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Abstract

We investigate using Named Entity Recog-
nition on a new type of user-generated text:
a call center conversation. These conver-
sations combine problems from spontaneous
speech with problems novel to conversational
Automated Speech Recognition, including in-
correct recognition, alongside other common
problems from noisy user-generated text. Us-
ing our own corpus with new annotations,
training custom contextual string embeddings,
and applying a BiLSTM-CRF, we match state-
of-the-art results on our novel task.

1 Introduction

When a call center says “a call may be recorded”,
they are often collecting a transcript. These tran-
scripts are the output of speech recognition systems,
and while they are redacted for Payment Card In-
dustry (PCI) compliance, they often contain other
information about the caller such as their name and
internal ID number. This data can be helpful for
quality assurance and future customer care. New
privacy laws, such as the General Data Protection
Regulation (GDPR) in the EU, define rules and reg-
ulations for everything from how data is collected
and stored to the rights of a person to retract their
consent to the use of their data (gdp, 2019). In the
face of these new laws, it is important to be able to
identify non-public personal information and per-
sonally identifiable information (NPI/PII) in call
transcripts in order to comply with regulations with-
out compromising the data these companies rely
on.

We use Named Entity Recognition (NER) to
find instances of NPI/PII, remove them from a
transcript, and replace them with a tag identify-
ing which type of information was removed. For
example, a transcript containing “This is john doe
reference number 12345” would become “This is

[NAME] reference number [NUMBER]”. This
problem is unique in a call center for a few reasons.
Firstly, call transcripts are organic human conversa-
tions and present many of the common problems of
user-generated data, including false starts, incom-
plete sentences, and novel words. Secondly, the
text provided in a transcript is the output of an Au-
tomatic Speech Recognition (ASR) system, which
is prone to error as described in Section 3.1. While
modern ASR systems are reliable, our input audio
is from phone calls, which are usually very low-
quality and often contain a lot of background noise.
This low-quality audio results in poor ASR, which
then outputs sentences that may not be grammatical.
This makes it difficult to understand the semantics
of the call or to pick up on many of the features that
are critical to most NER systems such as context
or part of speech. Additionally, production-level
call transcripts, or those that are used by Quality
Assurance agents and data scientists, are missing
capital letters, numeric digits, and accurate punc-
tuation, which are features that are crucial to the
classic approaches to NER. Moreover, traditional
NER systems use labels for proper nouns, like peo-
ple’s names, but have no way to handle emails,
spellings, or addresses, making bootstrapping from
pretrained NER models impossible.

In this paper, we apply the current state-of-the-
art neural architecture for sequence labeling, a
BiLSTM-CRF, to our novel call center transcripts
in search of NPI and PII as identified by a human.
We match state-of-the-art performance for standard
datasets on our novel problem by using our model
in conjunction with annotated data and custom con-
textual string embeddings.

2 Previous Work

NER became popular in the NLP community at
the Message Understanding Conferences (MUCs)
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during the 1990s (Hirschman, 1998). In 2003, the
CoNLL2003 shared task focused on language in-
dependent NER and popularized feature based sys-
tems (Tjong Kim Sang and De Meulder, 2003).
The OntoNotes corpus, released in 2006, has also
been fundamental to NER research (Hovy et al.,
2006).

After CoNLL, the highest performing models
were based on a CRF (Lafferty et al., 2001) which
requires the manual generation of features. More
recently, research has used neural techniques to
generate these features. Huang et al. (2015) found
great success using Bidirectional Long Short Term
Memory models with a CRF layer (BiLSTM-CRF)
on both the CoNLL2000 and CoNLL2003 shared
task datasets. Ma and Hovy (2016) used a BiLSTM-
CNN-CRF to do NER on the CoNLL2003 dataset,
producing state-of-the-art results. Similarly, Chiu
and Nichols (2015) used a BiLSTM-CNN, with
features from word embeddings and the lexicon,
which produced very similar results. Ghaddar and
Langlais (2018) used embeddings for the words
and for entity types to create a more robust model.
Flair, proposed by Akbik et al. (2018), set the cur-
rent state of the art by using character based embed-
dings, and built on this with their pooling approach
in 2019 (Akbik et al., 2019). Crossweigh, a frame-
work introduced by Wang et al. (2019), makes use
of Flair embeddings to clean mishandled annota-
tions.

