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Abstract

We present our systems for the WMT20 Very
Low Resource MT Task for translation be-
tween German and Upper Sorbian. For train-
ing our systems, we generate synthetic data
by both back- and forward-translation. Ad-
ditionally, we enrich the training data with
German-Czech translated from Czech to Up-
per Sorbian by an unsupervised statistical MT
system incorporating orthographically similar
word pairs and transliterations of OOV words.
Our best translation system between German
and Sorbian is based on transfer learning from
a Czech-German system and scores 12 to 13
BLEU higher than a baseline system built us-
ing the available parallel data only.

1 Introduction

In this paper, we describe systems for translation
between German and Upper Sorbian developed at
LMU Munich for the WMT20 shared task on very
low-resource supervised MT.

Upper Sorbian is a minority language spoken
by around 30,000 people in today’s German state
of Saxony. With such a small number of speak-
ers, machine translation and automatic processing
of Sorbian is an inherently low-resource problem
without any chance that the resources available for
Sorbian would ever approach the size of resources
for languages spoken by millions of people. On
the other hand, being a Western Slavic language
related to Czech and Polish, it is possible to take
advantage of relatively rich resources collected for
these two languages.

The German-Sorbian systems presented in this
paper are neural machine translation (NMT)
systems based on the Transformer architecture
(Vaswani et al., 2017). We experiment with vari-
ous data preparation and augmentation techniques:
back-translation (Sennrich et al., 2016b), finetun-
ing systems trained for translation between Czech

and German (Kocmi and Bojar, 2018), and data
augmentation by including German-Czech paral-
lel data with the Czech side translated to Upper
Sorbian by an unsupervised system that includes
an unsupervised transliteration model for guessing
how to translate out-of-vocabulary Czech words to
Upper Sorbian.

Our experiments show the importance of data
augmentation via stochastic pre-processing and
synthetic data generation. The best systems were
trained by transfer-learning from a Czech-German
system. However, compared to data augmentation,
transfer learning from Czech-German translation
only produces a minor improvement. Based on the
preliminary shared task results, the presented sys-
tems scored on the 4th place among 10 competing
teams in the shared task.

2 Related Work

Until recently, phrase-based approaches were be-
lieved to be more suitable for low-resource trans-
lation. Koehn and Knowles (2017) claimed that a
parallel dataset of at least 107 tokens is required for
NMT to outperform phrase-based MT. This view
was also supported by the results of Artetxe et al.
(2018b) and Lample et al. (2018), who showed that
phrase-based approaches work well for unsuper-
vised MT, at least in the early stages of the iterative
back-translation procedure.

Recently, Sennrich and Zhang (2019) revisited
the claims about data needs of supervised NMT
and showed that with recent innovations in neural
network and careful hyper-parameter tuning, NMT
models outperform their phrase-based counterparts
with training data as small as 100k tokens (15 times
smaller than the data provided for this shared task).

Standard techniques for low-resource machine
translation include data augmentation with rule-
based substitutions (Fadaee et al., 2017), by sam-
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Data # sent. # tok. # tok.
# sent.

Train
de

60k
822k 13.7

hsb 738k 12.3

Devel
de

2k
28k 13.8

hsb 25k 12.5

Devel test
de

2k
28k 13.9

hsb 25k 12.7

German-Czech de
2k

49k 24.5
newstest2019 cs 43k 22.0

German-Czech de
14.7M

234M 15.9
parallel cs 219M 14.8

Table 1: Statistics on the parallel data compared to
German-Czech News Test 2019 and parallel German-
Czech data (see Section 3.3).

pling synthetic noise (Wang et al., 2018; Provilkov
et al., 2020), or by iterative back-translation (Hoang
et al., 2018). Another class of approaches relies
on transfer learning from models trained for high-
resource language pairs of more or less similar
languages (Zoph et al., 2016; Nguyen and Chiang,
2017; Kocmi and Bojar, 2018).

3 Data

We used several types of data to train our systems.
The organizers provided authentic parallel data and
Sorbian monolingual data. We also use German
and Czech News Crawl data and Czech-German
parallel data available in Opus (Tiedemann, 2012).

3.1 Authentic Parallel Data

The organizers of the shared task provided a par-
allel corpus of 60k sentences, and validation and
development test data of 2k sentences each.

The basic statistics about the data are presented
in Table 1. Note that the sentences are on average
much shorter and therefore also likely to be struc-
turally simpler than in the type of sentences usually
used in the WMT test sets.

