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Abstract

In structured prediction problems, cross-
lingual transfer learning is an efficient way
to train quality models for low-resource lan-
guages, and further improvement can be ob-
tained by learning from multiple source lan-
guages. However, not all source models are
created equal and some may hurt performance
on the target language. Previous work has ex-
plored the similarity between source and tar-
get sentences as an approximate measure of
strength for different source models. In this
paper, we propose a multi-view framework,
by leveraging a small number of labeled tar-
get sentences, to effectively combine multi-
ple source models into an aggregated source
view at different granularity levels (language,
sentence, or sub-structure), and transfer it to
a target view based on a task-specific model.
By encouraging the two views to interact with
each other, our framework can dynamically ad-
just the confidence level of each source model
and improve the performance of both views
during training. Experiments for three struc-
tured prediction tasks on sixteen data sets show
that our framework achieves significant im-
provement over all existing approaches, in-
cluding these with access to additional source
language data.

1 Introduction

Structured prediction is the task of mapping input
sentences to structured outputs. It is a fundamental
task in natural language processing and has many
applications, i.e., sequence labeling (DeRose, 1988;
Lample et al., 2016; Ma and Hovy, 2016; Hu et al.,
2020b), dependency parsing (Chen and Manning,
2014; Dozat and Manning, 2016; Ahmad et al.,
2019) and semantic role labeling (van der Plas et al.,
2011; Strubell et al., 2018; Cai and Lapata, 2020).

∗Corresponding authors. ‡Work was done when Zechuan
Hu was interning at Alibaba DAMO Academy.

To achieve strong performance, structured predic-
tion models mostly require manually labeled data
that are costly to obtain in general.

Cross-lingual transfer learning (Yarowsky and
Ngai, 2001; Wang and Manning, 2014; Guo et al.,
2018; Lin et al., 2019; Hu et al., 2021) recently
attracted attention for tackling that problem, by
transferring the knowledge from high-resource lan-
guages to low-resource ones. Existing works can be
categorized into two types: single-source transfer
and multi-source transfer. The former is limited to
transferring knowledge from one source language
and generally results in inferior performance than
the latter (McDonald et al., 2011; Rahimi et al.,
2019), especially when the target language is simi-
lar to multiple source language over various char-
acteristics, i.e., domain, word order, capitalization,
and script style. However, in practice, we are more
likely to encounter the situation where some source
languages are not as similar to the target language
and may lead to worse performance (Rosenstein
et al., 2005; Rahimi et al., 2019) (we provide an
example in the Appendix A). To tackle this chal-
lenging problem, most of the previous works do
majority voting (Plank and Agić, 2018) and truth
inference on hard predictions of multiple sources
(Rahimi et al., 2019). To better incorporate tar-
get language information, some recent works train
a new model on the target unlabeled data with
hard/soft predictions from multiple source mod-
els, such as mixture-of-experts model (Chen et al.,
2019) and knowledge distillation (KD) (Wu et al.,
2020), and assign weights to multiple sources based
on language similarity. However, these similarity-
based approaches are heuristic-based, and cannot
well learn the confidence level of multiple source
models.

In this paper, we propose to leverage a small
number of labeled target data to selectively trans-
fer the knowledge from multiple source models.
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In many real applications, we are generally easy
to obtain a small number of target labeled data.
These small amounts of data can reflect the diverse
strength and weakness of different source models.
Concretely, the (small-size) labeled data can be uti-
lized to learn the aggregation strategy of multiple
source models or train a new task-specific model
in the target language. Both the aggregation model
and target task-specific model can map the inputs
to the structured outputs but there exists a trade-
off. The aggregation model generally has strong
cross-lingual ability since source models are firstly
well trained1, but has lower flexibility since source
models are usually frozen. Instead, the target task-
specific model tends to be more flexible and has
strong capacity but has poor performance since the
model is easily over-fitted on the small training
sample.

Inspired by previous work on multi/cross-view
learning (Clark et al., 2018; Jiang et al., 2019;
Fei and Li, 2020), we regard the aggregation
model (aggregated source view) and the target task-
specific model (target view) as two views since
they both can map the input sentence to structured
outputs. We propose a novel multi-view frame-
work to achieve a good trade-off between the two
views. To capture the diverse strength and weak-
ness of multiple source models, we propose three
approaches to obtain the aggregated source view
from language/sentence/sub-structure level in a
coarse-to-fine manner. By encouraging two views
to influence each other, the proposed framework
can dynamically learn the confidence level of mul-
tiple source models in three coarse-to-fine granu-
larity and make the best use of the small number of
labeled data, and make both views improved during
training. Benefited from the multi-view framework,
our proposed approaches can leverage plenty of
target unlabeled data to capture the useful target
language information (Wu et al., 2020).

The contributions of this work are:

1. We propose to leverage a small number of
target labeled data to better aggregate multiple
source models.

2. Our approach contains three novel coarse-to-
fine approaches to aggregate multiple source
models (section 2.2).

1Following Wu et al. (2020), source models are previously
trained on their corresponding labeled training set and frozen
during training.

3. We propose a novel multi-view learning
framework (section 2.3).

4. By utilizing both the label & unlabeled dataset,
our approach improves two views simultane-
ously (section 2.4).

We extensively experiment on three structured
prediction tasks, which are named entity recog-
nition (NER), part-of-speech tagging (POS), and
dependency parsing. Our proposed approaches out-
perform several state-of-the-art approaches.