In 2006, Sudoh et al. used the word confidence
scores from ASR systems as a feature for NER on
the recordings of Japanese newspaper articles. In
2018, Ghannay et al. (2018) conducted a similar
experiment on French radio and TV audio. Unlike
our data, neither of these tasks used spontaneous
conversation. Additionally, the audio was probably
recording-studio quality, making ASR a reliable
task.

2.1 Conversations are Different: The Twitter
Analogy

All of the previous work discussed was run on
datasets primarily comprised of newswire data (Li
et al., 2018). Typically, newswire follows the con-
ventions of normal text, but call center transcripts
have none of these conventions guaranteed and of-
ten explicitly lack them entirely. This is a problem
for the traditional approaches to NER. Our low-
quality audio adds to the difficulty of this task.

The closest approximation of this problem in

Speaker 1: Thank you for calling our company
how may i help you today.
Speaker 2: Id like to pay my bill.

Figure 1: An example of turns of a conversation, where
each person’s line in the dialogue represents their turn.
This output matches the format of our data described in
Section 3.

the previous research is on Twitter data. Tweets,
like transcripts, are generated by users and may
not follow the grammar, spelling, or formatting
rules that newswire is so careful to maintain. In
2011, Liu et al. (2011) used a K-nearest neighbors
model combined with a CRF to begin tackling this
problem. As part of the 2017 Workshop on Noisy
User-generated Text (W-NUT) shared task, Aguilar
et al. (2017) obtained a first place ranking using a
model that combined a multi-step neural net with a
CRF output layer. Akbik et al. (2019) also tested
their pooled contextualized string embeddings on
this data and found success. We use this previous
work on tweets to inform our model creation for
the call center space.

3 Data

Our dataset consists of 7,953 training, 500 vali-
dation, and 534 test samples. Each sample is a
complete speaker turn from a call taken by a call
center that deals with debt collection. For our pur-
poses, a speaker turn is defined as the complete
transcription of one speaker before another speaker
starts talking, as illustrated in Figure 1. The train-
ing set is a random sample of turns from 4 months
of call transcripts from the client, but was man-
ually curated to contain examples of NPI/PII to
compensate for its relatively rarity in call center
conversation. The transcripts were made using a
proprietary speech recognition system, which is
set to provide all lowercase transcripts and omits
punctuation and numeric digits. We used spaCy1

to convert each turn to a document that starts with
a capital letter and ends with a period. This is due
to the default configurations of spaCy– in order to
make use of entities, we needed to add in a Senten-
cizer module, which defaults to this capital letter
and period set up.

3.1 Data Annotation

We created a schema to annotate the training and
validation data for a variety of different categories
of NPI/PII as described in Table 1. Initial annota-

1https://spaCy.io/

https://spaCy.io/
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Entity Type Description
NUMBERS A sequence of numbers relating

to a customer’s information (e.g.
phone numbers or internal ID
number)

NAME First and last name of a customer
or agent

COMPANY The name of a company
ADDRESS A complete address, including

city, state, and zip code
EMAIL Any email address
SPELLING Language that clarifies the

spelling of a word, (e.g. “a as in
apple”)

Table 1: A brief description of our annotation schema.

