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1. Université Grenoble Alpes - Laboratoire LIG, Getalp group.
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Abstract

In this paper we propose a multi-task sequence prediction system, based on recurrent neural
networks and used to annotate on multiple levels an Arabizi Tunisian corpus. The annotation
performed are text classification, tokenization, PoS tagging and encoding of Tunisian Arabizi
into CODA* Arabic orthography. The system is learned to predict all the annotation levels in
cascade, starting from Arabizi input. We evaluate the system on the TIGER German corpus,
suitably converting data to have a multi-task problem, in order to show the effectiveness of our
neural architecture. We show also how we used the system in order to annotate a Tunisian Arabizi
corpus, which has been afterwards manually corrected and used to further evaluate sequence
models on Tunisian data. Our system is developed for the Fairseq framework, which allows for
a fast and easy use for any other sequence prediction problem.

1 Introduction

In the last decade neural networks became the state-of-the-art models in most NLP problems. Sequence-
to-sequence models (Sutskever et al., 2014; Vaswani et al., 2017), built on top of recurrent (Hochreiter
and Schmidhuber, 1997; Cho et al., 2014), convolutional (Gehring et al., 2017; Wu et al., 2019) or
attentional (Bahdanau et al., 2014; Vaswani et al., 2017) modules, and structured in encoder-decoder
architectures, are currently the most effective models for NLP problems. Neural networks have been
used also for multi-task learning since early in their diffusion (Collobert and Weston, 2007; Collobert
and Weston, 2008; Collobert et al., 2011).

As a semitic language, Arabic has a highly inflectional and derivational morphology, which makes
Arabic processing an engaging challenge. This morphological complexity has traditionally been handled
through morphological analysers, such as BAMA (Buckwalter, 2004), which has been used by the Lin-
guistic Data Consortium (LDC) to develop the Penn Arabic Treebank (PATB) (Maamouri et al., 2004).
Recently, the number of NLP contributions to morphological analysis, disambiguation, Part-of-Speech
(PoS) tagging and lemmatization has increased substantially, for both Modern Standard and Dialectal
Arabic (MSA and DA, respectively). Multitask learning was proved to be an effective way to process
Arabic morphology for MSA fine-grained PoS tagging (Inoue et al., 2017), as well as for DA (Zalmout
and Habash, 2019). Concerning NLP applied to DA, it is possible to observe two main macro-strategies
aimed at remedying the lack of data for DA: 1. MSA systems adaptation to DA processing, like (David
et al., 2006) who exploited the Penn Arabic Treebank (PATB) (Maamouri et al., 2004) and used explicit
knowledge about the relation between MSA and Levantine Arabic. Instead, (Duh and Kirchhoff, 2005)
built a PoS tagger for Egyptian through a minimally supervised approach by leveraging the CallHome
Egyptian Colloquial Arabic corpus (ECA). 2. The constitution of new resources not based on MSA-DA
relations, in particular dialectal corpora, such as the Fisher Levantine Arabic Conversational Telephone
Speech (Maamouri et al., 2007).1 This second strategy has been followed also collecting more ad-hoc
resources. (Bouamor et al., 2018) presented the first parallel DA corpus, collecting the dialects of 25

1These resources are not freely available.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:

//creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Arab cities, including the Tunisian dialects of Tunis and Sfax. The MADAR corpus has been created
by translating selected sentences from the Basic Traveling Expression Corpus (BTEC) (Takezawa et al.,
2007). Regarding Tunisian Dialect (TD), the resource constitution strategy has been instantiated as MSA
resource adaptation to the DA, e.g. building lexicons (Boujelbane et al., 2013), PoS-taggers (Boujelbane
et al., 2014; Hamdi et al., 2015), morphological analysers (Zribi et al., 2013) or morphological systems
to disambiguate annotated transcriptions (Zribi et al., 2017). Considering the lack of freely available re-
sources, we opted for an approach similar to the one used in Curras Palestinian corpus collection (Jarrar
et al., 2017), which exploits MADAMIRA tools (Pasha et al., 2014), (cf. section 4.1).

The development of informal online communication provided a solution to most of the data availabil-
ity problems, making accessible to the scientific community a large amount of texts, both written and
oral. Concerning texts written in DA, it is possible to find two main writing systems: Arabic and Latin
scripts. With regard to the second one, letters are used together with digits for the encoding of those
Arabic letters without correspondence in the Roman alphabet. This system is already well known as
Arabizi, or Arabish for non-Arabic speakers. Most of the work developed on Arabish focus on language
identification (Darwish, 2014) and sentiment analysis (Duwairi et al., 2016; Fourati et al., 2020). Several
works are focused on the conversion of Arabish into Arabic script, as the Parallel Annotated Egyptian
Arabish-Arabic Script SMS/Chat Corpus (Bies et al., 2014). Transliteration has also been addressed for
Tunisian Arabish (Masmoudi et al., 2015; Masmoudi et al., 2019; Younes et al., 2020).