2 Methodology

The left part of Figure 1 depicts the proposed
general framework. Our framework contains two
views, a target view which is a target structured
predictor, and an aggregated source view based
on multiple pre-trained source models. Both views
can map the input sentences to the structured out-
puts and have diverse statistical properties, and thus
can provide complementary information to each
other (learned by the consensus component).

2.1 The Target View

In the general framework, the target view is a task-
specific model. We leverage the multilingual bert
(mBERT) (Devlin et al., 2019) as the sentence en-
coder. We feed the input sentence x to the mBERT
and obtain the contextual internal states h, which
are utilized by a task-specific module to produce a
structured output y. Specifically, we use a Softmax
layer for sequence labeling tasks and a biaffine at-
tention mechanism (Dozat and Manning, 2016) fol-
lowed by (Wu and Dredze, 2019a) for graph-based
tasks like dependency parsing. The conditional
probability of the structured output given the input
sequence is computed by,

p(y|x) =
exp(

∑
u∈y s(h, u))∑

y′ exp(
∑

u∈y′ s(h, u))

where y′ is the candidate structured outputs, y is
the structured outputs and u is the sub-structure
of y. Sub-structure is the label of each token for
sequence labeling and dependency head for depen-
dency parsing. During training with gold labels, the
sequence labeling objective function is the cross
entropy between the gold labels and the model’s
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Figure 1: The proposed multi-view framework with K source models (K = 4 in this case). The parts with gray
background are the aggregation modules of three levels. Left: The multi-view framework with substructure-level
aggregation as described in section 2.2 and 2.2.3. An input sentence is passed through K source models (S) and
one target model (T). K output probabilities from source models are aggregated by a trainable weighting factors
α (vector for model/sentence level and matrix for sub-structure level). LCE is the cross-entropy loss term on both
two views only for labeled data, and LKL is the KL-divergence loss between two views for both labeled data
and unlabeled data, as described in section 2.1, 2.3, and 2.4. Right: The sentence-level aggregation (above) as
described in section 2.2.3 and the language-level aggregation as described in section 2.2.1 .

soft predictions 2,

LCE = − log p(y∗|x) = −
n∑

i=1

log p(y∗i |x)

where y∗ is the gold label sequence. In dependency
parsing, we use the biaffine parser (Dozat and Man-
ning, 2016) which is one of the state-of-the-art
parsers. Following Wu and Dredze (2019a), we
replace the BiLSTM encoder with mBERT. Similar
to sequence labeling, the biaffine parser models the
dependency head separately for each token. Fol-
lowing Anderson and Gómez-Rodrı́guez (2020),
it has two independent distributions, one for head
prediction and one for label prediction. The cross-
entropy loss for dependency head is,

LCE(head) = − log p(t∗|x) = −
n∑

i=1

log p(h∗i |x)

where h∗i is the gold head for i-th word of the gold
tree t∗. Together with the similar cross-entropy

2This is a common way in the BERT-fintuning setup (Wu
and Dredze, 2019a; Wu et al., 2020).

loss of predicted edge labels, the dependency pars-
ing objective function is LCE = LCE(head) +
LCE(label).

2.2 The Aggregated Source View

In this section, we take the sequence labeling
tasks as an example to introduce our aggregated
source view. The source models have the same
model structure as the task-specific model of the
target view in section 2.1. As presented in fig-
ure 1, for a K-source setup, we have K pre-
trained source models Sk, k ∈ {1, . . . ,K} and
the target structured model T. Given a sentence
x = {x0, . . . , xn}, where x0 represents the [CLS]
token, we feed it to these models and get the in-
ternal states {h(1), . . . ,h(K)} and the probability
distributions {p(1)s , . . . , p

(K)
s } over the structured

output of K source models Sk, and h(t) and pT of
the target model. To aggregate all source models,
we propose three novel coarse-to-fine approaches.

2.2.1 Language-level Aggregation
We simply introduce a trainable probability vector
αlang, which is depicted on the bottom right part of
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the Figure 1. The final output distribution of the
aggregated source view can be computed as,

pS(y|x) =
K∑
k=1

α
(k)
lang · p(k)s (y|x)

We use superscript to represent the index of vector
αlang. Note that we use lowercase s, uppercase S,
and uppercase T to differentiate the final outputs
of the source model, aggregated source view, and
target view respectively. In this approach, the k-th
source model has the same weight α(k)

lang over all
sentences.

2.2.2 Sentence-level Aggregation
In this section, we leverage an attention mecha-
nism (Luong et al., 2015; Vaswani et al., 2017) to
learn the weight of each source model on an input
sentence, as shown on the top right part of Figure
1. Firstly, we use the internal states of the [CLS]
token as sentence representation. Secondly, h(t)

0

from the target model T is used as a query to attend
h
(k)
0 from the k-th source model Sk to produce the

probabilities αsent(x) ∈ RK .

K0 = [h
(1)
0 ; . . . ;h

(K)
0 ]

αsent(x) = Softmax(h(t)
0 WKT

0 )

where K0 is the concatenation of sentence repre-
sentations from K source models, and W ∈ Rd×d

is the bilinear weight matrix. Then the probabilities
are utilized to compute the aggregation distribution
pS(y|x) as follows,

pS(y|x) =
K∑
k=1

α
(k)
sent(x) · p(k)s (y|x)

In sentence-level aggregation approach, k-th source
model has the same weight α(k)

sent(x) over each sub-
structure of a sentence, but different weights over
different sentences and thus can capture the diverse
strengths of each source on different sentences.