tion was done with Doccano2. These annotations
were converted to entities in the text with spaCy.
The annotators were trained in NPI/PII recogni-
tion, and were instructed to lean towards a greater
level of caution in ambiguous cases. This ambi-
guity was often caused by misrecognitions from
the language model in the ASR system being used.
With no audio to help the annotator, it wasn’t al-
ways clear when “I need oak leaves” was supposed
to be “Annie Oakley”. The reverse problem was
also true. “Brilliant and wendy jeff to process the
refund” appears to be a full name, but is actually
a misrecognition for “Brilliant and when did you
want to process the refund”. Emails also proved
difficult, because misrecognitions made it difficult
for annotators to discern exactly what words be-
longed in the email address. Another difficulty for
annotation was that all of our data had been pre-
redacted for PCI compliance, which requires the
redaction of number strings relating to credit card
numbers, birth dates, and social security numbers.
This redaction occurs before any transcript can be
released to a client or researcher. To minimize false
negatives, PCI redaction frequently redacts num-
bers that are NPI/PII such as in an internal customer
ID number or a phone number. Since the NUM-
BERS label was intended to catch these NPI/PII
related numbers, we used context to include this
[redacted] tag as part of a numbers sequence when
possible. No steps to clean the transcripts were
taken at any point. The naturally occurring noise
in our data is critical to our use case and was left
for the model to interpret.

Due to limitations with spaCy and the known
complexity of nested entities, we opted to allow

2http://doccano.herokuapp.com/

Figure 2: A schematic of our BiLSTM-CRF model.
The text of each turn is passed to a word embedding
layer which is followed by a BiLSTM layer, and then
a linear layer that maps the word BiLSTM output into
tag space. Finally, the CRF layer produces an output
sequence.

only one annotation per word in our dataset. This
means that “c a t as in team at gmail dot com”
could only be labeled either as SPELLING[0:6]
EMAIL[6:] or as EMAIL[0:] with indices that
correspond to the location of the word in the text
and are exclusive. This ultimately explains the
much lower number of SPELLING entities in the
dataset as compared to other entities, because they
are often contained a part of EMAIL or ADDRESS.
This will influence our analysis in Section 6.

4 Model Design

We implemented a standard BiLSTM-CRF model
in PyTorch. The basic model implementation is
adapted from a GitHub repository3. We wrote our
own main.py to better allow for our spaCy prepro-
cessing, and we also adapted the code to handle
batch processing of data. After this preprocess-
ing, we trained the model with the training set and
used the validation set for any model tuning. All
reported numbers are on the test set and occur af-
ter all tuning is completed. A visualization of our
model is found in Figure 2.

5 Experiments

5.1 Basic Hyperparameter Tuning

We used a grid search algorithm to maximize the
performance of the model. The word embedding
layer uses FastText embeddings trained on the

3https://github.com/mtreviso/
linear-chain-crf

http://doccano.herokuapp.com/
https://github.com/mtreviso/linear-chain-crf
https://github.com/mtreviso/linear-chain-crf
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client’s call transcripts. We find that this helps
mitigate the impacts of poor ASR in other aspects
of our research, and investigate this further in Sec-
tions 5.2 and 5.3. The grid search contained the
following parameters: epochs (a sampled distribu-
tion between 5 and 50), the size of a dropout layer
(between 0 and .5, with .1 intervals of search), the
number of hidden layers (between 5 and 20 in in-
crements of 5), and the encoding type used in the
output of the CRF (BIO, BILOU, IO). The other
hyperparameters in our model were learning rate
.001, batch size 1, 30 nodes in each fully connected
layer, and the inclusion of bias in each layer. The
experiments were run in parallel using Python’s
multiprocessing package on a virtual machine with
16 CPUs and 128GB of memory. Each experimen-
tal configuration ran on a time scale of a few hours,
relative to the configurations of the hyperparame-
ters being used.

To better understand the performance of our
model on the test set, we broke down the preci-
sion, recall, and F1 measurements by entity type.
Table 2 shows these results for the best model con-
figuration under the columns labeled “Custom”.
This model used 46 epochs, a dropout rate of .2, 5
hidden layers, and a BIO encoding.