In this paper we propose a multi-task sequence prediction system based on recurrent neural networks,
that we used to annotate at multiple levels the Tunisian Arabish Corpus (TArC) (Gugliotta and Dinarelli,
2020). The annotation levels include tokenization, Part-of-Speech (PoS) tagging and Tunisian Arabish
encoding into Arabic script. The system is learned to predict all the annotation levels in cascade, starting
from Arabish input. We evaluate the system on the TIGER German corpus (Brants et al., 2004) in
order to show the effectiveness of our neural architecture. While the purpose of this evaluation is not
to improve state-of-the-art on this task, our results are comparable and sometimes better than the best
published models. We show also how we used the system in order to annotate TArC, which has been
afterwards manually corrected and used to further evaluate sequence models on Tunisian data. Our
system is developped for Fairseq2 (Ott et al., 2019), it can therefore be used for any problem involving
sequence prediction.3

In the remainder of the paper we describe the TArC corpus, that we annotated with multi-level infor-
mation, and we used to evaluate our neural system (in section 2). In section 3 we describe our multi-task
neural architecture for multi-level annotation, in section 4 we describe the TIGER corpus, the experi-
mental settings, and all the results obtained with our system, on both TIGER and TArC corpora. We
conclude the paper in section 5.

2 Tunisian Arabish Multi-Level Annotated Corpus

The corpus used in this paper is the Tunisian Arabish Corpus (TArC) (Gugliotta and Dinarelli, 2020), the
result of a multidisciplinary work with a hybrid approach based on: 1. dialectological research questions;
2. corpus linguistics standards and 3. deep learning techniques. TArC has been conceived with the aim to
extend the dialectological investigation to the web, not only considering it as a new resource for linguistic
analyses, but mainly because the object of TArC is a Computer Mediated Communication (CMC) writing
system.

The gathering of CMC corpora for linguistic study purposes is a long-standing practice: as early
as the 1990s, in order to study linguistic and communicational aspects, researchers began to collect
corpora from mailing lists, newsgroups, electronic conferences or chat rooms (Yates, 1996; Todla, 1999;
Berjaoui, 2001; Feldweg et al., 1995). Nowadays, the study of CMCs is a research domain it-self,
crossing various disciplines such as sociology and linguistics. The linguistic questions related to CMC-
corpora may for example concern paraverbal phenomena and the expression of emotions (Riordan and

2https://github.com/pytorch/fairseq
3Our system, with data used in this paper, is available at https://gricad-gitlab.univ-grenoble-alpes.fr/dinarelm/tarc-multi-

task-system.
The last updated version of TArC is available at https://github.com/eligugliotta/tarc.
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Kreuz, 2010; Tantawi and Rosson, 2019), politeness formulas and the degree of message formality
(Brysbaert and Lahousse, 2019), the effects of orality in written communication (Soffer, 2010), the role
of code-mixing and code-switching in mediated discourse (Morel and Doehler, 2013; Mave et al., 2018),
their graphic and orthographic characteristics (Sullivan, 2017) (concerning Arabic). Lastly, a lot of
research deals currently with the automatic processing of such corpora (Lopez et al., 2018; Panckhurst,
2017).

Among the purposes of dialectology there is the dialect collection and description with traditional
approaches: fieldwork, oral text collection and transcription, glossary building. We observed that in the
case of Arabic varieties the descriptive landscape is made of multiple studies on single phenomena. For
this reason, we developed a resource inspired by dialectological investigation, which borrows the princi-
ples of corpus linguistics in order to guarantee representativeness, accessibility, balance and authenticity
of the linguistic data (Szmrecsanyi and Anderwald, 2018; Wynne, 2005). The data gathered in TArC,
together with various metadata, takes a snapshot of Tunisian Arabish writing and its evolution over the
last ten years. TArC is built selecting data with the following criteria: 1. text mode: informal writing;
2. text genres: forum, blog, social networks, rap lyrics; 3. domain: CMC; 4. language: Tunisian; 5.
location; 6. publication date. The last two items were registered via metadata extraction (publication
date, user’s age, gender and provenience).

