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Abstract

Large Transformer models have achieved state-
of-the-art results in neural machine translation
and have become standard in the field. In this
work, we look for the optimal combination of
known techniques to optimize inference speed
without sacrificing translation quality. We con-
duct an empirical study that stacks various ap-
proaches and demonstrates that combination
of replacing decoder self-attention with simpli-
fied recurrent units, adopting a deep encoder
and a shallow decoder architecture and multi-
head attention pruning can achieve up to 109%
and 84% speedup on CPU and GPU respec-
tively and reduce the number of parameters
by 25% while maintaining the same translation
quality in terms of BLEU.

1 Introduction and Related Work

Transformer models (Vaswani et al., 2017) have
outperformed previously used RNN models and
traditional statistical MT techniques. This improve-
ment, though, comes at the cost of higher compu-
tation complexity. The decoder computation often
remains the bottleneck due to its autoregressive
nature, large depth and self-attention structure.

There has been a recent trend towards making
the models larger and ensembling multiple mod-
els to achieve the best possible translation quality
(Lepikhin et al., 2020; Huang et al., 2019). Lead-
ing solutions on common benchmarks (Zhu et al.,
2020; Brown et al., 2020) usually use an ensemble
of Transformer big models, which combined can
have more than 1 billion parameters.

Previous works suggest replacing the expensive
self-attention layer in the decoder with simpler
alternatives like the Average Attention Network
(AAN) (Zhang et al., 2018), Simple Recurrent Unit
(SRU) (Lei et al., 2018) and Simpler Simple Re-
current Unit (SSRU) (Kim et al., 2019). AAN is
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a simpler version of the self-attention layer which
places equal attention weights on all previously
decoded words instead of dynamically computing
them. SRU and SSRU are lightweight recurrent
networks, with SSRU consisting of only 2 matrix
multiplications per decoded token.

Because of the autoregressive property of the
decoder in a standard Transformer model, reduc-
ing computation cost in the decoder is much more
important than in the encoder. Recent publications
(Miceli Barone et al., 2017; Wang et al., 2019a;
Kasai et al., 2020) thus suggest that a deep encoder,
shallow decoder architecture can speed up infer-
ence while maintaining a similar BLEU score.

Another line of research focuses on model prun-
ing techniques to make NMT models smaller and
more efficient. In this paper, we only explore struc-
tured pruning methods, in which smaller compo-
nents of the network are pruned away. Applica-
tions of structured pruning to NMT include works
by Voita et al. (2019) and Michel et al. (2019)
which show that most of the attention heads in the
network learn redundant information and can be
pruned. Michel et al. (2019) proposed the idea of
pruning heads by head importance scoring. Voita
et al. (2019) uses a relaxation of L0 regularization
(Louizos et al., 2018) to prune the attention heads.

All of the above mentioned methods use the
vanilla Transformer architecture as their baseline,
so it is not clear if these approaches can give com-
plimentary results when combined together. In this
work, we explore and benchmark, combining all of
the above techniques, with the goal of maximizing
inference speed without hurting translation quality.

After carefully stacking the approaches, our pro-
posed architecture is able to achieve a significant
speed improvement of 84% on GPU and 109%
on CPU architectures without any degradation of
translation quality in terms of BLEU.
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2 Efficient Inference for Neural Machine
Translation

This section presents the proposed efficient infer-
ence architecture for neural machine translation.
First, we outline the overall procedure of building
an efficient inference architecture. Then, we detail
each step in the process.

Figure 1: Efficient Transformer Architecture

First, we use sequence-level knowledge distilla-
tion (Kim and Rush, 2016) to transfer knowledge
from a strong teacher model to a smaller student
model. This approach allows the student model to
learn from a simpler target distribution and there-
fore enables us to use a simpler architecture.

Then, to simplify the decoder of the student
model, the self-attention mechanism is replaced
by lightweight recurrent units (Kim et al., 2019),
and the feed-forward network is removed. To fur-
ther reduce the decoder computation, we adopt the
deep encoder, shallow decoder architecture (Kasai
et al., 2020). Lastly, we prune redundant atten-
tion heads through L0 regularization (Voita et al.,
2019). Each architecture modification is performed
by retraining the student model. Figure 1 shows
the proposed efficient Transformer architecture.

2.1 Teacher-student Training

We follow the procedure described in Kim et al.
(2019), to train an ensemble of 8 Transformer-big
models, 4 forward, 4 reverse direction, as the first
round of teacher models (T). Without the help of ex-
tra monolingual corpora, we apply multi-agent dual
learning (MADL) (Wang et al., 2019b) to train an-
other 8 Transformer big teacher models (T-MADL)
by re-decoded bitext with ensemble teacher models
(T) in both directions. Then we use noisy backward-
forward translation (Edunov et al., 2018) with the

T-MADL model to, again, re-decode the original
bitext, but with more variance on the source side.
Finally, we use the above generated synthetic data
along with the original bitext to train our student
model.

