1.32× 3.6% 90.7 94.0 84.9 85.1 59.5 89.5 86.9 71.5 71.8 80.4
Adapters (64) 1.19× 2.1% 91.4 94.2 85.3 84.6 56.9 89.6 87.3 68.6 71.8 79.8

Full finetuning 9.00× 100% 93.4 94.1 86.7 86.0 59.6 88.9 86.6 71.2 71.7 80.6
Last layer 1.34× 3.8% 79.8 91.6 71.4 72.9 40.2 80.1 67.3 58.6 63.3 68.2
Non-adap. diff pruning 1.05× 0.5% 89.7 93.6 84.9 84.8 51.2 81.5 78.2 61.5 68.6 75.5
Diff pruning 1.05× 0.5% 92.9 93.8 85.7 85.6 60.5 87.0 83.5 68.1 70.6 79.4
Diff pruning (struct.) 1.05× 0.5% 93.3 94.1 86.4 86.0 61.1 89.7 86.0 70.6 71.1 80.6

Table 1: GLUE benchmark test server results with BERTLARGE models. (Top) Results with Adapter bottleneck layers (brackets
indicate the size of bottlenecks), taken from from Houlsby et al. (2019). (Bottom) Results from this work. ∗QNLI results are
not directly comparable across the two works as the GLUE benchmark has updated the test set since then. To make our results
comparable the average column is calculated without QNLI.

also initialize the weight vector wτ to 0, and ατ

to a positive vector (we use 5) to encourage zτ to
be close to 1 at the start of training.11 While we
mainly experiment with BERT models to faciliate
comparison against existing work, in preliminary
experiments we found these hyperparameters to
work for finetuning RoBERTa (Liu et al., 2019c)
and XLNet (Yang et al., 2019) models as well.

For all tasks we initially train for 3 epochs and
perform a hyperparameter search over batch size
∈ {5, 8, 12, 16} and learning rate ∈ {1×10−5, 2×
10−5, 5× 10−5}.12 Finetuning with the fixed mask
after projecting onto the L0-ball with magnitude
pruning is done for 3 epochs with a learning rate
of 5× 10−5 for all datasets except for MRPC/STS-
B/RTE/SST-2 dataset, where we finetune for 5
epochs. The exact hyperparameters for each task
are given in section A.1 of the appendix. Grouping
for the structured version of diff pruning is based on
the matrix/bias vectors (i.e. parameters that belong
to the same matrix or bias vector are assumed to be
in the same group), which results in 393 groups.13

5 Results
5.1 Results on GLUE
Our main results on the GLUE benchmark are
shown in Table 1. Structured diff pruning
can match the performance of a fully finetuned
BERTLARGE model while only requiring 0.5% ad-

11These values were found via by a light hyperparameter
search on the SST-2 validation set.

12However we found the default settings used for regular
finetuning as suggested in the original BERT paper to work
well for most tasks.

13This definition of groups is implementation-specific
since it depends on how one concatenates the input vec-
tor before each affine layer. Our grouping is based
on Hugging Face’s BERT implementation at commit
656e1386a296d696327a9db37de2ccccc79e2cc7. We found
this simple definition to work well compared to alternative
definitions (e.g. based on individual neurons).

ditional parameters per task. Diff pruning with-
out structured sparsity also performs well, though
slightly worse than the structured approach. Non-
adaptive diff pruning, which magnitude prunes the
diff vector without learning the binary mask zτ ,
performs significantly worse, indicating the impor-
tance of learning the masking vector. Compared
to Adapters, diff pruning obtains similar perfor-
mance while requiring many fewer parameters per
task, making it a potential alternative for parameter-
efficient transfer learning.14

5.2 Results on SQuAD
To demonstrate the effectiveness of our approach
beyond the GLUE tasks, we additionally experi-
ment on SQuAD (Rajpurkar et al., 2016), an extrac-
tive question answering dataset where the model
has to select the answer span to a question given a
Wikipedia paragraph. To make direct comparisons
with Houlsby et al. (2019), we run all experiments
on SQuAD v1.1. For diff pruning, we use the same
general hyperparameters as our full finetuning base-
line (see section A.1). As shown in Figure 1 (right),
diff pruning is able achieve comparable or better
performance with only 1.0% additional parameters.
Interestingly, diff pruning measurably improves the
upon the full finetuning baseline while modifying
fewer parameters, which indicates that diff pruning
can have a useful regularization effect on top of
parameter-efficiency.