The building process automation overcomes the observer’s paradox problem (Labov, 1972), an issue
much discussed in dialectology (Boberg et al., 2018). It also allows the reproducibility of the work,
as well as the quantitative extension of an open corpus (such as TArC), which is normally difficult to
ensure by dialectological research. TArC collection has therefore been enhanced thanks to the multi-task
architecture, used for a semi-automatic annotation (cf. section 3) to get as close as possible to a consistent
linguistic annotation (Wynne, 2005). The automatically generated annotations were post-edited by a
linguist qualified in Arabic language and Tunisian variety, whose work was occasionally verified by
native speakers.4 Such annotation work complies with both the applicative and the analytical purposes
of a corpus. The former concerns the generation of NLP tools for the Tunisian Arabish processing.
The latter is realised through the multi-functional annotation levels of TArC, which allow global and
systematic studies of Tunisian variety and its Arabish encoding. This way, TArC usefulness returns to
the dialectological area, the field in which the preliminary research questions were addressed.

TArC has been annotated with four information levels. 1) Classification of words in three classes:
arabizi, foreign and emotag. The first class is for Tunisian and MSA words, the second one is to clas-
sify non-Arabic code-mixing; the third is used for elements as smileys or emoticons. 2) Encoding in
Arabic script in Conventional Orthography for Dialectal Arabic (CODA*) (Habash et al., 2018). 3)
Tokenization, Tunisian words encoded in CODA* have been tokenized following the D3 BWFORM
configuration scheme where basically all clitics are tokenized, including the article (Pasha et al., 2014).
4) Part-of-Speech according to the PATB guidelines (Maamouri et al., 2009). All levels have been
developed following the same incremental and semi-automatic procedure described in (Gugliotta and
Dinarelli, 2020) for the CODAfying stage.

3 Multi-Task Sequence Prediction System

There are several works about multi-task learning with neural networks for NLP problems (Wu and
Huang, 2015; Luong et al., 2016), inter alia. Most of the time the neural architecture factorises some pa-
rameters for information that can be shared among tasks, and then uses different modules (e.g. decoders)
for each task, which are learned independently.

As described in section 2, our goal for Tunisian Arabish data is a multi-level annotation scheme, where
the different levels are potentially related. From an NLP point of view, this relations imply that some
levels of annotation may help disambiguation when annotating other levels. For instance the classifica-
tion information can disambiguate annotation into CODA*, tokenization and PoS tagging. Intuitively we
expected that learning tasks in chain, organised in a cascade manner in a neural network, would benefit
to each other, in contrast to learning tasks individually.

4Due to COVID-19 lockdown it was not possible to conduct the field research scheduled for March 2020.



181

ô3
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L

hE
hE

hE

h1
h1

h2

Figure 1: A high-level schema of our multi-task neural system

3.1 Multi-Task Neural Architecture

We follow the intuition above and we propose a multi-task neural architecture where the different learned
tasks are organised in a cascade. The input is the Arabish text. The outputs, corresponding to the tasks
to be learned, are, in this order, the classification information, the conversion into CODA* orthography,
the tokenization of the CODAfied tokens and the PoS tags. Outputs from previous tasks are reused by the
following tasks, they are thus learned jointly and interdependently. The input is transformed into hidden
context-aware representations with an encoder based on recurrent layers. The outputs are processed by
different decoders, each of them taking as input the hidden state of the encoder, and the hidden state of
each of the previous decoders. The output of each decoder is used to learn each task.

More formally, let the task i be represented by the model Mi(x,Hi), with x the input (Arabish text
representations), and Hi the list of hidden states from the previous models, plus the current model’s
hidden state hi. Each model i generates an output ôi and a hidden state hi. ôi is the predicted output,
which is used to learn the task i by computing a loss Li(oi, ôi) comparing ôi to the expected output oi.
Internally the global model M is made of an Encoder and I decoders Decoderi, with i = 1 . . . I . The
list Hi includes both the encoder hidden state hE and the decoders hidden states h1...hi. An high-level
schema of this architecture, with the flow of information for three tasks (I = 3), is presented in figure 1.
All the tasks are learned jointly by minimising the global loss L =

∑
i Li(oi, ôi), on top of the circled +

in the schema (Figure 1).