2.2.3 Sub-structure-level Aggregation
We further propose a fine-grained aggregation ap-
proach on sub-structure level, which is also based
on the attention mechanism. As shown in the left
part of Figure 1, for token xi in a given sentence x,
we use its representation h

(t)
i as the query to attend

the corresponding representation from each source

model. We compute the probabilities αsub(xi) for
i-th sub-structure as follows,

Ki = [h
(1)
i ; . . . ;h

(K)
i ]

αsub(xi) = Softmax(h(t)
i WKT

i )

Then the aggregation distribution becomes,

pS(y|x) =
n∏

i=1

K∑
k=1

α
(k)
sub(xi) · p(k)s (yi|x)

In this approach, our target model acts as a selector
to dynamically assess the multiple source models
on sub-structure level.

2.3 Consensus between Two Views

To achieve a good trade-off between the target view
and the aggregation view during training, inspired
by Clark et al. (2018), we utilize the KL divergence
3 as the metric to encourage the similarity between
the two views. For sequence labeling, the objective
is,

LKL(x) = KL(pS(y|x)||pT (y|x))

2.4 Overall Training Objective

In the model training, for the unlabeled sentences,
we only calculate the KL-divergence loss LU =
LKL. For the labeled sentences, we train the model
with two supervised cross-entropy loss in addition
to the KL-divergence loss,

LL = λ1LSCE + λ2LTCE + λ3LKL

where λ1, λ2 and λ3 are the interpolation factors.
Finally, we introduce an interpolation µ to balance
the labeled and unlabeled sentences and the overall
learning objective is L = µLL + (1− µ)LU.

Connections to KD There are mainly four dif-
ferences between KD (Wu et al., 2020) and our
approach:

1. Unlike our approach, KD only utilizes the
target unlabeled data, from which it cannot
well learn the strength and weakness of differ-
ent source models (see Sec.1 for more discus-
sion.).

3We also try many metrics of measuring the similarity be-
tween two probability distributions, e.g., mean squared error
(MSE) (Wu et al., 2020), Cosine, and Jensen-Shannon diver-
gence (JS) (Ruder and Plank, 2017), and we find KL perform
best.
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2. KD assigns equal importance to multiple
source models, which can be seen as a fixed
uniform vector in our language-level aggrega-
tion approach.

3. Besides language-level aggregation, we pro-
pose two fine-grained aggregation strategies
to dynamically balance the information from
source models.

4. To achieve the previously described goal,
our approach has trainable parameters in the
aggregation component and our multi-view
learning framework can jointly learn the pa-
rameters of two views.

2.5 Training and Inference Strategies

Following previous work on cross-lingual trans-
fer (Rahimi et al., 2019; Wu et al., 2020), the
source models are previously trained on their cor-
responding labeled training data. During training,
we freeze the parameters of the pre-trained source
models and only update the parameters of calculat-
ing weights α in the aggregated source view, and
update all parameters of the target view. In every
iteration, we randomly sample a batch of data from
the labeled dataset and unlabeled dataset accord-
ing to the interpolation µ. In the experiments, our
model can significantly benefit from this training
strategy by controlling the ratio of labeled data
and unlabeled data. During the inference phase, we
have two options to obtain the predictions: utilizing
the aggregated source view or the target view. In
our experiments, we use the second one as the main
result for its simplicity and better performance.

3 Experiments

We experiment on three structured prediction tasks:
NER, POS tagging, and dependency parsing. Fol-
lowing previous work (Rahimi et al., 2019; Wu
et al., 2020), we conduct the experiments in a leave-
one-out setting in which we hold out one language
as the target language and the others as the source
languages. To simulate the low-resources scenario,
for each training set in a specific target language,
we randomly select fifty sentences 4 with the gold
annotations and discard the annotations of the re-
maining sentences to construct the training set. We

4We explore the effects of randomness on labeled data in
the Appendix C.1 and the results show that our approach is
robust to randomness in the selection of labeled data.

randomly select six languages from Universal De-
pendencies Treebanks (v2.2)5 for dependency pars-
ing and POS tagging tasks. We use the datasets
from CoNLL 2002 and CoNLL 2003 shared tasks
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) for NER tasks. We utilize the
base cased multilingual BERT (Devlin et al., 2019)
as base model for all approaches. We run each ap-
proach five times and report the averaged accuracy
for POS tagging, f1-score for NER, and unlabelled
attachment score (UAS) and labeled attachment
score (LAS) for dependency parsing. More details
can be found in the Appendix B.1.

3.1 Compared Baselines

We compare the results of the target view of our
language/sentence/sub-structure-level approaches
which are denoted as Ours-lang/sent/sub respec-
tively, with a large amount of previous state-of-the-
art cross-lingual baselines: direct fine-tuning (DT-
finetuning), direct transfer (DT), hard knowledge
distillation (hard-KD) (Liu et al., 2017), soft knowl-
edge distillation (soft-KD) (Hinton et al., 2015; Wu
et al., 2020), unified multilingual model (UMM)
which is similar to (Yasunaga et al., 2018; Ak-
bik et al., 2019), and bootstrapping approaches
(Yarowsky, 1995; Zhou and Li, 2005; McClosky
et al., 2006; Ruder and Plank, 2018) based on
UMM.

