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Abstract

We introduce the IDSOU1 submission for the
WNUT-2020 task 2: identification of informa-
tive COVID-19 English Tweets. Our system
is an ensemble of pre-trained language models
such as BERT. We ranked 16th in the F1 score.

1 Introduction

The spread of the COVID-19 is causing fear and
panic to people around the world. To monitor
the COVID-19 outbreaks in real-time, SNS anal-
ysis such as Twitter is attracting much attention.
Although there are 4 million COVID-19 English
Tweets posted daily on Twitter (Lamsal, 2020),
most of them are uninformative. Against this back-
ground, WNUT-2020 held a shared task2 (Nguyen
et al., 2020) to automatically identify whether a
COVID-19 English Tweet is informative or not.

Our system employs an ensemble approach
based on pre-trained language models. Such pre-
trained language models (Devlin et al., 2019; Yang
et al., 2019; Liu et al., 2019; Lan et al., 2020;
Conneau et al., 2020; Lewis et al., 2020) have
achieved high performance in various text classi-
fication tasks (Wang et al., 2019). In addition, we
employ domain-specific pre-trained language mod-
els (Lee et al., 2019; Alsentzer et al., 2019; Müller
et al., 2020) to build models suitable for COVID-19
and Twitter domains. Each model is optimized for
three types of loss functions, cross-entropy, neg-
ative supervision (Ohashi et al., 2020), and Dice
similarity coefficient (Li et al., 2020), which are
useful for various text classification tasks. Finally,
we ensemble 48 classifiers based on 16 pre-trained
language models and 3 loss functions with a ran-
dom forest classifier (Breiman, 2001).

1Institute for Datability Science, Osaka University
2http://noisy-text.github.io/2020/

Train Dev Test

Informative 3,303 472 944
Uninformative 3,697 528 1,056

Total 7,000 1,000 2,000

Table 1: Statistics of the dataset.

2 WNUT-2020 Shared Task 2

In the shared task (Nguyen et al., 2020), systems
are required to classify whether a COVID-19 En-
glish Tweet is informative or not. Such informa-
tive Tweets provide information about recovered,
suspected, confirmed and death cases as well as
location or travel history of the cases. The 10,000
COVID-19 English Tweets3 shown in Table 1 have
been released for the shared task.

The baseline system is based on fastText (Bo-
janowski et al., 2017). Systems are evaluated by
accuracy, precision, recall and F1 score, and are
ranked by F1 score, which is the main metric. Note
that the latter three metrics are calculated for the
informative class only.

3 IDSOU System

We first introduce each base model in Section 3.1
and each loss function in Section 3.2. We then in-
troduce the ensemble model in Section 3.3. Finally,
Section 3.4 describes the implementation details.

3.1 Base Models

Recently, the fine-tuning approach for pre-trained
language models (Devlin et al., 2019) has achieved
the highest performance for many text classifica-
tion tasks (Wang et al., 2019). We employ the
following pre-trained language models of six types
of architecture for the shared task.

3https://github.com/VinAIResearch/COVID19Tweet

http://noisy-text.github.io/2020/
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BERT (Devlin et al., 2019) The transformer en-
coder pre-trained by multitask learning of
masked language modeling and next sentence
prediction. We employ three types of pre-
trained models, BERT-base,4 BERT-large,5

and BERT-large-wwm.6 BERT-base consists
of 12 transformer layers, 12 self-attention
heads per layer, and a hidden size of 768.
BERT-large and BERT-large-wwm consist of
24 transformer layers, 16 self-attention heads
per layer, and a hidden size of 1,024.

XLNet (Yang et al., 2019) The transformer en-
coder pre-trained by permutation language
modeling. We employ two types of pre-
trained models, XLNet-base7 and XLNet-
large.8 The parameters of XLNet-base and
XLNet-large are the same as BERT-base and
BERT-large, respectively.

RoBERTa (Liu et al., 2019) The transformer en-
coder pre-trained by masked language mod-
eling. RoBERTa has the same architecture as
BERT, but pre-trains more steps on larger data
with larger batch sizes. We employ two types
of pre-trained models, RoBERTa-base9 and
RoBERTa-large.10

XLM-RoBERTa (Conneau et al., 2020)
The multilingual transformer encoder pre-
trained by masked language modeling. We
employ a pre-trained model of XLM-
RoBERTa-base.11 XLM-RoBERTa-base con-
sists of 12 transformer layers, 8 self-attention
heads per layer, and a hidden size of 3,072.