Like in the original sequence-to-sequence model based on an attention mechanism (Bahdanau et al.,
2014), each decoder attends to encoder and decoder’s hidden state information with an attention mecha-
nism. The decoder Decoderi has therefore i different attention mechanisms, one for attending encoder’s
information, and one for each previous decoder’s hidden state. The queries for the attention mechanisms
are always the Decoderi’s hidden states, while keys and values are the encoder and previous decoder
hidden states. The attention vectors computed by the attention mechanisms are simply summed together
to generate the final state, used to predict the next output.5

5We note that we have been testing also gating mechanisms to blend the outputs of the attention mechanisms like in (Mi-
culicich et al., 2018), but this always gave worse results than the sum.
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Training Dev Test
# sentences 40 472 5 000 5 000

Words Labels Words Labels Words Labels
# tokens 719 530 – 76 704 – 92 004 –
dictionary 77 220 681 15 852 501 20 149 537
OOV% – – 30,90 0,01 37,18 0,015

Table 1: Statistics of the German corpus TIGER

Sentences Words
Total 4121 32 062

arabizi foreign emotag
forum 756 6039 5856 14
social 3146 11 843 3614 587
blog 219 3763 343 3

Table 2: Statistics of the already annotated part of TArC

4 Evaluation

4.1 Data
In order to evaluate our multi-task system, we used two different corpora. One is TArC, described in
section 2, the other is the German TIGER corpus (Brants et al., 2004).

TArC corpus has been initially collected from forums, social media and blogs, for a total of 32 062
words, and recently extended to 43 313 words by adding the text type of rap lyrics. In order to bet-
ter organise the automatic annotation and the manual-correction stages, we split the initial corpus into
blocks of roughly 6 500 tokens. Statistics of TArC are presented in table 2. The initial model, used
to bootstrap the corpus annotation, has been trained using 2000 sentences from the Tunisian MADAR
corpus. MADAR data are well-formed texts encoded in Arabic script, this avoid any code-switching and
spelling inconsistency. We processed MADAR data using the MADAMIRA tool (Pasha et al., 2014).6,
producing tokenization and PoS tags. After a manual correction, we obtained the first TArC training
block for starting the annotation procedure.

The German corpus TIGER (Brants et al., 2004) is annotated with rich morpho-syntactic informa-
tion. These include PoS tags, but also gender, number, cases, and other inflection information, as well
as conjugation information for verbs. The combination of all these components constitutes the output
labels. We used the same data split used in (Lavergne and Yvon, 2017). Statistics of this corpus are given
in table 1.

4.2 Settings
4.2.1 Data Pre-processing
We first describe some data pre-processing performed on both corpora, in order to better exploit the
small amount of data in TArC, on one side; on the other side, we performed a similar pre-processing on
the TIGER corpus, in order to have similar experimental settings and therefore be able to validate the
multi-task model with results comparable with the literature.

The TIGER corpus has been used as a benchmark for our multi-task system, before applying it to
TArC. Since TIGER data are not natively multi-task, we re-organised TIGER labels in two parts: the
first consisting of the PoS core-tag only, the second consisting of the whole label. For example, given
the label ADJA.PoS.Nom.Sg.Masc7, we take the PoS tag ADJA as a first level of information, and the
whole label as a second level. This simple pre-processing allows to have two tasks to learn with our

6Version used: MADAMIRA 2.0. D3 BW* schemes (Habash, 2010).
7The different pieces stand for adjective, possessive, nominative, singular and male, respectively.
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system: a coarse and a fine-grained morpho-syntactic tagging, where the second task, more complex,
can be learned using also the information of the first, which is simpler.

In order to reduce data sparsity in TArC, we performed sequence prediction at each annotation level
using sub-token units, except for the classification level. Sub-token units are characters for Arabish,
CODAfied tokens and tokenization levels. For the PoS tags we performed an ad-hoc split into coarser
units. The PoS tags annotated in TArC follow the LDC guidelines described in (Maamouri et al., 2009).8

The tags contain rich information, like for the TIGER labels, describing the morphological structure
of tokens. For instance the tag PV-PVSUFF SUBJ:3MS+[PREP+PRON 2S]PVSUFF IO:2S, contains
information about a verb with inflectional morphology (PV-PVSUFF SUBJ:3MS), plus information on
a pre-pronominal enclitic group attached to the verb (PREP+PRON 2S). This group contains also an
indirect object in suffix form (PVSUFF IO:2S). Each of these 3 macro components contains person
features, 3MS for the verb, 2S for the enclitic pronoun, and 2S for the indirect object suffix.

Quite intuitively, such complex tags, taken as a whole, are very rare in the data. Indeed more than half
of them occur only once in our data.9 However their components are quite common (e.g. PV, PVSUFF,
SUBJ, 3, M, S and so on). For this reason we split the tag above into a sequence of components like:
PV, PVSUFF, SUBJ, :3, @M, @S, +, [, PREP, +, PRON, 2, @S, ], PVSUFF, IO, :2, @S. Symbols like
@ are added for the post-processing phase to correctly reconstruct the whole tag. For the same reason,
each time a tag is split in this way, the components are wrapped with start and end markers ¡SOT¿,
¡EOT¿ (for Start and End Of Token). A whole tag sequence, associated to an input sentence, is made
by concatenating the sequences resulting from the split of each tag. The same start and end markers are
used also for the other annotation levels, which are split into single characters, so that the model can
learn itself that each token in the input sequence corresponds to one token in all the annotation levels.