DT-finetuning We directly fine-tune the task-
specific view on fifty labeled data.

DT In DT, there is only test data in the target
language. Therefore, we evaluate this approach in
three ways: 1) using the mean probability distribu-
tion of source models (DT-mean); 2) using the max-
imal probability distribution of source models over
the sub-structure level (DT-max). 3) evaluating
each source model and voting on the sub-structure
level (DT-vote). We also provide the maximal re-
sults of DT on language level (DT-Max(lang)) 6.

Hard-KD The hard knowledge distillation ap-
proaches first predict the pseudo labels on target
unlabeled training set by using pre-trained source
models and then train a new model on the pseudo
labeled data (Liu et al., 2017; Rahimi et al., 2019).

5https://universaldependencies.org/
6We separately evaluate the source language models on

the target test data and choose the best score. Since we don’t
know which source model is the best for DT in practice, the
DT-Max(lang) results are only for reference.

https://universaldependencies.org/
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CONLL02/03 NER POS TAGGING
EN DE NL ES Avg. EN CA ID HI FI RU Avg.

7 DT-gold 90.13 84.60 89.09 84.30 87.03 95.71 96.80 94.67 94.39 92.18 97.39 95.19
7 DT-max(lang) 80.85 74.27 81.00 78.42 78.64 87.38 94.26 89.33 87.96 82.47 91.71 88.85

3 DT-Finetuning 72.71 54.49 57.07 70.82 63.77 85.58 92.90 86.73 86.17 72.57 87.65 85.27

7 DT-vote 81.81 74.52 81.66 78.51 79.13 89.73 94.26 90.29 89.09 82.82 92.51 89.78
7 DT-max 82.21 74.98 82.19 78.74 79.53 89.71 94.49 90.13 89.13 83.97 92.78 90.04
7 DT-mean 82.57 75.33 82.19 78.93 79.76 90.04 94.38 90.40 89.26 83.72 92.86 90.11

3 hard-KD-cat 83.73 75.56 82.30 79.07 80.17 90.22 94.41 90.60 89.52 84.26 92.80 90.30
3 hard-KD-vote 83.45 75.80 82.48 79.18 80.23 90.06 94.38 90.52 89.53 83.77 92.65 90.15
3 hard-KD-max 83.14 75.39 82.27 79.40 80.05 90.16 94.56 90.45 89.41 84.89 92.99 90.41
3 hard-KD-mean 83.42 75.67 82.306 79.29 80.17 90.32 94.46 90.67 89.61 84.48 92.96 90.41

3 UMM 78.99 75.26 82.48 78.26 78.75 88.14 93.88 89.65 88.42 83.03 93.26 89.40
3 Self-training1 80.76 75.96 82.91 79.63 79.81 89.68 94.46 90.13 89.16 83.72 94.02 90.19
3 Tri-training2 80.63 76.62 83.14 79.10 79.87 89.83 94.40 90.04 89.69 83.94 94.05 90.32

3 soft-KD-avg3 83.52 75.84 82.46 79.24 80.26 90.31 94.62 90.75 89.69 84.55 93.22 90.52
3 soft-KD-sim4 83.58 75.99 82.94 79.63 80.54 89.79 94.80 90.79 89.70 84.55 93.54 90.53

3 Ours-lang 83.48 75.88 83.02 79.79 80.54 90.27 94.73 90.81 89.62 84.78 93.44 90.61
3 Ours-sent 83.83 76.13 82.92 80.07 80.74 90.31 94.80 90.91 89.71 84.93 93.51 90.70
3 Ours-sub 84.78 76.56 84.12 80.34 81.45 91.12 95.30 91.15 90.11 85.68 93.57 91.16

1 Yarowsky (1995); McClosky et al. (2006) 2 Ruder and Plank (2018) 3,4 Wu et al. (2020)

Table 1: Results on CoNLL02/03 NER and POS tagging tasks. The approaches provided for reference is marked
as italic. We compare the best score of our approaches and the best score of the baselines by leveraging almost
stochastic dominance (ASD) test (Dror et al., 2019). We mark the the highest score as bold if its superiority is
significant (p < 0.05) and underline otherwise.

We obtain the pseudo labels in four ways: 1) us-
ing DT-mean (hard-KD-mean); 2) using DT-max
(hard-KD-max); 3) using DT-vote (hard-KD-vote);
4) concatenating all predictions of source models
instead of voting (hard-KD-concat). For fairly com-
parison, we also concatenate the fifty target labeled
data into the pseudo labeled data.

Soft-KD Instead of leveraging hard predictions
of source models in hard-KD, the soft-KD lever-
ages soft probability distribution of source models.
The original Soft-KD (Wu et al., 2020) only focuses
on zero-shot NER tasks. Instead, we modify their
training objective to leverage fifty target labeled
data and adapt it to POS tagging and dependency
parsing tasks. (Refer to section 2.4 for details.)
We re-implement their two proposed approaches:
1) uniformly aggregating multiple source models
(KD-avg); 2) aggregating source models by fixed
weights pre-trained on source unlabeled data based
on language similarity (KD-sim)7.

UMM The UMM is trained on the concatena-
tion of all source languages labeled data and fifty
labeled data of target language.