6 Analysis
6.1 Varying the target sparsity
In Figure 1 (left), we plot results on the GLUE vali-
dation set averaged across all tasks at target sparsity

14Comparing storage costs is a bit more challenging as it is
implementation-specific. Diff pruning incurs additional stor-
age cost due to storing the nonzero positions of the diff vector.
See section 6.6 for storage comparison against Adapters as-
suming float32 for weights and int32 for positions.

https://github.com/huggingface/transformers/blob/656e1386a296d696327a9db37de2ccccc79e2cc7/src/transformers/modeling_bert.py


4889

SQuAD
New Params F1

Houlsby et al. (2019)
Full finetuning 100% 90.7
Adapters 2.0% 90.4

This work
Full finetuning 100% 90.8
Diff pruning 1.0% 92.1
Diff pruning (struct.) 0.5% 91.1
Diff pruning (struct.) 1.0% 93.2

Figure 1: (Left) Average performance on the GLUE validation set across different target sparsity rates for the different methods.
(Right) Results with BERTLARGE on the SQuAD v1.1 validation set.

Diff vector QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avgtarget sparsity

0.10% 92.7 93.3 85.6 85.9 58.0 87.4 86.3 68.6 85.2 82.5
0.25% 93.2 94.2 86.2 86.5 63.3 90.9 88.4 71.5 86.1 84.5
0.50% 93.4 94.2 86.4 86.9 63.5 91.3 89.5 71.5 86.6 84.8
1.00% 93.3 94.2 86.4 87.0 66.3 91.4 89.9 71.1 86.6 85.1

100% 93.5 94.1 86.5 87.1 62.8 91.9 89.8 71.8 87.6 85.0

Table 2: Structured diff pruning results on the validation set with different target sparsity rates.

rates of 0.1%, 0.25%, 0.5%, 1.0% for the different
baselines. Structured diff pruning consistently out-
performs non-structured and and non-adaptive vari-
ants across different sparsity rates. The advantage
of adaptive methods becomes more pronounced at
extreme sparsity rates. In Table 2, we report the
breakdown of accuracy of structured diff pruning
across different tasks and sparsity rates, where we
observe that different tasks have different sensi-
tivity to target sparsity rates. This suggests that
we can obtain even greater parameter-efficiency
through targeting task-specific sparsity rates in the
diff vector.

6.2 Structured vs. Non-structured Diff
Pruning

Structured diff pruning introduces an additional
mask per group, which encourages pruning of en-
tire groups. This is less restrictive than traditional
group sparsity techniques that have been used with
L0-norm relaxations, which force all parameters
in a group to share the same mask (Louizos et al.,
2018; Wang et al., 2019b). However we still expect
entire groups to be pruned out more often, which
might bias the learning process towards either elim-
inating completely or clustering together nonzero
diffs. In Table 3, we indeed find that structured diff
pruning leads to finetuned models that are much
more likely to leave entire groups unchanged from
their pretrained values (zero diffs).

6.3 Task-specific Sparsity
Different layers of pretrained models have been
argued to encode different information (Liu et al.,
2019a; Tenney et al., 2019). Given that each task
will likely recruit different kinds of language phe-
nomena embedded in the hidden layers, we hypoth-
esize that diff pruning will modify different parts of
the pretrained model through task-specific finetun-
ing. Figure 2 shows the percentage of nonzero diff
parameters attributable to the different layers for
each task. We find that different tasks indeed mod-
ify different parts of the network, although there are
some qualitative similarities between some tasks,
for example between QNLI & QQP (both must en-
code questions), and MRPC & STS-B (both must
predict similarity between sentences). The embed-
ding layer is very sparsely modified for all tasks.
While some of the variations in the sparsity distri-
butions is due to simple randomness, we do observe
some level of consistency over multiple runs of the
same task, as shown in section A.2 of the appendix.

The ability to modify different parts of the pre-
trained model for each task could explain the im-
proved parameter-efficiency of our approach com-
pared to Houlsby et al. (2019)’s Adapters, which
can only read/write to the pretrained model at cer-
tain points of the computational graph.15 This po-

15To simulate this restricted setting, we tried applying diff
pruning only on the fully-connected layers after the self-
attention layers, and observed much worse performance.