In order to have the same settings for TArC and TIGER data, we split the input tokens in the TIGER
data into characters, adding the start and end markers. The labels are left unchanged, beyond artificially
creating 2 label levels to test our multi-task system (we actually performed experiments also splitting
TIGER labels into components, cf. table 3 and 4).

The TArC classification level was added first. This was done using a character-level model pre-trained
exploiting: i) the Hussem Ben Belgacem’s French dictionary, consisting of 336,531 tokens.10, and ii)
a Tunisian Arabish dictionary of 100,936 tokens, resulting from the merge of the TUNIZI Sentiment
Analysis Tunisian Arabic Dataset (Fourati et al., 2020)11 and the TLD dataset (Younes et al., 2015).

In order to obtain an emotag dictonary, we extracted all the smileys and emoticons from the Arabish
dictionary above. Once the model was pre-trained on the above data, it was possible to apply also to
this annotation level the semi-automatic and incremental annotation procedure used in (Gugliotta and
Dinarelli, 2020). At the end of the procedure, the model reached 97% of accuracy. All data were
manually checked and corrected.

4.2.2 Model Settings
Concerning model settings, we note that encoder and decoders in our multi-task neural models are all
LSTM (Hochreiter and Schmidhuber, 1997).12

An optimisation of hyper-parameters like learning rate, dropout ratio (Srivastava et al., 2014), layer
size, etc. has been performed on development data of TArC. For experiments on TIGER the same
hyper-parameters have been used. The goal here is not to obtain the best absolute results on this task,
it is to show that our system is competitive enough to be used safely on unpublished data. Such hyper-
parameter optimal values resulted in: 5E−4 for learning rate, 0.5 for dropout ratio (at all layers, including
embeddings), 5.0 for gradient clipping (Pascanu et al., 2012), 256 for both embeddings and hidden layer
size (for all layers). We share all embeddings, at input and output layers, and in encoder and decoders.

8In the concatenation style we used ”-” and the square brackets, to better manage the information through our model.
9More precisely, 423 PoS tags out of 776 in the dictionary, that is 54.9%, occur only once.

10https://github.com/hbenbel/French-Dictionary (last access on 15/09/2020).
11https://github.com/chaymafourati/TUNIZI-Sentiment-Analysis-Tunisian-Arabizi-Dataset (last access on 15/09/2020).
12The system is however generic, and potentially any kind of encoder and decoder available in Fairseq may be used. We are

currently working on adding the use of Transformer encoder and decoders (Vaswani et al., 2017).
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The loss functions used in all our experiments, for all the decoder outputs (see L, L1, etc. in sec-
tion 3.1), are the cross-entropy loss. All models are learned with an ADAM optimiser (Kingma and Ba,
2014) with default parameters. Model’s outputs are evaluated with the accuracy, after applying post-
processing to reconstruct original tokens. This means that if a single character or component in a token
is wrong, the token is considered wrong in the accuracy.

4.3 Results

We present first results obtained on the corpus TIGER. We remind that we artificially performed multi-
tasking on TIGER by isolating the core-tag from its features for each morpho-syntactic tag, and using
the core-tag and the whole one as separated output to be predicted (see section 4.2).

The first set of experiments was performed to choose the optimal number of layers in each decoder
of our multi-task system. Results are shown in table 3, the two tasks are PoS, for core-tags only, and
MORPHO for core+feature tags. The results of both tasks show that the model performs at best with
3 layers in each decoder, though the gain with respect to the other choices is small. Despite the gain is
small, we observed consistently the best results, both in terms of accuracy and loss values, and on both
corpora, with 3 layers.

In the table 3 we show also the comparison of our results with the literature. To the best of our
knwoledge the best results on the corpus TIGER have been published in (Dinarelli and Grobol, 2019),
which improved previous state-of-the-art of (Lavergne and Yvon, 2017). Our results are comparable
with the state-of-the-art, even slightly better on morpho-syntactic tagging, Dev data. We would like to
insist on the fact that experiments on TIGER have been performed not with the goal to improve the state-
of-the-art, but only for validating our multi-task system for performing multi-level annotation of TArC
as multi-tasking. In this respect, the model used in (Dinarelli and Grobol, 2019) is quite sophisticated,
it performs sequence labelling exploiting both token and character information on the input side, and
performing bidirectional decoding on the output side. Our model performs decoding at character-level
only, though using several layers over 2 tasks. Beyond this comparison, we consider our results on the
TIGER corpus satisfactory for a multi-task setting.

