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Abstract

The outbreak of COVID-19 has greatly im-
pacted our daily lives. In these circumstances,
it is important to grasp the latest information
to avoid causing too much fear and panic. To
help grasp new information, extracting infor-
mation from social networking sites is one of
the effective ways. In this paper, we describe
a method to identify whether a tweet related
to COVID-19 is informative or not, which can
help to grasp new information. The key fea-
tures of our method are its use of graph atten-
tion networks to encode syntactic dependen-
cies and word positions in the sentence, and
a loss function based on connectionist tempo-
ral classification that can learn a label for each
token without reference data for each token.
Experimental results show that the proposed
method achieved an F1 score of 0.9175, out-
performing baseline methods.

1 Introduction

The outbreak of COVID-19 that has occurred since
the end of 2019 has greatly impacted our daily lives.
In these circumstances, it is important for every-
one to understand the situation and grasp the latest
information to avoid causing too much fear and
panic. Nowadays, social networking sites (SNSs)
such as Twitter and Facebook are important in-
formation sources because users post information
regarding their personal events—including that re-
lated to COVID-19—in real time. For this rea-
son, many monitoring systems for COVID-19 have
been developed such as The Johns Hopkins Coron-
avirus Dashboard1 and the COVID-19 Health Sys-
tem Response Monitor2. Many systems use SNSs
as resources, but largely depend on manual work
such as using cloud sourcing to extract informative
posts from massive numbers of uninformative ones.
Generally, SNSs contain too much information on

*These authors are equally contributed to this work.
1https://coronavirus.jhu.edu/map.html
2https://www.covid19healthsystem.org

miscellaneous topics, so extracting important in-
formation is difficult. Therefore, we attempted to
develop a method to extract important information.

Our method first embeds each token in the input
sentence using BERT (Devlin et al., 2019). Then,
the vectors are fed into graph attention networks
(GATs) (Veličković et al., 2018) to encode token-
to-token relations. Finally, our method classifies
each vector into labels using feed-forward neural
networks (FFNNs). In the training process, we use
a loss function based on connectionist temporal
classification (CTC) (Graves et al., 2006). Experi-
mental results show that our method using GATs
and the CTC-based loss function achieved an F1
score of 0.9175, outperforming baseline methods.

Our contributions are as follows: (1) We propose
a GAT-based network to embed syntactic depen-
dencies and positional features of tokens in an in-
put sentence. (2) We also propose a loss function,
which enables to train labels for each token. (3) We
confirmed the effectiveness of our proposed meth-
ods using the identification of informative COVID-
19 English Tweets shared task dataset.

2 Identifying Informative COVID-19
Tweets Shared Task

The identification of informative COVID-19 En-
glish Tweets3 is a shared task held at W-NUT
(Workshop on Noisy User-generated Text) 2020
(Nguyen et al., 2020b). The purpose of the task
is to identify whether English tweets related to
COVID-19 are informative or not. The dataset for
the task contains 7,000 tweets for training, 1,000
for validating, and 2,000 for testing. Each tweet
in the data, excluding those in the testing data are
labelled informative or uninformative. The target
metric of the task is the F1 score for informative
tweets.

3http://noisy-text.github.io/2020/
covid19tweet-task.html

https://coronavirus.jhu.edu/map.html
https://www.covid19healthsystem.org
http://noisy-text.github.io/2020/covid19tweet-task.html
http://noisy-text.github.io/2020/covid19tweet-task.html
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Figure 1: Overview of our method. Our method first embeds each token in an input sentence using BERT. Also,
syntactic dependencies are obtained using a dependency parser. Then, our method embeds syntactic features using
GATs, by using a graph that has nodes of token-embedding vectors and edges of syntactic dependencies and self-
loops. Positional features are also added to the graph. The output vectors of the GATs are concatenated with BERT
output vectors, and then fed into 2-layer FFNNs, which classifies each vector into labels. If one or more vectors are
labelled as informative, the output class is informative. Note that the arrows in the the dependency parser example
connect the head word to the dependent word as to follow a convention. On the other hand, arrows in the GAT
example connect the dependent word to the head word, as used in our proposed method.

3 Methods

The overview of our method is illustrated in Figure
1. The key features of our method are embedding
syntactic dependencies and positional features us-
ing GATs (Veličković et al., 2018), and calculating
loss in the training process using a loss function
based on CTC (Graves et al., 2006).