3.2 Monolingual Data

In total 696k monolingual Sorbian sentences were
provided by the organizers. We noticed that the
monolingual Sorbian data contain many OCR-
related errors originating from hyphenation. We
thus removed all sentences ending with a hyphen.
Additionally, we merged tokens ending with a hy-
phen with the adjacent one if such merging results

in a known Sorbian word. This filtered out 1.6k
sentences and did 12k token merges.

The monolingual Sorbian data were used for
training the unsupervised Czech-Sorbian trans-
lation system (see Section 4.1) and for back-
translation in Sorbian-German systems.

Besides, we use 60M German and 60M Czech
sentences from the NewsCrawl data provided as
monolingual data for WMT shared tasks (Barrault
et al., 2019). The monolingual data were used for
generating synthetic training data via back- and
forward-translation both for the German-Sorbian
and German-Czech systems. In addition, the Czech
monolingual data was used in the unsupervised
Czech-Sorbian translation system as well.

3.3 German-Czech Data

For transfer learning and the creation of synthetic
data, we also used German-Czech parallel data. We
downloaded all available parallel datasets from the
Opus project (Tiedemann, 2012), which gave us
20.8M parallel sentences, which we further filtered.

First, we filtered the parallel sentences by length.
We estimated the mean and the standard deviation
of the length ratio of German and Czech sentences
and kept only those sentence pairs whose length
ratio fitted into the interval of two times standard
deviation around the mean. Then, we applied a lan-
guage identifier from FastText (Grave et al., 2018)
and only kept sentence pairs identified as German-
Czech. The filtering lefts us with 14.7M parallel
sentences.

4 Synthetic data from Czech-German

Since Upper Sorbian is related to Czech, we gen-
erate additional synthetic parallel German-Sorbian
data by translating the Czech side of the German-
Czech parallel data. For this, we use an unsuper-
vised statistical MT system which includes mined
Czech-Sorbian transliteration word pairs for better
performance.

4.1 Unsupervised SMT

We follow the approach of Artetxe et al. (2018b) to
build an Unsupervised Statistical Machine Trans-
lation (SMT) system. In the following description,
we mainly focus on the steps that we changed com-
pared to the original system and keep the descrip-
tion of the other steps brief.

In the first step, we build 300-dimensional mono-
lingual n-gram embeddings for both Czech and Sor-
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bian using FastText skip-gram (Bojanowski et al.,
2017) on the above mentioned monolingual data.
We restrict the vocabulary to the most frequent
200k, 400k, and 400k 1-, 2- and 3-grams, respec-
tively. We map these embeddings to a shared bilin-
gual space using VecMap (Artetxe et al., 2018a). In
contrast to the original unsupervised SMT pipeline,
which builds bilingual word embeddings (BWEs)
without any cross-lingual signal, we use identical
words occurring in both languages as the seed lexi-
con for the mapping. We found that the available
small monolingual Sorbian corpus is not adequate
to build BWEs in a fully unsupervised way. The
corpora are tokenized and true-cased using Moses
tools (Koehn et al., 2007). We note that because
there are no available language rules for Sorbian,
we used Czech rules for tokenization, which is
reasonable because of the similarity of the two lan-
guages.

We build phrase tables for both translation direc-
tions. For each source n-gram, we take 100 candi-
dates with the closest embeddings based on cosine
similarity and additional 100 candidates with the
smallest edit distance. We calculate 5 scores for
each pair: phrase and lexical translation probabili-
ties and their inverse as in (Artetxe et al., 2018b),
and their normalized edit distance. For phrases,
the latter is calculated by pairing each source word
with the most similar target side word and taking
the average edit distance of each of these pairs
as the normalization constant. In addition to the
phrase tables, we train language models using the
monolingual corpora.

We use the validation set from the shared
task (with the German side machine-translated to
Czech) to tune the parameters with MERT instead
of tuning on synthetic data. Finally, we run 3 itera-
tive refinement steps.

4.2 Translating OOVs by Transliteration

Because of the small monolingual data, the Sorbian
vocabulary is relatively small. To improve on this
problem, we exploit the similarity of Upper Sorbian
and Czech by translating Czech out-of-vocabulary
(OOV) words to Upper Sorbian, using translitera-
tion. More precisely, we transliterate Czech words
from the German-Czech parallel data which were
not seen by the SMT system during training, assum-
ing that the translations of these words are missing
in the Sorbian vocabulary on the target side as well.
We extracted the training data for the transliteration

system using a preliminary transliteration mining
model, filtered the data using a preliminary translit-
eration model, and trained the final transliteration
model on the filtered data.

Transliteration mining. Our transliteration min-
ing is similar to the model by Sajjad et al. (2012).
It consists of a transliteration submodel and a noise
submodel.