ALBERT (Lan et al., 2020) The transformer en-
coder pre-trained by multitask learning of
masked language modeling and sentence or-
der prediction. ALBERT has significantly
fewer parameters than the traditional BERT
architecture due to two parameter reduction
techniques, factorized embedding parame-
terization and cross-layer parameter sharing.

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/bert-large-uncased
6https://huggingface.co/bert-large-uncased-whole-word-

masking
7https://huggingface.co/xlnet-base-cased
8https://huggingface.co/xlnet-large-cased
9https://huggingface.co/roberta-base

10https://huggingface.co/roberta-large
11https://huggingface.co/xlm-roberta-base

We employ two types of pre-trained mod-
els, ALBERT-base12 and ALBERT-large.13

ALBERT-base and ALBERT-large have the
same number of layers, attention heads, and
hidden size as BERT-base and BERT-large,
respectively, but the embedded size is 128.

BART (Lewis et al., 2020) The denoising autoen-
coder based on a bidirectional transformer en-
coder and a left-to-right transformer decoder.
We employ two types of pre-trained models,
BART-base14 and BART-large.15 BART-base
consists of 12 transformer layers, 16 self-
attention heads per layer, and a hidden size of
768. BART-large consists of 24 transformer
layers, 16 self-attention heads per layer, and a
hidden size of 1,024.

The language models mentioned above are pre-
trained on corpora in the general domain such as
the BookCorpus (Zhu et al., 2015) and English
Wikipedia. Recent studies (Lee and Hsiang, 2019;
Beltagy et al., 2019) have revealed that language
models pre-trained on a domain-specific corpus
achieve better performance in that domain. We
employ the following three types of BERT models
pre-trained on large-scale corpora of the medical
domain and Twitter domain to build a classifier
suitable for COVID-19 English Tweets.

BioBERT (Lee et al., 2019) The BERT encoder
pre-trained on corpora in the biomedi-
cal domain such as PubMed abstracts
(PubMed)16 and PubMed Central full-text
articles (PMC).17 We employ two types
of pre-trained models, BioBERT-base18 and
BioBERT-large.19

ClinicalBERT (Alsentzer et al., 2019)
The BERT encoder pre-trained on corpora in
both biomedical and clinical domains such
as PubMed, PMC, and the MIMIC-III v1.4
database (Johnson et al., 2016). We employ
a pre-trained ClinicalBERT20 model with the
same architecture as BERT-base.

12https://huggingface.co/albert-base-v2
13https://huggingface.co/albert-large-v2
14https://huggingface.co/facebook/bart-base
15https://huggingface.co/facebook/bart-large
16https://www.ncbi.nlm.nih.gov/pubmed/
17https://www.ncbi.nlm.nih.gov/pmc/
18https://huggingface.co/dmis-lab/biobert-v1.1
19https://huggingface.co/trisongz/biobert large cased
20https://huggingface.co/emilyalsentzer/Bio ClinicalBERT
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XE NS DS

BERT-base 0.899 0.904 0.890
BERT-large 0.898 0.899 0.879
BERT-large-wwm 0.901 0.910 0.902
XLNet-base 0.898 0.909 0.885
XLNet-large 0.911 0.907 0.892
RoBERTa-base 0.906 0.909 0.896
RoBERTa-large 0.916 0.908 0.887
XLM-RoBERTa 0.891 0.879 0.856

XE NS DS

ALBERT-base 0.907 0.893 0.883
ALBERT-large 0.900 0.897 0.867
BART-base 0.886 0.885 0.880
BART-large 0.908 0.905 0.855
BioBERT-base 0.893 0.889 0.873
BioBERT-large 0.896 0.897 0.859
ClinicalBERT 0.879 0.877 0.878
COVID-Twitter-BERT 0.922 0.923 0.926

Table 2: F1 scores of each loss function on the development set.

COVID-Twitter-BERT (Müller et al., 2020)
The BERT encoder pre-trained on the COVID-
19 English Tweets. These are 160M Tweets
collected between January 12 and April 16,
2020 containing at least one of the keywords
”wuhan”, ”ncov”, ”coronavirus”, ”covid”,
or ”sars-cov-2”. We employ a pre-trained
COVID-Twitter-BERT21 model with the same
architecture as BERT-large.

3.2 Loss Functions

We train classifiers based on pre-trained language
models with the following three loss functions.

XE: Cross Entropy
We employ the following cross-entropy loss
commonly used in text classification tasks.

LXE =
1

N

N∑
i=1

logPi (1)

where Pi := P (yi|Xi), yi is the gold label,
and Xi is the input text.

NS: Negative Supervision (Ohashi et al., 2020)
This loss function separates the representation
of Tweets with different labels.