We use interpolated sequence-level knowledge
distillation (Kim and Rush, 2016) in most of
the described re-decoding runs except the noisy
backward-forward translation where sampling is
used in the reverse direction. More details about
model training and architecture can be found in
Kim et al. (2019).

2.2 Replacing Self-attention with
Lightweight Recurrent Units

Inspired by Kim et al. (2019), we replace the de-
coder self-attention with an RNN, reducing its time
complexity from O(N2) to O(N), where N is
the length of the output sentence. We compare
replacing self-attention with two lightweight lay-
ers: SSRU and AAN, in Section 3.1. The SSRU
layer is as follows:

ft = σ(Wtxt + bf )

ct = ft � ct−1 + (1− ft)�Wxt

ot = ReLU(ct)

(1)

where the � is element-wise multiplication. xt,
ot, ft and ct are the input, output, forget-gate and
cell-state, respectively. We optimized the SSRU by
combining the two matrix multiplications, Wtxt
and Wxt, into one. We find this simple trick can
improve speed by 6% on GPU.

For AAN, we found that removing the gating
layer does not degrade the translation quality while
reducing the computation. In our experiments, we
use the following implementation of AAN (without
a gating layer):

ot = FFN(
1

t

t∑
k=1

xk) (2)

where FFN(·) is a position-wise two-layer feed-
forward network. t, ot and xk denote the current
position, output at position t and input at position
k respectively.

2.3 Removing the Feed-forward Layer
Each decoder layer consists of a lightweight recur-
rent unit, followed by an encoder-decoder multi-
head attention component and a pointwise feed-
forward layer. The feed-forward sub-layer is re-
sponsible for 33% of parameters within the 6-layer
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decoder; however, we found that it can be removed
entirely from the decoder without hurting the trans-
lation quality with our implementation of SSRU
(Section 3.1).

2.4 Deep Encoder, Shallow Decoder

In order to further reduce the decoder computa-
tion, we decrease the number of decoder layers. In
line with the work done by Kasai et al. (2020), to
maintain the same model capacity, we increase the
number of encoder layers. We explore the speed-
accuracy trade-off while varying the depth of both
components in Section 3.2, and find that using 12
encoder layers and 1 decoder layer gives a signifi-
cant speedup without losing translation quality.

2.5 Pruning Attention Heads

Adopting a deep encoder, shallow decoder architec-
ture achieves a good speed-quality tradeoff; how-
ever, it increases the number of parameters in the
encoder. To further improve efficiency and reduce
parameters, we apply multi-head attention pruning
proposed by Voita et al. (2019) to our architecture.
The output of each head hi across all attention lay-
ers is multiplied by a learnable gate gi, before it
is passed to subsequent layers of the network. To
switch off less informative heads (i.e. gi = 0), we
applied L0 regularization to the gates. L0 norm
is the number of non-zero gates across the model.
However, because of the non-differentiable prop-
erty of the L0 norm, a differentiable approximation
is used. Each gate gi, is modeled as a random vari-
able sampled from a Hard Concrete Distribution
(Louizos et al., 2018) parameterized by φi, and
takes values in the range [0, 1]. We then minimize
the differentiable approximation of L0 regulariza-
tion loss, Lc:

Lc(φ) =
h∑

i=1

(1− P (gi = 0|φi)), (3)

where h denotes the total number of heads, φ is the
set of gate parameters, and P (gi = 0|φi) is com-
puted according to the Hard Concrete Distribution.

The model is initially trained with the standard
cross entropy loss Lxent and then fine-tuned with
the additional regularization loss as follows:

L(θ, φ) = Lxent(θ, φ) + λLc(φ), (4)

where θ denotes the set of original model param-
eters, and λ is a hyperparameter which controls

how aggressively the attention heads are pruned.
During inference time, all heads hj , where P (gj =
0|φj) = 1 are completely removed from the net-
work. Our experiments in Section 3.3 show that we
can effectively prune out a large portion of redun-
dant self-attention heads from the deep-encoder.

3 Experiments

We use the Transformer base model (Vaswani et al.,
2017) trained on teacher decoded data as our base-
line. All the described methods are stacked on top
of this baseline model. Following Kim et al. (2019),
we use 4 million bitext from the WMT’14 English-
German news translation task. All sentences are
encoded with 32K subword units using Sentence-
Piece (Kudo and Richardson, 2018). We report
BLEU on the newstest2014 in all the experiments
and use newstest2015 for the final evaluation in
Section 3.4

All experiments are implemented in fairseq (Ott
et al., 2019). The configuration of teacher-student
training follows the settings in Kim et al. (2019).
We use an effective batch size of 458k words and
16 GPUs for training. Adam optimizer is applied
with β = (0.9, 0.98). We use label smoothing with
ε = 0.1, inverse square root learning rate sched-
ule with 2500 warmup steps and peak learning rate
of 0.0007. The models are trained with 50k up-
dates except for the models with pruning, where
additional fine-tuning with 100-150k updates is ap-
plied. We use a beam size of 5 during inference.
We evaluate the inference speed with batch size of
128 sentences on GPU, batch size 1 on CPU and
report speed in words per second (wps), averaged
over 10 decoding runs.