The transliteration submodel is a unigram model
over transliteration units (TUs) which jointly gen-
erates a source and a target language string. The
English-German transliteration pair (Gorbatchev,
Gorbatschow) could be generated as the follow-
ing sequence of TUs: G:G o:o r:r b:b a:a t:t s: c:c
h:h e:o v:w. We use only 1-1, 0-1, and 1-0 TUs.
The probability p(a) of a sequence of TUs is the
product of the unigram probabilities p(ai):

p(a) = p(a1, ..., an) =
n∏

i=1

p(ai)

Probability ptrans(s, t) of a string pair is obtained
by summing over all possible alignments a:

ptrans(s, t) =
∑

a∈align(s,t)

p(a)

The noise submodel independently generates a
source string s and a target string t using two un-
igram models over the source and the target lan-
guage characters, respectively. The probability of
a string pair is the product of the two monolingual
string probabilities:

pnoise(s, t) = psrc(s) ptgt(t)

The monolingual probability of the source string
(and analogously the target string) is defined as a
product of letter unigram probabilities.

Sajjad et al. (2012) interpolate the noise model
and the target model as a linear combination.
Unfortunately, such a model also extracts near-
transliterations which differ from a true translit-
eration by e.g., an inflexional affix, such as (Gor-
batchev, Gorbatschows).

Instead, we combine the two submodels by con-
catenation. Our model produces a word pair by
(i) generating two word prefixes1 sp and tp using
the noise model, (ii) generating two middle parts
sm and tm using the transliteration model, and

1Here, the terms prefix and suffix are not used in a linguistic
sense.
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(iii) generating two suffixes ss and ts using the
noise model. The intuition is that if the most prob-
able way to generate a pair does not use prefixes
or suffixes, it is a transliteration. Here the non-
transliteration pair (Gorbatchev, Gorbatschows
might be most probably obtained by generating
two empty strings as prefixes with the noise sub-
model, the TU sequence G:G o:o r:r b:b a:a t:t s:
c:c h:h e:o v:w with the transliteration submodel,
and an empty suffix and the suffix s with the noise
model.

The probability is defined as follows:

p(sp, sm, ss, tp, tm, ts) =

pnoise(s
p, tp)ptrans(s

m, tm)pnoise(s
s, ts)

The total probability of a word pair is obtained
by summing over all possible splits:

p(s, t) =
∑

sp,sm,ss,tp,tm,ts

∈split(s,t)

p(sp, sm, ss, tp, tm, ts)

The parameters of the transliteration submodel
are trained using the EM algorithm on the list of
transliteration candidates. The parameters of the
monolingual models are estimated directly from
the data and kept fixed during training. After the
EM training, we compute for each candidate pair,
the most probable split of the two words into pre-
fix/middle/suffix, and the most probable alignment
of the two middle parts using the Viterbi algorithm.
If all prefixes and suffixes are empty, the candidate
pair is extracted as a probable transliteration.

We run the transliteration mining on lower-cased
data and consider all possible word pairs with a
reasonable edit distance. The mining process re-
turns the extracted transliteration candidates and
their most probable TU sequence, respectively.

Transliteration filtering. The mining process
only relies on the unigram probabilities, which is
often suboptimal. Therefore, we add a filtering
step that scores each transliteration pair using an
n-gram transliteration model and eliminates pairs
with a low score.

We train a Kneser-Ney-smoothed trigram
transliteration model on the TU sequences of the
transliterations extracted using the transliteration
mining model.

For each extracted transliteration pair, we com-
pute negative log probabilities:

• L1 of the corresponding TU sequence;

Unsupervised SMT 12.0
+ edit distance 13.3
+ transliteration 13.8

Table 2: BLEU scores of the Czech-Sorbian system
with gradually added techniques measured on the Up-
per Sorbian-German test set where the German side has
been machine-translated to Czech.

• L2 of the best source-to-target transliteration;
and

• L3 of the best target-to-source transliteration.

We filter out a word pair if L2−L1+L3−L1 > 10.
Note that all three probabilities are joint probabili-
ties and that the same transliteration model can be
used in both directions.

Transliteration Generation. We train the final
transliteration model on the TU sequences of the
filtered transliteration pairs and use the model to
generate Sorbian transliterations for Czech OOV
words. We lowercase the Czech words before
transliteration and transfer the casing from the orig-
inal Czech words to their Sorbian transliterations.