We use masked-token estimation as multi-task
learning to help improve the generalization capa-
bility. We use word-dropout (Sennrich et al., 2016)
before BERT, and the “dropped” tokens are used
as masked words to be estimated in the training
process as a multi-task.

3.1 GATs for encoding token-to-token
relations

The BERT model, which we use for token embed-
ding, uses position encoding to consider the posi-
tion of tokens in the model, but its ability to capture
global information including syntactic features is
limited (Lu et al., 2020). Therefore, we use GATs
with syntactic dependencies as edges of the graph,
which enables our method to handle syntactic de-
pendency explicitly. This is inspired from the work
of Huang and Carley (2019).

We use all of the universal dependency (McDon-
ald et al., 2013) as a directional edge regardless of
dependency type4. The tokenizer used in BERT

4We attempted to use each type separately with the GAT,
but the results were worse regardless of dependency types.

often separates a single word into many tokens. We
connect edges from all tokens of a word to all to-
kens of the head word. For example, if there is
a relation between the two words COVID-19 and
tweet, and the former word is divided into two to-
kens COVID and ##-19, our method connects the
two edges, COVID to tweet and ##-19 to tweet.

The GAT is based on multi-head attention
(Vaswani et al., 2017) among neighbor nodes, with
all the connected nodes used as the keys and val-
ues of the attention calculation. In many cases,
the number of incoming edges for a node is only
zero or one if syntactic dependencies are used as
edges. Nodes that have no incoming edges cannot
update the vector in the GATs. Also, for nodes that
have only one incoming edge, the attention weight
in the multi-head attention is 1.0, which leads to
poor results. To overcome this problem, a self-loop
for each node was proposed (Huang and Carley,
2019; Xu and Yang, 2019). Following that, we use
a self-loop for each node in the GATs.

Positional features
Many edges are concentrated on the root word of
a sentence, so the GATs treats all nodes equally.
On the other hand, nearby and distant words are
generally more and less related to the root word,
respectively. To simulate this, we use positional
encoding to our GATs. We use the relative distance
between tokens as a parameter, then embed them
along with the attention coefficient between nodes



326

blank

blank

blank

label

label

…

CTCTC

……………

1 2 3 4 5 6

CTC

label

Figure 2: CTC is calculated as the sum of two proba-
bilities in the blue box, while CTCTC is the sum of all
probabilities except for the all-blank path as shown in
the red box. Green and yellow boxes and orange arrow
show the direction of label smoothing, token smooth-
ing, and leaking, respectively.

when calculating the multi-head attention on the
basis of the work from Ingraham et al. (2019) and
Ishiwatari et al. (2020).

Following the work of Ishiwatari et al. (2020),
we compared two types of positional embedding in
our experiments, fixed and learned.

For fixed, we use the following representation as
a positional embedding between the i-th and j-th
tokens of the sentence:

PEijfixed = L− (i− j) , (1)

where L is the number of tokens in the sentence.
For learned, we use a 1-layer FFNN with an

input of PEijfixed as a positional embedding as fol-
lows:

PEijlearned = WPEPE
ij
fixed + bPE , (2)

where WPE ∈ R|1×1| and bPE ∈ 1|d| are a learn-
able weight and bias, respectively.

The positional features are then broadcasted into
PEij ∈ |1× d| where d is the dimension of a GAT
layer, and added after calculating the multi-head
attention along the edges in the graph.

3.2 CTC for Text Classification (CTCTC)

Most tweets that were labelled as informative con-
tain not only informative phrases but also unin-
formative parts. To consider this, we propose a
new loss function—CTC for Text Classification
(CTCTC).

The basis of CTC
Let us consider the input sequence of probabilities
x ∈ R|T |×|L| where |T | denotes the length of the
sequence and |L| denotes the number of labels to

classify. Note that L includes blank, which is a spe-
cial symbol for CTC labelled for the data in which
no labels are aligned. The probability pctc(y|x) for
input x and reference data y ∈ 1≤|T | is calculated
as follows:

pctc(y|x) =
∑

π∈B−1(y)

p(π|x) , (3)

where B−1 is the inverse of the many-to-one
map B of all possible labellings from the in-
put to reference data. In generating B, blanks
are inserted between each label in y, i.e., for
y = {y1, y2, · · · , y|y|}, a modified reference
y′ = {blank, y1, blank, y2, · · · , y|y|, blank} is used
to generate B. In Figure 2, B is equal to the set of
the paths of black arrows that finally reach one of
the two dots in the blue box. Then, pctc represents
the probability of the sum of all probabilities of
paths that pass all labels with the given order as
reference data, which is shown as the sum of two
probabiliuties in the blue box in Figure 2.