Hardware: We evaluate our performance on 1
GPU (NVIDIA Tesla V100-SXM2-32GB) and 1
core CPU (Intel Xeon E5-2640 v4 @ 2.40GHz)

3.1 Replacing Self-Attention with RNN

From Table 1, we can observe that replacing the
self-attention with lightweight recurrent units gives
significant speed improvements (18-25%) without
any impact on BLEU score.

Removing the feed-forward network in the de-
coder leads to an additional 10-13% speedup for
both AAN and SSRU, but results in 0.9 BLEU
degradation for AAN. Therefore, we use SSRU as
our main architecture in further experiments.
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BLEU wps speedup

Baseline 28.9 4510 -

AAN 28.9 5323 18%
SSRU 28.7 5629 25%

AAN w/o ffn 28.0 5915 31%
SSRU w/o ffn 28.5 6079 35%

Table 1: Results of replacing self-attention with
lightweight recurrent units and removing the feed-
forward network (ffn) in the decoder. Decoding on a
GPU with batch-size 128.

3.2 Number of Layers

We evaluate different combinations of depths in
the encoder and decoder. In the decoder, the self-
attention mechanism is replaced by the SSRU, and
the feed-forward network is removed.

Figure 2: Translation quality – inference speed trade-
off over different number of encoder – decoder layers.

From Figure 2, removing one decoder layer at a
time from the baseline model increases wps by 10%
at a cost of BLEU score degradation since model
capacity goes down. As we increase the number of
encoder layers to 12 or more, we observe up to 45%
speedup, better BLEU score but higher number of
parameters than the original 6-6 structure.

3.3 Pruning Attention Heads

Pruning allows us to remove up to 75% of attention
heads with slight BLEU degradation. We observe
from the remaining heads that for the pruned base-
line (22/7/8) model, the self-attention heads are
more important in the deeper layers rather than the
lower layers. On the other hand, in our best config-
uration (SSRU 18/8/-), there is no clear pattern of
remaining heads.

attention heads
BLEU

(enc/enc-dec/dec)

Baseline 96/8/8 29.2
+ pruned 22/7/8 29.0
SSRU w/o ffn 96/8/- 28.9
+ pruned 18/8/- 28.6

Table 2: Head pruning through L0 regularization on the
12−1 layer (encoder-decoder) structure. The (enc/enc-
dec/dec) refers to the total number of attention heads in
encoder self-attention, encoder-decoder attention and
decoder self-attention respectively.

3.4 Combined Results

We combine all of the methods and evaluate our
model on the newstest2015 testset.

BLEU
speedup

#params
GPU/CPU

Baseline 31.1 - 61M
SSRU 31.1 14/12% 57M
+ Remove ffn 31.0 28/49% 45M
+ 12-1 31.5 82/103% 56M
+ Prune heads 31.4 84/109% 46M

Table 3: Decoding on a GPU with batch-size 128, and
a single CPU core with batch-size 1. [12-1] refers to
the number of layers in the encoder and the decoder.

Table 3 shows that by using all of the techniques
in combination, the model achieves 84% and 109%
speed improvement on GPU and CPU, respectively
compared to the baseline model (Transformer-
base). There are only 25% heads remain in the
deep-encoder after pruning and the total number of
parameters is 25% fewer.

4 Conclusion

In this paper we explored the combination of tech-
niques aimed at improving inference speed which
lead to the discovery of a very efficient architec-
ture. The best architecture has a deep 12-layer en-
coder, and a shallow decoder with only one single
lightweight recurrent unit layer and one encoder-
decoder attention mechanism. 75% of the encoder
heads were pruned giving rise to a model with 25%
fewer parameters than the baseline Transformer. In
terms of inference speed, the proposed architecture
is 84% faster on a GPU, and 109% faster on a CPU.



52

Acknowledgments

We would like to thank Andrew Finch, Stephan
Peitz, Udhay Nallasamy, Matthias Paulik and Russ
Webb for their helpful comments and reviews.
Many thanks to the rest of the Machine Transla-
tion Team for interesting discussions and support.

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
page 489–500, Brussels, Belgium.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V Le, Yonghui Wu, and Zhifeng
Chen. 2019. Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism. In Advances
in Neural Information Processing Systems 32, pages
103–112, Vancouver, Canada.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James
Cross, and Noah A Smith. 2020. Deep encoder,
shallow decoder: Reevaluating the speed-quality
tradeoff in machine translation. arXiv preprint
arXiv:2006.10369.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280–288, Hong Kong. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav
Artzi. 2018. Simple recurrent units for highly par-
allelizable recurrence. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4470–4481, Brussels, Bel-
gium.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning sparse neural networks
through l0 regularization. In International Con-
ference on Learning Representations, Vancouver,
Canada.

Antonio Valerio Miceli Barone, Jindřich Helcl, Rico
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