Using the model, we generate transliterations for
Czech words not seen by the unsupervised SMT
system during training, i.e., we take all the words
from the Czech side of the parallel data which are
not present in the used Czech monolingual corpus.
To add these word pairs to the SMT system, we
consider them as a parallel corpus and concatenate
it to the synthetic parallel data created in the itera-
tive refinement steps and also update the language
models. We run two additional refinement steps on
top of the three mentioned in 4.1. Finally, we create
the synthetic German-Sorbian data by translating
the Czech side of the German-Czech data and feed
it to our final NMT system, as described below.

Table 2 shows the translation quality of the unsu-
pervised SMT system. The basic setup relies only
on BWEs to build the initial phrase tables. Next,
we add edit distance information, and finally, we
use the mined transliteration pairs as well. How-
ever, note that the BLEU scores are very approxi-
mate because the source side of the test is machine-
translated.

5 Experimental Setup

For the translation between German and Sorbian,
we experimented with NMT models based on
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Parallel
data

System

Monolingual
data

Authentic

de↔hsb
FT and BT

de↔hsb
Authentic

de↔cs
FT and BT

de↔cs
de↔hsb

from de↔cs

1 2
Transformer Base

de�hsb

3
Transformer Base

de�hsb

4
Transformer Big

de�hsb

Unsupervised
cs�hsb

5
Transformer Big

de�hsb

Transformer Base
de�cs

6
init. by de�cs

de�hsb

csde hsb

Figure 1: Overview of datasets and systems that were used to generate synthetic data. Solid arrows denote training
a system, dashed gray arrows denote using the model for data generation. Synthetic datasets have dashed boxes.

Transformers (Vaswani et al., 2017). We followed
known best practices for architecture and optimiza-
tion choices. In our experiments, we mostly focus
on data engineering.

5.1 Model Architecture and Optimization

We use the Transformer architecture (Vaswani
et al., 2017) as implemented in Marian (Junczys-
Dowmunt et al., 2018). For the initial experiments,
we used the Base architecture (6 layers, hidden
state of size 512, 8 attention heads, feed-forward
layer 1024), and Big for the later experiments (12
layers, hidden state 1024, 16 attention heads, feed-
forward layer 4096). We follow the default stan-
dard learning rate schedule proposed by Vaswani
et al. (2017) with learning rate 3 · 10−4. We use
16k warm-up steps for the Base architecture and
32k warm-up steps for the Big architecture.

The Base architecture is used for the initial sys-
tems which generate synthetic data via backward-
and forward-translation. We use the Big architec-
ture for the rest of the systems.

5.2 Training Data Preparation

An overview of the data generation and system
training steps is provided in Figure 1.

We use a common BPE-based vocabulary (Sen-
nrich et al., 2016c) for all systems which allows us
to better ensemble our systems. Instead of proper
tokenization, we use the pre-tokenization heuristic
from SentencePiece (Kudo and Richardson, 2018)
as implemented in YouTokenToMe.2 The BPE vo-
cabulary consists of 16k merges and was fit using
the authentic parallel training data only.

2https://github.com/VKCOM/YouTokenToMe

We apply BPE-dropout (Provilkov et al., 2020)
of 0.1 on both the source and the target side of the
data. We oversample the monolingual data 1000
times and with different segmentations (Model
2). We hypothesize that in the very low-resource
setup, the BPE dropout serves more as a data-
augmentation technique than as regularization.

Due to hardware limitations, we limit the data
mixes for training the Big architectures to 180M
parallel sentences. One third of the data mix con-
sists of oversampled authentic parallel data. In one
set of experiments (Models 3, 4), the rest of the data
consists of synthetic data: an equal number of sam-
ples of forward- and back-translation (which means
that the monolingual Sorbian data is oversampled
approximately 80×). In another set of experiments
(Model 5), we additionally sample data from the
machine-translated Czech-German data set where
the Czech part has been automatically translated to
Upper Sorbian. Following Caswell et al. (2019),
we tag the synthetic data, having a separate tag for
each of the synthetic data types.