4890

QNLI SST-2 MNLI CoLA MRPC STS-B RTE QQP Avg

Non-structured 6.2% 6.1% 6.0% 6.4% 6.1% 6.4% 7.1% 6.1% 6.3%
Structured 37.7% 64.6% 28.8% 20.8% 13.2% 12.2% 12.7% 34.9% 28.1%

Table 3: Percentage of groups where all of the parameters in the group are fully zero for structured vs. non-structured diff
pruning at 0.5% target sparsity. We group based on each matrix/bias vector, resulting in 393 groups in total.

Figure 2: Percentage of modified parameters attributable to each layer for different tasks at 0.5% target sparsity. The layers are
ordered from earlier to later (i.e. the embedding layer is shown at the top). The x-axis for each plot goes from 0% to 20%.

tentially suggests that Adapters with more fine-
grained access into model internals (e.g. Adapters
for key/value/query transformations) might result
in even greater parameter-efficiency. While left as
future work, we also note that diff pruning can be
applied in conjunction with Adapters, which might
further improve results.

6.4 Effect of L0-ball projection
Applying magnitude pruning to project onto the L0-
ball was crucial in achieving exact sparsity targets.
As shown in Table 4, we observed little loss in per-
formance through this approach. We reiterate that
it was crucial to finetune with a fixed mask, even
for the approach which does not apply magnitude
pruning.16

6.5 Comparison against BERT compression
Direct BERT compression methods also provide
a straightforward approach to parameter-efficient
transfer learning. Here we compare diff pruning
against existing BERT compression methods, in
particular DistilBERT (Sanh et al., 2019), Mobile-
BERT (Sun et al., 2020b) and TinyBERT (Jiao
et al., 2020). In these experiments we apply diff
pruning on the smaller BERTBASE model as these
works typically utilize BERTBASE as the baseline.
As shown in Table 5, we observe that diff pruning
is more parameter-efficient when considering all
GLUE tasks while maintaining better performance.
Of course, BERT compression methods typically
have faster inference time (e.g. TinyBERT4 is 9.4×
faster that BERTBASE). However we note that diff

16Without fixed-mask finetuning, GLUE performance de-
creases from 84.9 to 81.4.

pruning can be applied on these methods, which
may further improve parameter-efficiency while
maintaining fast inference.

6.6 Storage cost

Finally, Table 6 shows the actual memory require-
ments for diff pruning compared to Adapters for
a Python implementation. While diff pruning re-
quires storing positions in addition to the weights
(unlike Adapters which can just store the weights),
diff pruning is still more storage-efficient due to
the greater parameter-efficiency.

6.7 Discussion and caveats
For training, our approach requires more memory
than usual finetuning due to additionally optimizing
ατ and wτ . Since the majority of GPU memory
is typically utilized by a minibatch’s intermediate
layers, this did not present a significant challenge
for pretrained models that we experimented with
in this study. However, this could present an issue
as model sizes get larger and larger. After training,
storing the task-specific diff vector requires storing
a compressed version with both the nonzero posi-
tions and weights, which incurs additional storage
requirements. Finally, while training efficiency was
not a primary concern of this work, diff pruning
was also approximately 1.5× to 2× slower to train
per minibatch than regular finetuning.

7 Related Work
Multi-task learning Multi-task learning (Caru-
ana, 1997), broadly construed, aims to learn models
and representations that can be utilized across a di-
verse range of tasks, and offers a natural approach



4891

QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg

Sparsity w/o Mag. Pruning 1.5% 0.6% 0.8% 0.8% 1.6% 2.4% 3.3% 0.7% 0.6% 1.4%
Perf. w/o Mag. Pruning 93.8 94.0 86.2 86.8 63.1 91.9 89.7 71.8 86.5 84.9

Mag. Pruning 93.4 94.2 86.4 86.9 63.5 91.3 89.5 71.5 86.6 84.8

Table 4: (Top) Sparsity and performance without magnitude pruning on the validation set with structured diff pruning. These
results also apply fixed-mask finetuning. (Bottom) Performance with 0.5% target sparsity and fixed-mask finetuning.