Bootstrapping Bootstrapping approaches firstly
train a UMM and then add the most confident sen-

7For more details of the two approaches, please refer to
the original paper.

tences of target unlabeled data into the training set
every iteration during training. We compare our
approaches to Self-Training (Yarowsky, 1995; Mc-
Closky et al., 2006) and Tri-Training (Ruder and
Plank, 2018).

We provide the upper bound results of DT (DT-
gold). We construct the upper bound using the
gold label set in test data by selecting the gold la-
bel if any prediction of source models appears in
the gold set. Besides, unlike UMM, self-training,
tri-training, and KD-sim, our approaches do not re-
quire extra resources like source language training
data.

3.2 Results

We report the results in Table 1 for NER and POS
tagging, and 2 for dependency parsing.

Common Results on All Tasks As shown in Ta-
ble 1 and 2, our three proposed approaches out-
perform most of the baselines on all tasks, which
demonstrates the effectiveness of the proposed
multi-view learning framework. When trained
on only fifty labeled data, the task-specific model
shows significantly poor results especially on de-
pendency parsing which verifies our intuition that
the task-specific model is easily over-fitted and
only training the task-specific model is not suffi-
cient. Notably, UMM, self-training, and tri-training
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EN CA ID HI FI RU Avg.
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

7 DT-gold 93.30 87.67 92.80 88.61 89.10 81.80 88.54 80.41 84.65 74.67 92.20 86.20 90.10 83.23
7 DT-max(lang) 77.71 67.90 84.39 76.17 76.86 68.37 70.49 52.64 76.62 56.98 72.31 64.45 76.40 64.42

3 DT-Finetuning 49.75 41.87 53.59 48.38 47.19 38.39 50.32 41.58 32.88 22.22 35.87 28.78 44.93 36.87

7 DT-vote 80.94 71.65 83.82 75.81 77.79 66.76 75.98 63.18 68.23 52.82 79.80 69.62 77.76 66.64
7 DT-max 81.07 71.56 84.29 75.87 77.46 65.78 76.54 63.42 69.13 52.79 79.42 69.22 77.99 66.44
7 DT-mean 81.79 72.96 84.52 76.68 78.45 67.56 76.80 64.31 68.83 54.11 80.54 70.77 78.49 67.73

3 hard-KD-cat 82.16 74.29 84.41 77.13 78.28 68.26 77.26 65.56 69.61 55.80 80.28 70.90 78.67 68.66
3 hard-KD-vote 82.46 74.09 84.47 77.02 78.05 67.99 77.83 65.79 69.39 55.31 80.78 71.44 78.83 68.61
3 hard-KD-max 82.35 74.16 85.13 77.73 77.62 67.45 78.19 66.42 69.49 54.68 80.79 71.52 78.93 68.66
3 hard-KD-mean 82.69 74.61 84.85 77.41 78.11 68.45 78.23 66.45 69.88 56.04 81.15 72.08 79.15 69.17

3 UMM 82.89 73.44 83.02 73.24 78.28 63.21 75.36 61.38 66.85 49.13 80.40 70.84 77.80 65.21
3 Self-training1 83.89 74.64 83.76 74.10 79.01 63.31 77.56 63.31 67.95 50.39 80.78 72.20 78.82 66.33
3 Tri-training 2 83.97 74.64 83.80 75.34 79.17 63.49 77.94 63.89 68.35 51.07 80.51 71.84 78.96 66.71

3 soft-KD-avg3 82.07 74.64 84.80 77.82 78.18 68.73 78.27 67.46 68.90 54.84 80.83 72.12 78.84 69.27
3 soft-KD-sim4 81.49 72.46 85.49 78.39 77.59 67.90 78.28 67.38 68.63 54.58 80.93 72.19 78.74 68.82

3 Ours-lang 82.07 74.67 84.94 78.03 78.26 68.76 78.62 67.78 68.66 54.49 81.10 72.62 78.94 69.39
3 Ours-sent 82.33 74.89 85.25 78.10 78.62 69.03 78.74 67.91 69.06 56.13 81.19 72.54 79.20 69.77
3 Ours-sub 83.95 76.67 86.00 79.25 79.41 70.13 79.40 68.58 72.36 60.21 82.15 73.70 80.54 71.42
1 Yarowsky (1995); McClosky et al. (2006) 2 Ruder and Plank (2018) 3,4 Wu et al. (2020)

Table 2: Results on the dependency parsing task. (Refer to the caption of Table 1 for the format detail.)

do not yield improvements compared to hard-KD-
*, soft-KD-*, and Ours-*, verifying our motivation
that simply concatenating all training data is not
sufficient to model the difference between multiple
sources. We also observe that our three approaches
outperform the two KD approaches consistently, in-
dicating that their simple or heuristic-based aggre-
gation strategies are difficult to assess the diverse
quality of source models. It is also worth noticing
that with a more fine-grained aggregated source
view, the target view has stronger performance,
especially for Ours-sub 8. Even though UMM,
self-training, tri-training, and soft-KD-sim all uti-
lize source language training data during training,
Ours-sub achieves remarkable advantage over these
baselines without the extra resources, especially for
dependency parsing.