The last 3 lines of table 3 and 4 show results on TIGER Dev and Test data, respectively. In these
experiments we compare models learned for decoding label components, instead of whole labels, using
character-level input (Char decoding), models learned with whole tokens on input and output side (To-
ken decoding), and models combining both information, but learned from whole-token tag sequences
(Token+char decoding). As we can see, Char decoding setting is by far the most effective. Combining
token and character level information largely improves the Token decoding setting, but it is still much
less effective than the Char decoding setting.

It could be interesting to observe which gain can be achieved with a multi-task model, e.g. on PoS
tagging, with respect to a mono-task sequence-to-sequence model on the same task. In order to show
such gain, we performed an experiment of PoS tagging with our multi-task system in a mono-task setting,
with the same experimental settings. We compare this result with the multi-task counter-part in table 3.
The two results are shown in table 5. As we can see, a substantial gain can be achieved performing PoS
tagging as part of a multi-task setting. Even if, when learned for multi-tasking, PoS tagging is the first
task and so it cannot exploit information coming from preceding tasks, the gain is given by the back-
propagation of the morpho-syntactic tagging error through the whole network. Once again, results are
obtained decoding at character level only for keeping the same experimental settings as for the TArC.

Experiments on TArC are divided in two phases, corresponding to two annotation phases: the first
concerns the Arabish conversion into Arabic script. The second phase consists in classification of each
token in arabizi, foreign or emotag classes, together with tokenization of Arabic-encoded tokens, and
PoS tagging. Each phase was performed with a semi-automatic procedure, where a model was trained
on a first block of data. Such model was used to annotate another block of data. This was then manually
corrected and added to the training data. A new model was trained and used to annotate a new block.
This procedure was iterated up to the annotation of the full corpus (32 062 tokens).

For the first phase of the annotation (Arabic script encoding only) we used the mono-task sequence-
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Corpus: TIGER Dev data
Best results

PoS MORPHO
(Dinarelli and Grobol, 2019) 98.37% 93.94%

Our results
Model LSTM

Task PoS Morpho
1 Enc + 1 Dec layers 97.83% 93.16%
2 Enc + 2 Dec layers 98.16% 93.58%
3 Enc + 3 Dec layers 98.30% 94.10%
Char decoding 98.30% 94.10%
Token decoding 96.21% 86.89%
Token+char decoding 98.11% 90.70%

Table 3: Summary of results, in terms of accuracy, obtained on the TIGER development data set with
the Tarc Multi-Task system.

Corpus: TIGER Test data
Best results

PoS MORPHO
(Dinarelli and Grobol, 2019) 97.74% 91.86%

Our results
Model LSTM

Task PoS Morpho
Char decoding 97.44% 91.81%
Token decoding 94.44% 83.37%
Token+char decoding 97.25% 87.87%

Table 4: Summary of results, in terms of accuracy, obtained on the TIGER test data set with the Tarc
Multi-Task system.

to-sequence model of (Dinarelli and Grobol, 2019). Indeed the Arabic script encoding of tokens is the
most costly and difficult phase, so we thought it could be easier to have it first, annotating the other levels
afterwards. The Arabic script encoding accuracy of the model was below 70% for the first block. This
still allowed the annotator to correct the block 3 times faster than if the block was annotated from scratch.
For the following data blocks, accuracy of the model increased progressively, up to roughly 76% for the
fourth block. At this point we started the second phase, which included the annotation of the fifth and
last block with encoding conversion.

In the second phase, we repeated the iterative semi-automatic annotation procedure of the first phase
for the classification, tokenization and PoS tagging levels. These were performed with the multi-task
system. The first model for bootstrapping the annotation procedure was trained on a part of the MADAR
data (Bouamor et al., 2018) consisting of roughly 12,000 tokens ( 2,000 sentences). These data were
annotated with tokenization and PoS information using MADAMIRA as explained in section 4.1, and
then manually corrected. The classification information was added manually, which was trivial since
all tokens belong to the arabizi class in this data. The model trained on MADAR data has been used
to annotate the first block of TArC, which is the step 0 of the iterative procedure. In the following 3
iterations, the MADAR data were used together with the TArC blocks already manually corrected. The
input for these 3 steps was thus the CODAfied Tunisian. Exploiting MADAR was only possible up to the
4th block, since the blocks after the fourth were not already provided with CODAfied tokens (see the 1st
annotation phase above). However, we planned to add all the annotation levels to the 5th block, including
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Corpus: TIGER Dev data
PoS tagging results