Total New params
QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg

params per task

Full finetuning 9.00× 100% 90.9 93.4 83.9 83.4 52.8 87.5 85.2 67.0 71.1 79.5
DistilBERT6 5.53× 61.5% 88.9 92.5 82.6 81.3 49.0 86.9 81.3 58.4 70.1 76.8
TinyBERT6 5.53× 61.5% 90.4 93.1 84.6 83.2 51.1 87.3 83.7 70.0 71.6 79.4
DistilBERT4 4.31× 47.9% 85.2 91.4 78.9 78.0 32.8 82.4 76.1 54.1 68.5 71.9
TinyBERT4 1.20× 13.3% 87.7 92.6 82.5 81.8 44.1 86.4 80.4 66.6 71.3 77.0
MobileBERTTINY 1.24× 13.9% 89.5 91.7 81.5 81.6 46.7 87.9 80.1 65.1 68.9 77.0

Full finetuning 9.00× 100% 90.9 93.4 83.9 83.5 52.1 87.9 83.6 66.2 70.7 79.1
Diff pruning (struct.) 1.05× 0.5% 90.0 92.9 83.7 83.4 52.0 88.0 84.5 66.4 70.3 79.0

Table 5: Comparison against existing BERT compression works on GLUE. “Total params” and “New params per task”
columns use BERTBASE as the baseline, which has 109M parameters. For example this means that MobileBERTTINY has
13.9%× 109M = 15.1M parameters per task. (Top) Results of different BERT variants, taken from table 1 of Jiao et al. (2020).
(Bottom) Structured diff pruning results on BERTBASE.

New params Storage (MB)
per task per task

Full finetuning 100% 1297.0
Adapters (weights only) 3.6% 51.7
Diff pruning (positions + weights) 0.5% 13.6

Table 6: Comparison of file sizes per task based on a basic
Python implementation assuming float32 for the weights and
int32 for positions.

to training parameter-efficient deep models. Sev-
eral works have shown that a single BERT model
can obtain good performance across multiple tasks
when jointly trained (Liu et al., 2019b; Clark et al.,
2019; Stickland & Murray, 2019). An alternative
approach to multi-task learning that does not re-
quire access to all tasks during training involve
training smaller task-specific layers that interact
with a fixed pretrained model (Rebuffi et al., 2018;
Zhang et al., 2020a). In particular, Adapters (Re-
buffi et al., 2018), which learn to read and write
to layers of a shared model, have been applied to
obtain parameter-efficient BERT models (Houlsby
et al., 2019; Pfeiffer et al., 2020a,b,c). In recent
work, Li & Liang (2021) and Qin & Eisner (2021)
explore the use of learned prompts on top of pre-
trained models to obtain task-specific models. Yet
another line of work targets extreme parameter-
efficiency through task-agnostic sentence repre-
sentations that can be used without finetuning for
downstream tasks (Le & Mikolov, 2014; Kiros
et al., 2015; Wieting et al., 2016; Hill et al., 2016;
Arora et al., 2017; Conneau et al., 2017; Cer et al.,
2018; Zhang et al., 2018; Subramanian et al., 2018;

Reimers & Gurevych, 2019; Zhang et al., 2020b).
These feature-based transfer learning methods are
however generally outperformed by fully finetuned
models (Howard & Ruder, 2018).

Model compression There has been much recent
work on compressing pretrained trained with self-
supervision (see (Ganesh et al., 2020) for a recent
survey). A particularly promising line of work
focuses on obtaining smaller pretrained models
(for subsequent finetuning) through weight pruning
(Gordon et al., 2020; Sajjad et al., 2020; Chen et al.,
2020) and/or knowledge distillation (Sanh et al.,
2019; Sun et al., 2019; Turc et al., 2019; Jiao et al.,
2020; Sun et al., 2020b). It would be interesting to
see whether our approach can be applied on top of
these smaller pretrained models to for even greater
parameter-efficiency.

Learning to mask Our work is closely related to
the line of work on learning to mask parts of deep
networks with differentiable relaxations of binary
masks for model pruning and parameter sharing
(Wang et al., 2019b; Zhao et al., 2020; Sanh et al.,
2020; Radiya-Dixit & Wang, 2020; Mallya et al.,
2018; Guo et al., 2019; Sun et al., 2020a; Cao et al.,
2021). While these works also enable parameter-
efficient transfer learning, they generally apply the
masks directly on the pretrained parameters instead
of on the difference vector as in the present work.
Regularization towards pretrained models Fi-
nally, diff pruning is also related to works
which regularize the learning process towards pre-



4892

trained/shared models for continual learning (Rusu
et al., 2016; Kirkpatrick et al., 2017; Schwarz
et al., 2018), domain adaptation (Wiese et al., 2017;
Miceli Barone et al., 2017), and stable finetuning
(Lee et al., 2020). These works typically do not uti-
lize sparse regularizers and target a different goal
than parameter-efficiency.