Other results Although Tri-training achieves the
highest score and UAS on De of NER and En of
parsing respectively, it is not statistically signif-
icant compared to Ours-sub and the gap is very
marginal (< 0.1%). For NER task, it is probably
due to the difference of the capitalization style be-
tween De and other languages on CoNLL NER
(Chen et al., 2019), which may lead to the negative
transfer problem 9. Besides, the gaps between the

8This is mainly due to the stronger cross-lingual ability of
the aggregated source view. We further analyze this in section
4.1.

9We speculate that KD-based approaches also suffer from
this problem and lead to low results. Our sub-structure-level

DT-gold and the best transfer approaches suggest
the large potential space on multi-source transfer
tasks.

4 Analysis

4.1 Why the Multi-View Framework Works?
In this section, we study the reason why the pro-
posed framework works. We show the performance
of the aggregated source view in Figure 2. It can be
seen that with a more fine-grained strategy, the per-
formance of the aggregated source view becomes
stronger. It demonstrates the effectiveness of more
fine-grained aggregation strategies in the multi-
source transfer. The only counter case is language
and sentence level on NL, and the performance
of the target view drops accordingly. Connecting
to Table 1, the target view has the same trends.
The reason is probably that the stronger aggregated
source view can lead to a stronger target view and
vice versa, and the framework achieves a good
trade-off to make them both improved.

4.2 Ablation Study
To further understand the proposed framework we
investigate the component contributions. We gradu-
ally remove some components of our sub-structure-
level model, i.e., LSCE, LTCE and LKL, and evaluate

approach is the second-best system in this case, indicating
that it can alleviate this problem by better leveraging labeled
data to access the confidence level of source models on more
fine-grained-level property.
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Figure 2: Performance of the aggregated source view
on CoNLL02/03 NER tasks.

EN DE NL ES Avg.

full model 84.95 76.16 83.85 79.79 81.19

w/o LS
CE 84.92 75.89 83.38 79.49 80.92

w/o LT
CE 84.88 75.59 83.33 79.32 80.78

w/o LS
CE & LT

CE 84.34 74.07 83.07 79.19 80.17
w/o LKL 72.59 54.60 57.19 71.06 63.86

Table 3: Ablation study of Ours-sub model on
CoNLL02/03 NER task. w/o denotes ‘without’.

on the NER task. We report the average results of
twenty-five runs 10 in Table 3. Without LKL the
approach degenerates into supervised training with
only fifty labeled data and it leads to the largest
drop in performance. It is because the model is
easily over-fitted. Though the performance drops
without one of LSCE and LTCE, it still outperform
KD-* baselines of Table 1. w/o LSCE leads to less
drops thanw/o LTCE, which suggest that the labeled
data influence more in the target model. Besides,
without both cross-entropy loss of labeled data, the
approach degenerates into a zero-shot manner and
results in inferior performance.

4.3 Different Sizes of Unlabeled Data or
Labeled Data

In this section, we study the impact of the sizes
of labeled data and unlabeled data on the tar-
get language for the ours-sub model. We ran-
domly select {10, 50, 200, 1000} labeled data and
{1000, 2000, 4000,All} unlabeled data. We repeat
each experiment five times and report the aver-
age results of both two views 11. It can be seen
that with more labeled data or unlabeled data, the
results both become higher and the labeled data
shows higher influence than the unlabeled data.
Unlike the aggregated source view, the target view
gains significantly larger boosts when the size of

10We randomly select five different copies of labeled data
and run five times for each copy.

11We only show the De results due to the space limitation.
The results of the other three languages can be found in the
Appendix C.2.

unlabeled data or labeled data increases (the aggre-
gation view generally shows comparable or even
superior results to the target view with fewer data).
This verifies our motivation that there exists a trade-
off between two views. With #0 unlabeled data,
the task-specific model is over-fitted when only
trained on #200 or less labeled data.

Target labeled data:
#10 #50 #200 #1000

Ta
rg

et
un

la
be

le
d

da
ta #0 1.22 — 49.13 — 68.53 — 77.01 —

#1000 68.95 70.38 73.42 75.59 75.75 76.11 77.47 77.18

#2000 70.94 71.09 75.18 76.15 76.54 76.37 78.48 77.66

#4000 71.78 71.89 76.49 76.41 77.52 76.59 78.77 77.69

All 74.61 74.66 76.56 76.44 78.26 77.07 79.18 77.76

Table 4: Results on different sizes of target unlabeled
data and labeled data on De of NER tasks. In each cell,
the right (underlined) and left part denote the results of
the aggregated source view and target view respectively.

5 Related Work

Cross-lingual Structured Prediction Compar-
ing to single-source transfer, the multi-source
transfer shows superior performance by leverag-
ing multi-source language knowledge (McDonald
et al., 2011; Rahimi et al., 2019; Hu et al., 2021).
However, the diverse quality of source models
sorely hurt the target model. To tackle this chal-
lenging problem, Ammar et al. (2016) leverage
language embeddings to model language topolog-
ical similarities. Rahimi et al. (2019) utilize truth
inference to obtain the best labeling over multi-
ple unreliable predictors. Hu et al. (2021) mod-
els the relations between the predicted labels from
the source models and the true labels.Approaches
based on the similarity of source and target data are
widely studied (Chen et al., 2019; Wu et al., 2020).