Further, we experiment with finetuning models
originally trained for translation between Czech
and German. The data for the parent models is pre-
pared using the same protocol as for Model 4. Fol-
lowing Kocmi and Bojar (2018), we train the parent
model until convergence and continue training with
the German-Sorbian data. Based on preliminary
results, we use the data mix for Model 4 for the
German-to-Sorbian translation direction and the
data mix for Model 5 for translating from Sorbian
into German.
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Model hsb→de de→hsb

1 Transformer Base, parallel only 43.4 .695 45.6 .702

2 (1) + BPE dropout 50.9 .745 51.7 .747

3 (2) + back- and forward-translation 51.6 .766 52.4 .765

4 Transformer Big, same data as (3) 53.0 .766 55.3 .765

5 (4) + synthetic data from cs-de 54.2 .766 54.9 .766

6 (4/5) initialized by cs�de 55.4 .772 55.9 .775

7 Ensemble 4× (4/5) 55.0 .772 55.9 .773

8 Ensemble 3× (6) 55.6 .773 56.2 .776

9 Ensemble 4× (4/5) and 3× (6) 56.0 .777 56.9 .769

10 (4/5) trained right-to-left 53.7 .765 55.1 .769

11 (9) + right-to-left rescoring 56.0 .778 57.0 .779

Table 3: BLEU scores and chrF scores (in small font) on development test data for Sorbian-to-German (hsb→de)
and German-to-Sorbian (de→hsb) translations.

5.3 Model Ensembling

Following Sennrich et al. (2016a), we also experi-
ment with ensembling several systems and combin-
ing systems trained in the left-to-right and right-to-
left direction.

We trained four models from random initializa-
tion and three models by transferring from Czech-
German translation. Note that the transferred mod-
els were initialized by the same model and only
differed in the order of the training data.

Further, we trained two models in the right-to-
left direction, starting from random initialization.

6 Results

The quantitative results in terms of BLEU score
(Papineni et al., 2002) and ChrF (Popović, 2017)
score are presented in Table 3. The results were
measured using SacreBLEU.3

The Base architecture trained using the parallel
data only (Model 1) reaches a surprisingly high
BLEU score, which is probably due to the qual-
ity of the manually curated training data, domain
closeness of the train and test data, and relatively
simple sentences both in the train and test sets.

The data augmentation using BPE-dropout
(Model 2) seems to have a substantial effect on
the translation quality, improving the translation by
6–7 BLEU points. This is a much larger effect than
Provilkov et al. (2020) reported. However, they
also observed a larger positive effect on smaller
datasets. Unlike Sennrich and Zhang (2019), we

3https://github.com/mjpost/sacrebleu

did not find any benefits of using a small BPE-
based vocabulary or tuning learning rate. However,
the positive effect of the small vocabulary might be
partially emulated by the BPE dropout.

Adding the back- and forward-translated data in
the training data improved the translation quality
only slightly (Model 3). A large positive effect can
be achieved by switching to the Big architecture
(Model 4). Adding the synthetic data generated
from Czech-German parallel data improve only the
Sorbian-to-German translation direction (Model 5),
presumably because the quality of the synthetic
Sorbian side of the corpus is too low to be used as
a target side.

Transfer learning from German-Czech models
further improves the translation quality by approxi-
mately 1 BLEU point. These are thus the best sin-
gle models we have developed and our contrastive
submission to the shared task.

Additional improvements were reached by
model ensembling. Ensembling both the model
trained from random initialization and transfer
learning models improves the translation by approx.
1 BLEU point. Ensembling these two model types
together further improves the translation quality by
around half BLEU point.

The model generating the translation right-to-
left reach translation quality that is comparable to
the left-to-right models. However, rescoring of the
n-best lists generated by left-to-right ensembles
by the right-to-left models improves the translation
quality only negligibly. The rescored ensemble was
our primary submission to the shared task.
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7 Conclusions

We presented NMT systems for translation between
German and Upper Sorbian. Due to the domain
closeness and relative simplicity of the test data, we
were able to achieve BLEU scores over 50 using
the parallel data only. The crucial component was
the use of BPE-dropout for both the source and
target side.

Further translation quality improvements were
achieved by generating synthetic training data by
back- and forward-translation. Additionally, we
generated synthetic data by machine-translating
the Czech side of a parallel German-Czech corpus.
For that, we built an unsupervised SMT system that
additionally utilizes an unsupervised transliteration
system for the translation of OOV tokens.

Our best single system is based on transfer
learning, i.e., initializing the model by a Czech-
German system, reaching 1–2 higher BLEU scores
compared to systems based on Sorbian and Ger-
man data only. Further minor improvements were
achieved by model ensembling and right-to-left
rescoring.

Acknowledgments

The work was supported by the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(grant agreement No. 640550) and by German Re-
search Foundation (DFG; grant FR 2829/4-1).

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre.

2018a. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 789–798, Melbourne,
Australia. Association for Computational Linguis-
tics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018b. Unsupervised statistical machine transla-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3632–3642, Brussels, Belgium. Association
for Computational Linguistics.
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Tom Kocmi and Ondřej Bojar. 2018. Trivial transfer
learning for low-resource neural machine translation.
In Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 244–252, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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