5.2 Training Word Embeddings
While much of the previous research has fine-tuned
existing word embeddings, the task of compensat-
ing for misrecognition seemed less straightforward
than domain adaptation. We lessen the impact of
the misrecognitions described in Section 3.1 by un-
derstanding that frequent misrecognitions appear
in contexts similar to the intended word. For exam-
ple, “why you’re” is often misrecognized as “choir”
which would have a totally out of context vector
from a pretrained model in this data set. A custom
model gives “choir” a vector that is more similar to
“why” than to “chorus”. Huang and Chen (2020)
showed the importance of domain specific word
embeddings when using ASR data.

We ran our best performing model configuration
with the 300 dimensional GloVe 6b word embed-
dings 4. Our embeddings, in contrast, are trained
on approximately 216 million words, making them
substantially smaller than other state-of-the-art em-
beddings used today. The results from the best
epoch of this model (16) are shown in Table 2.

4https://nlp.stanford.edu/projects/
glove/

5Our custom model gets all 0s because many of its pre-

Entity Type Precision Recall F1
Custom GloVe Custom GloVe Custom GloVe

O 89.8 84.2 81.7 76.6 85.6 80.2
NUMBERS 95.6 88.7 85.4 82.9 90.1 85.7

NAME 89.6 92.1 91.1 88.7 90.3 90.3
COMPANY 98.8 99.5 72,9 64.3 83.9 78.1
ADDRESS 70.6 .3 75.0 18.7 72.7 23
EMAIL5 0 07.1 0 03.1 0 04.4

SPELLING 45.8 .34 52.4 40/5 48.9 37.0
Micro Average 89.2 85.6 79.6 74.0 84.1 79.4

Table 2: The performance by entity type of the
BiLSTM-CRF model on the held out test set. This table
compares the results of our custom embeddings model
(“Custom”) against the GloVe embeddings (“GloVe”).

5.3 Using Flair

In our previous experiments, we established the
importance of using custom word embeddings to
accurately account for the misrecognitions, false
starts, and other kinds of noise present in call center
conversation transcripts. In this experiment, we test
the performance of Flair6 and its contextual string
embeddings on our data.

We begin by training custom contextual string
embeddings for this dataset, based on the findings
in our original experiments. For training, we use
the same corpus as used in Section 5.1. To do this
we follow the tutorial on the Flair GitHub page
using their suggested hyperparameter settings as
follows: hidden size: 1024, sequence length: 250,
mini batch size: 100, and otherwise use the de-
fault parameters. We use the newline to indicate a
document change, and list each turn as a separate
document to provide consistency with the other
experiments conducted in this paper. Given the
size of our corpus for word embedding training, we
found that our model’s validation loss stabilized
after epoch 4. We use the best version of model, as
given by Flair, in all of our tests.

We conduct a number of experiments using
Flair’s SequenceTagger with default parameters
and a hidden size of 256. We adapt the work done
by Akbik et al. (2018) and Akbik et al. (2019) to
explore the impact of call center data on these state-
of-the-art configurations.

Flair uses only the custom trained Flair embed-
dings.

Flair+ FastText uses the custom trained Flair em-
beddings and our custom trained FastText embed-
dings using Flair’s StackedEmbeddings.

Flairmean pooling uses only the custom trained
Flair embeddings within Flair’s PooledFlairEmbed-
ding. We use mean pooling due to the results of

dicted EMAIL entities were off by a few words. We discuss
this more in Section 6.

6https://github.com/flairNLP/flair

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/flairNLP/flair
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Entity Flair Flair+ FastText Flairmean pooling Flairmean pooling + FastText

O 98.3 98.5 98.2 98.5
NUMBERS 83.1 87.9 87.7 86.2
COMPANY 81.1 80.7 80.7 80.3
ADDRESS 87.5 94.1 61.5 94.1

EMAIL 58.8 50.0 73.3 66.7
SPELLING 55.0 57.1 55.8 57.9

Micro Average 97.5 97.7 97.3 97.7

Table 3: The F1 scores on the test set for each entity
type for each Flair embedding experiment.

Akbik et al. (2019) on the WNUT-17 shared task.
Flairmean pooling + FastText uses the Pooled-

FlairEmbeddings with mean pooling and the
custom trained FastText embeddings using Flair’s
StackedEmbeddings.