Model LSTM
Mono-task 95.66%
Multi-task 98.30%

Table 5: Comparison of results of PoS tags decoding from source characters, on the TIGER
development data with mono-task and multi-task models.

the encoding in Arabic script level, with the multi-task system. The 5th block was thus annotated using
only TArC four blocks in Arabish as training data. At each iteration step, the Arabish data were split
randomly into train and validation (dev) sets, so that the dev set is representative of the whole data at
each iteration.13

We report the results on the 3 tasks of the first 4 steps, where the input was CODAfied Tunisian, and
the results on the 4 tasks of the following steps, where the input was Arabish, in table 6. The tasks
are indicated in the table with Class for classification, Arabic for Arabic script encoding, Token for
tokenization, and PoS for PoS tagging, respectively. In the column “Train. tokens” of the table we
report the number of training tokens for each step. Between parenthesis, when this is meaningful, we
also report the number of training tokens coming from TArC (the remainder is from the MADAR corpus).

In table 6, Step0 is the bootstrapping step, where the model is trained on MADAR data only. Results
are on a randomly chosen dev data set consisting of 15% of the whole data set. Starting from Step1, the
dev data set is a 15% random split of the TArC data only, as we are interested in the effectiveness of our
multi-task system on spontaneous and informal writing data for annotation purposes.

Results in table 6 prove that the multi-task system is effective also on TArC, especially taking into
account the small amount of data available for training the models. The classification task (Class) is
quite well solved, as at best the model, when evaluated on TArC text, is over 97% of accuracy. Results
for tokenization (Token) are also satisfactory, in particular at step 3, where the model is over 91% of
accuracy. Results on PoS tagging (PoS) are quite lower with respect to the other tasks, but we note that
this task is the most difficult, among the 3 of the first 4 steps. Indeed, classification only consists in
associating to each token one of the 3 classes arabizi, foreign or emotag. The tokenization task consists
in splitting a CODAfied token into its components with some orthographical transformations, input and
output script is thus the same, the model needs to learn the splitting. In contrast, PoS tagging is a
conversion from Arabic characters into PoS components.

As we have explained in section 4.2, PoS tags are quite complex, and splitting them into components
allows to mitigate the problem of data sparsity. Moreover, accuracy is computed after post-processing,
that is after PoS tags have been reconstructed from components. A single mistake on a component results
in a wrong tag, affecting the accuracy. Taking all of that into account, we consider the best PoS tagging
result of 76.38% of accuracy as an acceptable result.

In table 6 we observe a substantial drop of results from step 0 (where the model is evaluated on the
MADAR dev set) to step 1 (where the model is evaluated on the Arabish dev set only).14 This is not
surprising, as MADAR is made of morphosyntactically well-formed text, while TArC is made of CMC
spontaneous texts. This behaviour is useful to explain the difference of results between step 3 and step 4
and 5. Beyond that, the increased amount of TArC data with respect to MADAR data through steps 1 to
3, allows to improve results obtained on the MADAR data (Step0).

Results in table 6 drop again between steps 3 and 4. We remind that at step 3, data blocks from 1
to 3, plus the MADAR data, are used for training the model, a 15% split of the TArC data are used for
validation, and the model is used to annotate the fourth data block. At step 4 only TArC data are used
for training, again a 15% split is used for validation, and the fifth block is annotated. At this step an

13In this respect, we note that data in different blocks are heterogeneous, as they are not all from the same source. Hence
keeping the same dev data set for all the iterations would not be representative.

14All MADAR tokens are classified as arabizi, it is thus normal that the model gets almost perfect result in classifying it.
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Train. tokens LSTM
Task Class Arabic Token PoS

Corpus: MADAR
Step0 12 391 99.83% - 88.83% 72.71%

Corpus: MADAR+TArC
Step1 17 261 (4 870) 92.69% - 77.66% 59.56%
Step2 22 173 (9 780) 97.21% - 87.53% 74.30%
Step3 27 270 (14 870) 96.69% - 91.47% 76.38%

Corpus: TArC
Step4 22 150 96.83% 75.30% 73.38% 69.76%
Step5 27 435 97.17% 75.08% 73.07% 66.24%
Step4smart-init 22 150 95.91% 76.55% 74.96% 72.57%
Step5smart-init 27 435 97.08% 77.83% 75.69% 69.76%

Table 6: Summary of results, in terms of accuracy, obtained on the TArC data at the different steps of
the iterative procedure for semi-automatic annotation of the corpus. The tasks are indicated with Class
for classification, Arabic for Arabic script encoding, Token for tokenization, and PoS for PoS tagging.