8 Conclusion
We propose diff pruning as a simple approach
for parameter-efficient transfer learning with pre-
trained models. Experiments on standard NLP
benchmarks and models show that diff pruning
can match the performance of fully finetuned base-
lines while requiring only a few additional param-
eters per task, and can sometimes have a regu-
larization effect and improve upon regular fine-
tuning. We also propose a structured variant
of diff pruning which provides further improve-
ments. Avenues for future work include (i) inject-
ing parameter-efficiency objectives directly into
the pretraining process (to pretrain models that are
better suited towards sparse transfer learning), and
(ii) combining diff pruning with other techniques
(e.g. adapters, model compression) to achieve even
greater parameter-efficiency.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their valuable feedback on the initial
draft. AMR was supported by NSF 1704834 and
NSF Career 2037519.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A Sim-

ple but Tough-to-Beat Baseline for Sentence Embed-
dings . In Proceedings of ICLR, 2017.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language Models are Few-Shot Learners.
2020.

Steven Cao, Victor Sanh, and Alexander M. Rush.
Low-Complexity Probing via Finding Subnetworks.
In Proceedings of NAACL, 2021.

Rich Caruana. Multitask Learning. Machine Learning,
1997.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. Universal sentence
encoder for English. In Proceedings of EMNLP:
System Demonstrations, 2018.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. The Lottery Ticket Hypothesis for Pre-
trained BERT Networks. arXiv:2007.12223, 2020.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal,
Christopher D. Manning, and Quoc V. Le. BAM!
Born-Again Multi-Task Networks for Natural Lan-
guage Understanding. In Proceedings of ACL, 2019.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. Supervised Learn-
ing of Universal Sentence Representations from Nat-
ural Language Inference Data. In Proceedings of
EMNLP, 2017.

Andrew Dai and Quoc V. Le. Semi-Supervised Se-
quence Learning. In Proceedings of NIPS, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Under-
standing. In Proceedings of NAACL, 2019.

Robert French. Catastrophic forgetting in connection-
ist networks. Trends in cognitive sciences, 3, 1999.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali
Khan, Yin Yang, Deming Chen, Marianne Winslett,
Hassan Sajjad, and Preslav Nakov. Compressing
Large-Scale Transformer-Based Models: A Case
Study on BERT. arXiv:2002.11985, 2020.

Mitchell A. Gordon, Kevin Duh, and Nicholas An-
drews. Compressing BERT: Studying the Effects
of Weight Pruning on Transfer Learning. In Pro-
ceedings of Rep4NLP 2020 Workshop at ACL 2020,
2020.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen
Grauman, Tajana Rosing, and Rogerio Feris. Spot-
Tune: Transfer Learning Through Adaptive Fine-
Tuning. In Proceedings of CVPR, 2019.

Song Han, Huizi Mao, and William J. Dally. Deep
Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman
Coding. In Proceedings of ICLR, 2016.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
Learning distributed representations of sentences
from unlabelled data. In Proceedings of ACL, 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, and Mona Attariyanand Sylvain Gelly.
Parameter-efficient transfer learning for nlp. In Pro-
ceedings of ICML, 2019.



4893

Jeremy Howard and Sebastian Ruder. Universal Lan-
guage Model Fine-tuning for Text Classification. In
Proceedings of ACL, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical
Reparameterization with Gumbel-Softmax. In Pro-
ceedings of ICLR, 2017.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
TinyBERT: Distilling BERT for Natural Language
Understanding. In Proceedings of EMNLP (Find-
ings), 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the National Academy of Sci-
ences, 14:3521–3526, 2017.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. Skip-Thought Vectors. In
Proceedings of NeurIPS, 2015.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
ALBERT: A Lite BERT for Self-supervised Learn-
ing of Language Representations. In Proceedings of
ICLR, 2020.