Multi/Cross-view Learning Multi-view learn-
ing learns multiple representations for the target
data. Tri-training approaches (Zhou and Li, 2005;
Ruder and Plank, 2018) leverage voting on three
separate models to select confident sentences. Jiang
et al. (2019); Cai and Lapata (2020) utilize simi-
larity metrics to regularize source-target language
pairs. Multi-view learning can also be utilized in
training NER models with different kinds of in-
put components (Wang et al., 2021). Cross-view
learning (Clark et al., 2018) is a semi-supervised ap-
proach that aims to boost the monolingual model’s
performance. It learns only one model with sev-
eral auxiliary prediction modules which are treated
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as different views. In contrast to it, we focus on
the cross-lingual scenario and our two views are a
target task-specific model and the aggregation of
multiple pre-trained source models.

Contextual Multilingual Language Model
Trained on massive unlabeled data of hundreds of
monolingual corpus, the contextual multilingual
models (Devlin et al., 2019; Conneau et al.,
2020) learn common representations for multiple
languages. Though cross-lingual transfer learning
significantly benefits from these models (Pires
et al., 2019; Wu and Dredze, 2019b), large gaps
still remain between low and high-resources setups
(Hu et al., 2020a; Wu and Dredze, 2020).

6 Conclusion

We propose a novel multi-view framework to selec-
tively transfer knowledge from multiple sources
by utilizing a small amount of labeled dataset.
Experimental results show that our approaches
achieve state-of-the-art performances on all tasks.
Moreover, even compared to approaches with ex-
tra resources like source language data, our sub-
structure-level approach still shows significant im-
provements.
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A Examples Mentioned in The
Introduction

Example #1 in practice, we are more likely to en-
counter the situation where some source languages
are not as similar to the target language and may
lead to worse performance (Rosenstein et al., 2005;
Rahimi et al., 2019). We show the example in Table
5. The results show that for a target language, the
gap between the score of different source models
can be large (> 10%).

Source \ Target EN DE NL ES

EN — 72.77 79.47 75.13
DE 75.96 — 78.47 70.74
NL 69.38 72.35 — 74.16
ES 68.55 63.37 69.12 —

Table 5: Direct bilingual transfer results on the
CoNLL02/03 NER task measured in F1 scores (%).
We use the multilingual BERT (mBERT) (Devlin et al.,
2019) stacked by a Softmax layer to train a source
model. Each source model is pre-trained on the labeled
training data of the source language and directly evalu-
ated on the target language test data. For a target lan-
guage, the gap between the highest and lowest scores
ranges from 4.4%-10.4%.

Example #2 The model/language level weights
can not well capture the diverse strength and weak-
ness of multiple source models. For example in
Table 6 12, none of the three source models predict
correctly on the whole sequence, but selecting pre-
dictions based on the sub-structure level can obtain
the correct label sequence.

12In this example, three pseudo predictions are from three
source models pre-trained on En, De, and Nl training set
respectively. The three pre-trained source models are obtained
in the same way in Table 5.

LOCKERBIE - JUICIO CHAVEZ PIDE AYUDA A ...

En BoOBo O B-PER I-PER O B-LOC O ...

De B-LOC O B-PER I-PER O O O ...

Nl BoOBo O O B-PER O O O ...

Mean BoOBo O B-PER I-PER O O O ...

Best BoOBo O O B-PER O O O ...

Gold B-LOC O O B-PER O O O ...

Table 6: A negative transfer example on Spanish tar-
get language. The three pre-trained source models are
obtained in the same way in Table 5. Except the sen-
tence of the first row, each row represent predictions
from English (En), German (De), Dutch (Nl) source
models and gold labels respectively. Mean and Best
denote the predictions from the uniform and the best
weights of three sources’ distributions on sentence level
respectively. Labels with red background denote wrong
predictions. Each source has its advantages on sub-
structure level.

B Experimental Details

B.1 Tasks

Dependency Parsing We randomly select five
languages together with the English dataset from
Universal Dependencies Treebanks (v2.2) for de-
pendency tasks. The whole datasets are English
(En), Catalan (Ca), Finnish (Fi), Indonesian (Id),
Hindi (Hi), and Russian (Ru). We do not use syntac-
tic information like gold POS tags as many super-
vised dependency parsers do since we can’t assume
they are accessible in practice especially for low-
resource languages. Even though we can obtain
pseudo tags by pre-trained POS taggers of high-
resource language, it may introduce unexpected
noises and disturb the experiments.

Named Entity Recognition We use the datasets
from CoNLL 2002 and CoNLL 2003 shared tasks
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003), which consist of four lan-
guages: En, German (De), Dutch (Nl), and Spanish
(Es). Each dataset contains four named entity types:
Organization, Person, Location, and Miscellaneous.
We use the standard splits with the BIO annotation
scheme.

POS Tagging For the POS tagging task, we use
the same six datasets as the dependency parsing
task.

https://doi.org/10.18653/v1/N18-1089
https://doi.org/10.18653/v1/N18-1089
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B.2 Model Configuration
We utilize the base cased multilingual BERT 13

(Devlin et al., 2019) which has 12 transformer
blocks, 12 attention heads, and 768 hidden units.
Before model training, the K source models are
pre-trained with the corresponding source language
training sets 14.

Evaluation We select the best hyper-parameters
based on the score of the development set on high-
resources language, which is English in practice,
and adopt the hyper-parameters to other languages.
This may lead to sub-optimal results for other lan-
guages but is more realistic (Artetxe et al., 2020).