CTCTC loss
We use a CTC-based loss function that is utilized
for text classification. Our loss function accepts
the reference data ȳ, which is a single label for an
“informative” or “uninformative” sentence in the
task, and assign a label or blank for all tokens in the
sentence. It works by handling the uninformative
parts in informative tweets as blank automatically.

Calculating CTCTC is almost the same as CTC,
differing only in the construction of the many-to-
one map. First, CTCTC arranges a sufficient num-
ber of the given reference label ȳ and blank, i.e.,
ȳ′ = {blank, ȳ, blank, ȳ, · · · , ȳ, blank}. Then, B̄ is
generated, which is the set of all possible labellings
from the input x to modified reference data ȳ′ re-
gardless of the number of passed labels in ȳ′. In
Figure 2, B̄ is equal to the set of the paths of black
arrows that finally reach one of the dots in the red
box. To calculate a CTCTC loss, B̄ is used instead
of B in Equation (3). As a result, the probability
pctctc represents the probability of at least one to-
ken in the input sequence being aligned to the label
ȳ, which is illustrated as the sum of all dots in the
red box in Figure 2.

Smoothing for CTCTC
CTCTC tends to align most tokens to blank, and
only one token to the reference label. This is be-
cause the probability for blank is learned for every
sentence in the training data regardless of its label,
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so the probability tends to be high for all data. To
avoid the probabilities of all data being learned as
blank, we prepare three types of smoothing.

Label smoothing We use label smoothing
(Szegedy et al., 2016), which is a regularization
technique to avoid overfitting and overconfidence.
This replaces the one-hot reference label l with the
smoothed label l′(k) as follows:

l′(k) = (1− ε)δk,l +
ε

K
, (4)

where δk,l is the Dirac delta function, which equals
1 when k = l and 0 otherwise, K is the set of
labels to classify, and ε is the smoothing rate. The
label-wise smoothing is illustrated as a green box
in Figure 2.

Token smoothing This is almost the same as la-
bel smoothing but differs in the direction of the
smoothing—token-wise. It works on the basis that
words close together often have similar meanings.
We set the max width to 5 to consider this smooth-
ing in the experiments. The token-wise smoothing
is illustrated as a yellow box in Figure 2.

Leaking To enable learning the probability for
labels instead of blank, we use the one-direction
smoothing named “leaking.” This is calculated as
follows:

p′i,blank = (1− ε′)pi,blank + ε′pi,ȳ , (5)

where ε′ is the smoothing rate, pi,blank and pi,ȳ are
the probabilities for blank and the reference label
ȳ of i-th data of the input sequence, respectively.
This is calculated only for the probability of blank,
and is illustrated as an orange arrow in Figure 2.

4 Experiments

4.1 Experimental settings
Our experiments were based on the identification
of informative COVID-19 English Tweets dataset
mentioned in Section 2. We conducted two exper-
iments on the basis of the validation and testing
data, respectively. For the validation data-based
experiment, we used training data contains 7,000
tweets and validating data contains 1,000 tweets
for training and testing, respectively. For the test-
ing data-based experiment, we used 8,000 tweets
mixed from the training and validating data for 4-
fold cross validation. Then, an ensemble of the best
model of each fold data were used for testing data.

Input BERT GATs FFNNs CTCTC Output

Proposed Method

NO GATs Max 
Pooling

Cross 
Entropy 

Loss

NO CTCTC

Figure 3: Overview of baseline methods. Green ele-
ments show the process of our proposed method. The
blue arrow and orange elements show the process of a
baseline method that does not use GATs and does not
use CTCTC, respectively.

We added the output scores of each model for the
model ensemble.

The models were implemented in PyTorch
(Paszke et al., 2019), with Transformers (Wolf et al.,
2019) and Deep Graph Library (Wang et al., 2019),
and learned with the RAdam optimizer (Liu et al.,
2020) with a learning rate of 0.0001. We used
BERT-base, uncased (Devlin et al., 2019) as a pre-
trained model, with fine-tuning and a learning rate
of 0.00002. We used spaCy (Honnibal and Mon-
tani, 2017) for dependency parsing.