Quoc V. Le and Tomas Mikolov. Distributed Represen-
tations of Sentences and Documents. In Proceed-
ings of ICML, 2014.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
Mixout: Effective Regularization to Finetune Large-
scale Pretrained Language Models. In Proceedings
of ICLR, 2020.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo
Ha, and Byoung-Tak Zhang. Overcoming catas-
trophic forgetting by incremental moment matching.
In Advances in Neural Information Processing Sys-
tems. 2017.

Xiang Lisa Li and Percy Liang. Prefix-Tuning:
Optimizing Continuous Prompts for Generation.
arXiv:2101.00190, 2021.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. Linguistic
Knowledge and Transferability of Contextual Repre-
sentations. In Proceedings of ACL, 2019a.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. Multi-Task Deep Neural Networks for
Natural Language Understanding. In Proceedings
of ACL, 2019b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa:

A Robustly Optimized BERT Pretraining Approach.
arXiv:1907.11692, 2019c.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
Episodic Memory for Continual Learning. In Pro-
ceedings of NeurIPS, 2017.

Christos Louizos, Max Welling, Diederik P, and
Kingma. Learning Sparse Neural Networks through
L0 Regularization. In Proceedings of ICLR, 2018.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
The Concrete Distribution: A Continuous Relax-
ation of Discrete Random Variables. In Proceedings
of ICLR, 2017.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
Piggyback: Adapting a Single Network to Multiple
Tasks by Learning to Mask Weights. In Proceedings
of ECCV, 2018.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. Learned in translation: Contextu-
alized word vectors. In Proceedings of NeurIPS.
2017.

Antonio Valerio Miceli Barone, Barry Haddow, Ulrich
Germann, and Rico Sennrich. Regularization tech-
niques for fine-tuning in neural machine translation.
In Proceedings of EMNLP, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient Estimation of Word Representations
in Vector Space. arXiv:1301.3781, 2013.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep Contextualized Word Represen-
tations. In Proceedings of NAACL, 2018.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Ruckle,
and Kyunghyun Cho amd Iryna Gurevych. Adapter-
Fusion: Non-Destructive Task Composition for
Transfer Learning. arXiv:2005.00247, 2020a.

Jonas Pfeiffer, Andreas Ruckle, Clifton Poth, Aish-
warya Kamath, Ivan Vulic, Sebastian Ruder,
and Iryna Gurevych Kyunghyun Cho. Adapter-
Hub: A Framework for Adapting Transformers.
arXiv:2007.07779, 2020b.

Jonas Pfeiffer, Ivan Vulic, Iryna Gurevych, and
Sebastian Ruder. MAD-X: An Adapter-based
Framework for Multi-task Cross-lingual Transfer.
arXiv:2005.00052, 2020c.

Guanghui Qin and Jason Eisner. Learning How to Ask:
Querying LMs with Mixtures of Soft Prompts. In
Proceedings of NAACL, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. Improving language understanding
by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language Mod-
els are Unsupervised Multitask Learners. 2019.



4894

Evani Radiya-Dixit and Xin Wang. How fine can fine-
tuning be? Learning efficient language models. In
Proceedings of AISTATS, 2020.

Colin Raffel, Noam Shazeer, Katherine Lee
Adam Roberts, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring
the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. Journal of Machine
Learning Research, 21, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. ZeRO: Memory Optimiza-
tions Toward Training Trillion Parameter Models.
arXiv:1910.02054, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. SQuAD: 100,000+ questions for ma-
chine comprehension of text. In Proceedings of
EMNLP, 2016.

S. Rebuffi, A. Vedaldi, and H. Bilen. Efficient
Parametrization of Multi-domain Deep Neural Net-
works. In Proceedings of CVPR, 2018.

Nils Reimers and Iryna Gurevych. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of EMNLP, 2019.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
Progressive Neural Networks. arXiv:1606.04671,
2016.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. Poor Man’s BERT: Smaller and
Faster Transformer Models. arXiv:2004.03844,
2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. In Pro-
ceedings of 5th Workshop on Energy Efficient Ma-
chine Learning and Cognitive Computing, 2019.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
Movement Pruning: Adaptive Sparsity by Fine-
Tuning. arXiv:2005.07683, 2020.

Timo Schick and Hinrich Schutze. It’s Not Just Size
That Matters: Small Language Models Are Also
Few-Shot Learners. arXiv:2009.07118, 2020.