LNS = LXE +
1

NM

N∑
i=i

M∑
n=1

cos(vi,vn)

(2)

where vi is the representation of i-th text and
vn is that of negative examples, i.e. text rep-
resentations that has different labels. We set
the number of negative examples M = 2.

21https://huggingface.co/digitalepidemiologylab/covid-
twitter-bert

Loss F1

BERT-large XE 0.898
COVID-Twitter-BERT XE 0.922
Ensemble: 16 models XE 0.929
Ensemble: 48 models XE+NS+DS 0.933

Table 3: Performance comparison of single model and
ensemble model on the development set.

DS: Dice Similarity Coefficient (Li et al., 2020)
The loss function based on Dice-coefficient.
The gap between maximizing F1 score and
minimizing DS loss is less than that of
minimizing XE loss.

LDS =
1

N

N∑
i=1

[
1− 2(1− Pi)Piyi + γ

(1− Pi)Pi + yi + γ

]
(3)

For smoothing purpose, we simply set γ = 1
following Li et al. (2020).

3.3 Ensemble Model
We ensemble 48 classifiers (16 pre-trained lan-
guage models for each 3 loss functions) described
above to make prediction stable. The Random For-
est Classifier (Breiman, 2001) is trained using k-
fold cross-validation on the development with the
probabilities of the informative class estimated by
each base model as the features.

3.4 Implementation Details
We implemented all models based on the Hug-
ging Face’s Transformers (Wolf et al., 2019) with
Adam optimizer (Kingma and Ba, 2015). Hyper-
parameters of each base model were determined
from the following combinations based on the F1
score in the development set.
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Rank Team F1 Precision Recall Accuracy

1 NutCracker 0.9096 0.9135 0.9057 0.9150
2 NLP North 0.9096 0.9029 0.9163 0.9140
3 SupportNUTMachine 0.9094 0.9046 0.9142 0.9140
4 #GCDH 0.9091 0.8919 0.9269 0.9125
5 Loner 0.9085 0.8918 0.9258 0.9120
...

11 Husky 0.8992 0.8959 0.9025 0.9045
12 Hanoi001 0.8991 0.8787 0.9206 0.9025
13 UET 0.8989 0.8891 0.9089 0.9035
14 Emory 0.8974 0.8744 0.9216 0.9005
15 NJU ConvAI 0.8973 0.8751 0.9206 0.9005
16 IDSOU 0.8964 0.8988 0.8941 0.9025
17 ComplexDataLab 0.8945 0.9195 0.8708 0.9030
18 UPennHLP 0.8941 0.9028 0.8856 0.9010
19 datamafia 0.8940 0.8857 0.9025 0.8990
20 NIT COVID-19 0.8914 0.8594 0.9258 0.8935
21 NHK STRL 0.8898 0.8985 0.8814 0.8970
...

48 BASELINE 0.7503 0.7730 0.7288 0.7710
...

55 TMU-COVID19 0.5789 0.5000 0.6875 0.5280

Table 4: Official results in descending order of the F1 score.

• Batch size: [16, 32]
• Learning rate: [1e-5, 3e-5, 5e-5]
• Early stopping: [5]

We implemented the ensemble model based on
the scikit-learn (Pedregosa et al., 2011). Hyper-
parameters of the random forest classifier were
determined through 5-fold cross-validation from
the following combinations in the development set.

• n estimators: [50, 100, 150]
• max depth: [2, 4, 8]
• min samples split: [2, 8, 32]
• max samples: [0.2, 0.5, 0.8, 1.0]

We followed the default data split provided by
the task organizers. No external data has been used.

4 Results

Table 2 shows the F1 scores of each base model on
the development set. The COVID-Twitter-BERT
pre-trained with the in-domain corpus achieved the
highest performance as expected. Since non-expert
posts make up the majority of SNS, models pre-
trained in the biomedical and clinical domains did
not outperform that of the general domain.

Regarding the loss function, XE loss showed
stable performance. NS loss is effective for 6 out
of 16 models and seems to be compatible with
BERT. DS loss achieved the best performance in
combination with COVID-Twitter-BERT, although
overall performance is not high.

Table 3 shows the effect of our ensemble method.
These results reveal the effectiveness of the ensem-
ble of both different pre-trained language models
and different loss functions.

Table 4 shows the official results. We ranked
16th out of 55 teams in the F1 score.

5 Conclusions

We describe the IDSOU submission for the WNUT-
2020 task 2. Our system is an ensemble model
based on 16 pre-trained language models and 3
loss functions with a random forest classifier. In
the official result, we ranked 16th out of 55 teams.
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