B.3 Hyper-parameters
we select hyper-parameters based on the perfor-
mance on the English development set and apply
them to other target languages. We search the best
learning rate for the mBERT model of all the ap-
proaches in the range of {2e−5, 3e−5, 5e−5}, and
set it to 2e−5 for its best performance. We list the
important hyper-parameters as follows.

Learning Rate for The Top Layer The top
layer’s learning rate is generally larger than that
of mBERT. We search the best learning rate in the
range of {2e−3, 2e−4, 2e−5}.
Interpolations There are three interpolation
hyper-parameters in our framework: λ1, λ2, and
λ3 in section 2.4 of the main paper. We tune it in
the range of {0.5, 1, 3, 10}.
Sample Ratio There is a hyper-parameter µ
for controlling the ratio of the labeled data and
unlabeled data. We tune it in the range of
{0.05, 0.1, 0.3, 0.5, 0.7}.

C Additional Analysis

Linguistic Diversity When all the source lan-
guages are different from the target language, the
source models generally have poor quality and the
target model cannot benefit much from the source
models. In this case, the cross-lingual transfer is
more difficult. Intuitively, our approaches can dy-
namically learn the confidence level of multiple
source models and still facilitate cross-lingual trans-
fer in this case. We experiment on the dependency

13https://huggingface.co/
bert-base-multilingual-cased

14In practice, we can obtain the released pre-trained source
models on the open-source community, and thus there is no
need to use source language data.

English German Dutch Spanish Avg.

Multilingual 77.13 75.08 81.95 77.60 77.94
Self-training1 80.57 75.77 82.44 78.49 79.32
Tri-training2 80.99 75.99 82.54 78.28 79.45

KD-avg3 83.69 75.91 82.59 79.20 80.35
KD-sim4 83.70 75.92 82.76 79.39 80.44

Ours-sub 84.95 76.16 83.85 79.79 81.19

1 Yarowsky (1995); McClosky et al. (2006)
2 Ruder and Plank (2018) 3,4 Wu et al. (2020)

Table 7: The average results ( twenty-five runs)
of randomness test of fifty labeled data on
CoNLL02/03 NER task. We randomly select five
different copies of fifty labeled data (five runs for
each copy).

parsing task over the languages that are drastically
different from each other. The sources are English,
Mandarin, Arabic, and Vietnamese, and the target
is Turkish. In this setting, the source languages
are drastically different from the target language.
Our results show that Ours-sub (UAS 59.11, LAS
45.02) still outperforms the strongest baseline (KD,
UAS 58.69, LAS 44.36).

C.1 Effects of Random Seeds on Labeled
Data

We further explore the effects of randomness on
labeled data as mentioned in section 3 of the main
paper. We randomly select five different copies of
fifty labeled data to validate its influence. We com-
pare our sub-structure-level model to KD-* and
UMM based approaches on CoNLL02/03 NER
task. The results are shown in Table 7. Ours-sub
still consistently outperforms the second-best base-
line, which demonstrates that our approach is ro-
bust to randomness in the selection of labeled data.

C.2 Different Sizes of unlabeled data or
labeled data

In Table 8, we provide the whole analysis results
mentioned in section 4.3 of the main paper in this
section.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
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Target labeled data:
EN DE

#10 #50 #200 #1000 #10 #50 #200 #1000

Ta
rg

et
un

la
be

le
d

da
ta #0 0.84 — 71.13 — 81.85 — 87.07 — 1.22 — 49.13 — 68.53 — 77.01 —

#1000 79.45 79.38 82.71 82.56 85.06 84.37 87.01 85.73 68.95 70.38 73.42 75.59 75.75 76.11 77.47 77.18

#2000 82.59 82.13 84.23 84.12 85.43 84.87 87.40 85.77 70.94 71.09 75.18 76.15 76.54 76.37 78.48 77.66

#4000 83.92 83.99 84.27 84.22 85.64 85.00 87.45 85.80 71.78 71.89 76.49 76.41 77.52 76.59 78.77 77.69

All 84.73 84.71 84.78 84.72 86.34 85.4 87.46 85.78 74.61 74.66 76.56 76.44 78.26 77.07 79.18 77.76

NL ES

#10 #50 #200 #1000 #10 #50 #200 #1000

Ta
rg

et
un

la
be

le
d

da
ta #0 1.91 — 35.97 — 73.53 — 85.21 — 0.31 — 63.45 — 78.36 — 82.55 —

#1000 78.30 80.66 79.68 81.61 81.50 83.05 84.95 83.64 77.85 78.34 77.86 78.72 79.42 79.4 82.12 80.26

#2000 81.51 82.23 81.64 82.60 82.70 83.41 85.13 84.00 78.70 78.67 79.00 79.13 80.01 79.49 82.24 80.57

#4000 83.15 82.87 82.67 83.11 83.83 83.75 85.43 84.27 79.15 79.13 79.71 79.27 80.14 79.42 82.57 80.61

All 83.32 83.31 84.14 83.56 85.01 84.06 86.59 84.35 79.71 79.22 80.20 79.35 80.15 79.65 82.56 80.57

Table 8: Results on different sizes of target unlabeled data and labeled data. The numbers of vertical and horizontal
axis denote the unlabeled data sizes and labeled data sizes respectively. In each cell, the right (underlined) and left
part denote the results of the aggregated source view and target view respectively.