The following hyperparameters were used: num-
ber of GATs layers was 2; a mini-batch size of 16;
L2 regularization coefficient of 0.1; dropout rate of
0.1; word dropout rate of 0.2; 50 training iterations,
with early stopping on the validating data on the
basis of the F1 score for the informative class; and
smoothing ratio for the three smoothing methods
of CTCTC of 0.2.

4.2 Baseline methods

We prepared baseline methods as shown in Figure
3. To confirm the effectiveness of the GATs, a
baseline method of “no GATs” that does not use
GATs but the output vectors of BERT is directly fed
into the FFNNs. Also, to confirm the effectiveness
of CTCTC, a baseline of “no CTCTC” that does
not use CTCTC but cross entropy loss is used.

4.3 Results

Table 1 shows the results for the validation data-
based experiment. The rows in which Use GATs
and Use CTCTC are not checked indicate the base-
lines shown in Section 4.2. F1 score shows the
F1 score for the informative class with the mean
and standard deviation of five-time trials of the
same settings. Our methods using both GATs and
CTCTC (# 9 and 10) achieved the top-2 results in
the table.

Table 2 shows the results on the test data, which
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Table 1: Experimental results on validation data-based experiments.
GATs parameters CTCTC parameters F1 score

# Use
GATs

Positional
feature

Use
CTCTC

Label
smoothing

Token
smoothing Leaking

1 0.9154 ± 0.0041
2 3 0.9134 ± 0.0015
3 3 Fixed 0.9151 ± 0.0026
4 3 Learned 0.9151 ± 0.0009
5 3 0.0000 ± 0.0000
6 3 3 0.9128 ± 0.0026
7 3 3 3 0.9133 ± 0.0052
8 3 3 3 3 0.9153 ± 0.0024
9 3 Fixed 3 3 3 3 0.9172 ± 0.0027

10 3 Learned 3 3 3 3 0.9175 ± 0.0044

Table 2: Results on the test data.

Team / Method F1 score
Ours (#9 in Table 1) 0.8898
Ours (#10 in Table 1) 0.8885

NutCracker 0.9096
NLP North 0.9096
UIT-HSE 0.9094

are the official results of the shared task and we
ranked 21st out of 55 participants5. The table also
shows the results of the top-3 teams in the shared
task.

4.4 Discussion
The results for the methods using GATs with
CTCTC (#9 and 10) are better than the others. This
is because our CTCTC uses vectors of each token
so the performance depends on the quality of the
vector of each token. Our GATs work to improve
the quality of the vector of each token by using
token-to-token relations. Therefore, we believe
our GATs and CTCTC work well in combination.
On the other hand, GATs without CTCTC cannot
make the best use of the improved vectors because
they are mixed up vectors of tokens into one vector
using max-pooling, so some of the details of the
vectors are lost. Also, in using CTCTC without
GATs, we observed that the output vectors of each
token in the sentence are almost the same. This
means that token-level information is lost, so accu-
racy may be lower for methods using CTCTC in
these cases. By using GATs with CTCTC, we can
avoid losing the information, which leads to good
results.

5 Related Work

There are a number of methods that use GATs with
a pre-trained language model. Lu et al. (2020) use

5https://competitions.codalab.org/
competitions/25845#results

a network on a vocabulary graph, which is based
on word co-occurrence information, and Huang
and Carley (2019) and Xu and Yang (2019) use
syntactic features as a graph. Also, there are several
methods that use positional encoding into GATs
(Ingraham et al., 2019; Ishiwatari et al., 2020). Our
method uses GATs to consider syntactic features
with positional features in combination, which is
distinguishable from conventional methods.

The CTC loss function is widely used for long
data sequence with not-one-to-one-aligned refer-
ence data such as speech recognition (Graves et al.,
2013; Kim et al., 2017), but to the best of our knowl-
edge, no method that uses CTC for text classifica-
tion tasks exists.

6 Conclusion and Future Work

In this paper, we proposed a GATs-based model
that embeds token-to-token relations, and a loss
function that can learn classes for each tokens. We
conducted evaluations using the identification of
informative COVID-19 English Tweets dataset, and
confirmed that our proposed methods are effective.

To determine whether CTCTC can work for
other tasks especially for the classification into
large amount of classes and to exploit pre-trained
models other than BERT, especially for tweet-
specific models such as BERTweet (Nguyen et al.,
2020a) and CT-BERT (Müller et al., 2020), are
subjects of as our future work.
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car Täckström, et al. 2013. Universal dependency
annotation for multilingual parsing. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 92–97.

Martin Müller, Marcel Salathé, and Per E Kummervold.
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