Jonathan Schwarz, Jelena Luketina, Wojciech M. Czar-
necki, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress
& Compress: A scalable framework for continual
learning. In Proceedings of ICML, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. Continual Learning with Deep Generative Re-
play. In Proceedings of NeurIPS. 2017.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-LM: Training Multi-Billion Pa-
rameter Language Models Using Model Parallelism.
arXiv:1909.08053, 2019.

Asa Cooper Stickland and Iain Murray. BERT and
PALs: Projected attention layers for efficient adapta-
tion in multi-task learning. In Proceedings of ICML,
2019.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher J. Pal. Learning General Pur-
pose Distributed Sentence Representations via Large
Scale Multi-task Learning. In Proceedings of ICLR,
2018.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Pa-
tient Knowledge Distillation for BERT Model Com-
pression. In Proceedings of EMNLP, 2019.

Ximeng Sun, Rameswar Panda, and Rogerio Feris.
AdaShare: Learning What To Share For Efficient
Deep Multi-Task Learning. In Proceedings of
NeurIPS, 2020a.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. MobileBERT: a
compact task-agnostic BERT for resource-limited
devices. In Proceedings of ACL, July 2020b.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT
Rediscovers the Classical NLP Pipeline. In Proceed-
ings of ACL, 2019.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Well-Read Students Learn Better: On
the Importance of Pre-training Compact Models.
arXiv:1908.08962, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. GLUE: A
multi-task benchmark and analysis platform for natu-
ral language understanding. In Proceedings of ICLR,
2019a.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei.
Structured Pruning of Large Language Models.
arXiv:1910.04732, 2019b.

Georg Wiese, Dirk Weissenborn, and Mariana Neves.
Neural domain adaptation for biomedical question
answering. In Proceedings of CoNLL, August 2017.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. Towards Universal Paraphrastic Sentence
Embeddings. In Proceedings of ICLR, 2016.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771, 2019.



4895

John M. Wu, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. Similarity
Analysis of Contextual Word Representation Mod-
els. In Proceedings of ACL, 2020.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
XLNet: Generalized Autoregressive Pretraining
for Language Understanding. In Proceedings of
NeurIPS, 2019.

Jeffrey O Zhang, Alexander Sax, Amir Zamir,
Leonidas Guibas, and Jitendra Malik. Side-Tuning:
A Baseline for Network Adaptation via Additive
Side Networks. In Proceedings of ECCV, 2020a.

Minghua Zhang, Yunfang Wu, Weikang Li, and Wei
Li. Learning universal sentence representations with
mean-max attention autoencoder. In Proceedings of
EMNLP, 2018.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim,
and Lidong Bing. An Unsupervised Sentence Em-
bedding Method byMutual Information Maximiza-
tion. In Proceedings of EMNLP, 2020b.

Mengjie Zhao, Tao Lin, Martin Jaggi, and Hin-
rich Schutze. Masking as an Efficient Alterna-
tive to Finetuning for Pretrained Language Models.
arXiv:2004.12406, 2020.

A Appendix

A.1 Hyperparameters
Table 7 shows hyperparameters we used for train-
ing GLUE tasks. For SQuAD v1.1 experiments,
we ran distributed training across 8 GPUs, and used
per gpu batch size 3, maximum sequence length
384, document stride 128, learning rate 3× 10−5,
number of initial training epochs 2 and number of
finetuning epochs 2.

A.2 Consistency of Nonzero Parameters
Figure 3 shows the percentage of modified param-
eters attributable to each layer across 5 runs of
SST-2. We find that there is nonotrivial variation
in sparsity across runs, but also a degree of con-
sistency. For example, the first layer is modified
considerably more than other layers across all runs.



4896

QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP

Learning rate 2× 10−5 5× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 2× 10−5

Batch size 8 8 8 8 8 8 12 8 8
Training epochs 3 3 3 3 3 3 3 3 3
Finetuning epochs 3 5 3 3 3 5 5 5 3

Table 7: Best hyperparameters for the GLUE tasks based on the respective validation sets.

Figure 3: Percentage of modified parameters attributable to each layer for 5 different runs of SST-2 at 0.5% target sparsity. The
layers are ordered from earlier to later (i.e. the embedding layer is shown at the top). The x-axis for each plot goes from 0% to
20%.