These results are shown in Table 3.

6 Discussion

Table 2 shows that in all cases except for EMAIL,
it is beneficial to use our custom embeddings over
GloVe embeddings. We explain this in the next
paragraph. The Flair embeddings show a large im-
provement over the other word embedding varieties
however in our circumstance all four varieties of
Flair models have nearly identical Micro Average
F1s. The best performing Flair models are those
that use both the custom contextualized string em-
beddings and the custom FastText embeddings.

Across all of the models in this paper, EMAIL
and SPELLING consistently performed worse than
other categories. We believe this is due to the over-
lap in their occurrences as well as the variability
in their appearance. In many cases the custom
embeddings model identified parts of an email cor-
rectly but attributed certain aspects, like a name,
as NAME followed by EMAIL instead of includ-
ing them together as EMAIL. SPELLING often
appears within an EMAIL entity, such as in “c as
in cat a t at gmail dot com”. Due to the limita-
tions discussed in Section 3, this leads to a limited
occurrence of the SPELLING entity in our train-
ing data, and many EMAIL and ADDRESS enti-
ties that contain examples SPELLING. All mod-
els, especially the custom embeddings model, fre-
quently misidentified EMAIL as SPELLING and
vice versa. Additionally, our test data contained a
number of turns that consisted of only SPELLING
on its own, which was poorly represented in train-
ing. The Flairmean pooling model outperforms the
other models in EMAIL by a large margin.

The results shown in Table 3 highlight other in-
teresting notes about our data. The NUMBERS
category contains many strings that appear consis-
tently in the text. Not only are there a finite number
of NUMBER words in our corpus (those numeric

words along with many instances of “[redacted]”),
but the NUMBERS of interest in our dataset, such
as account numbers, appear in very similar con-
texts and do not often get misrecognized. The
COMPANY entity performs well for a similar rea-
son. When the model was able to identify the com-
pany name correctly, it was usually in one of the
very common misrecognition forms and in a known
context, which furthers our claim that dataset spe-
cific embeddings give an important boost over pre-
trained embeddings. Where the models failed here
can likely be attributed to training data. Since the
name of the company is a proper noun, it is not
in most standard ASR language models, including
the one we use. Thus, it is a frequent candidate
for misrecognition, because the language model
has higher probabilities assigned to grammatically
correct phrases that have nothing to do with the
name of the company. This leads to high variability
in appearance, which means that not every possible
version of the company name was present in our
training set.

Interesting variability also occurred in AD-
DRESS entities. With ADDRESS, both models
that used Flair and FastText embeddings strongly
outperformed the models that used Flair on its
own, but standard Flair embeddings strongly out-
performed the Pooled Flair embeddings. Neither
version of the Flair only model identified addresses
in which house numbers or zip codes were shown
as “[redacted]” but both models that utilized Fast-
Text had no issue with these examples.

7 Conclusion and Future Work

By using a BiLSTM-CRF, in conjunction with
custom-trained Flair embeddings, we match cur-
rent state-of-the-art NER performance on our novel
call center conversation dataset with unique entity
types. We also reinforce the importance of training
word embeddings that fully capture the nuances of
the data being used for the task. While we cannot
release any data for privacy reasons, we have shown
that current state-of-the-art techniques successfully
carry over to more non-traditional datasets and
tasks. In the future, we’d like to assess the contri-
bution of this model with the call transcripts from
other industries. Additionally, we’d like to inves-
tigate the success of these strategies on other user-
generated conversations, such as chats and emails.



6

Acknowledgments

Thanks to the anonymous reviewers for their in-
valuable feedback. Thanks to CallMiner Inc. and
its research partners for providing all of the data as
well as the use cases and funding. Thanks to Jamie
Brandon for her help with model architecture de-
sign. Thanks to the whole CallMiner research team
for their help and support throughout the process.

References
2019. What is gdpr, the eu’s new data protection law?

Gustavo Aguilar, Suraj Maharjan, Adrian Pastor
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