additional task is performed: encoding of Arabish into CODA*.
As we can see in table 6, all results except for classification, substantially dropped. This is due to

having an additional task with respect to the previous steps, and thus an additional decoder in the system,
and to the use of a smaller training set. We note however this drop is similar to the one between steps 0
and 1. We conclude thus that MADAR well-formed texts have a positive effect on learning spontaneous
Arabish text. It is interesting to observe that the drop in PoS tagging results with respect to tokenization,
at steps 4 and 5, is much smaller than the drop at steps 1 and 3. This suggests to improve Arabish
CODAfication results, which may be achieved by adding Arabish encoding to MADAR. Results on the
step 5 are similar to step 4. This is not surprising as well, since data in the block 5 have a different
style, coming from a different source (blogs). This balances the increased amount of data for training the
model.

In order to exploit the MADAR data also at steps 4 and 5, we designed an ad-hoc parameter initiali-
sation using the model trained at step 0. Note that such model has a different architecture as MADAR
is in Arabic script, it doesn’t contain Arabish.15 Results obtained with this initialisation are reported in
the last lines of table 6 marked as smart-init. As we can see, except for the classification task which is
biased by the fact that in MADAR all tokens are in the arabizi class, all other task results improved with
respect to step 4 and 5 without pre-initialisation.

5 Conclusions

We presented a multi-task sequence labeling system based on recurrent neural networks, developed for
the Fairseq framework and used to annotate TArC on multiple levels. The annotation levels provided are:
classification, tokenization, PoS tagging and encoding of Tunisian Arabish into Arabic script, accord-
ing to CODA*. We described the annotation procedure, after showing the effectiveness of our neural
architecture with an evaluation on the TIGER German corpus. As a next stage we plan to expand TArC
quantitatively to improve the results and its usability in linguistics and NLP fields. Future work includes
qualitative extension through the addition of further annotation levels, such as lemmatization.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. CoRR, abs/1409.0473.

15This resulted in a quite task-specific parameter initialisation.



188

Nasser Berjaoui. 2001. Aspects of the Moroccan Arabic orthography with preliminary insights from the Moroccan
computer-mediated communication. na.

Ann Bies, Zhiyi Song, Mohamed Maamouri, Stephen Grimes, Haejoong Lee, Jonathan Wright, Stephanie Strassel,
Nizar Habash, Ramy Eskander, and Owen Rambow. 2014. Transliteration of arabizi into arabic orthography:
Developing a parallel annotated arabizi-arabic script sms/chat corpus. In Proceedings of the EMNLP 2014
workshop on Arabic natural language processing (ANLP), pages 93–103.

Charles Boberg, John A Nerbonne, and Dominic James Landon Watt. 2018. The handbook of dialectology. Wiley
Online Library.

Houda Bouamor, Nizar Habash, Mohammad Salameh, Wajdi Zaghouani, Owen Rambow, Dana Abdulrahim, Os-
sama Obeid, Salam Khalifa, Fadhl Eryani, Alexander Erdmann, et al. 2018. The madar arabic dialect corpus
and lexicon. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018).

Rahma Boujelbane, Mariem Ellouze Khemekhem, Siwar BenAyed, and Lamia Hadrich Belguith. 2013. Building
bilingual lexicon to create dialect tunisian corpora and adapt language model. In Proceedings of the Second
Workshop on Hybrid Approaches to Translation, pages 88–93.

Rahma Boujelbane, Mariem Mallek, Mariem Ellouze, and Lamia Hadrich Belguith. 2014. Fine-grained pos
tagging of spoken tunisian dialect corpora. In International Conference on Applications of Natural Language
to Data Bases/Information Systems, pages 59–62. Springer.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen-Schirra, Esther Konig, Wolfgang Lezius, Christian
Rohrer, George Smith, and Hans Uszkoreit. 2004. TIGER: Linguistic interpretation of a german corpus.
Research on Language and Computation, 2(4):597–620, dec.

Jorina Brysbaert and Karen Lahousse. 2019. Computer-mediated versus non-computer-mediated corpora of in-
formal french: Differences in politeness and intensification in the expression of contrast by au contraire. Social
Media Corpora for the Humanities (CMC-Corpora2019), page 48.

Tim Buckwalter. 2004. Buckwalter arabic morphological analyzer (bama) version 2.0. Linguistic Data Consor-
tium (LDC), University of Pennsylvania, Philadelphia, PA, USA.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078.

Ronan Collobert and Jason Weston. 2007. Fast Semantic Extraction Using a Novel Neural Network Architecture.
In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 560–567,
Prague, Czech Republic, June. Association for Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, pages 160–167, New York, NY, USA. ACM.
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