
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 169–173
Online, November 20, 2020. c©2020 Association for Computational Linguistics

169

Do We Need to Create Big Datasets to Learn a Task?

Swaroop Mishra∗ Bhavdeep Sachdeva∗

Department of Computer Science, Arizona State University
{srmishr1, bssachde}@asu.edu

Abstract

Deep Learning research has been largely ac-
celerated by the development of huge datasets
such as Imagenet. The general trend has been
to create big datasets to make a deep neural
network learn. A huge amount of resources is
being spent in creating these big datasets, de-
veloping models, training them, and iterating
this process to dominate leaderboards. We ar-
gue that the trend of creating bigger datasets
needs to be revised by better leveraging the
power of pre-trained language models. Since
the language models have already been pre-
trained with huge amount of data and have ba-
sic linguistic knowledge, there is no need to
create big datasets to learn a task. Instead, we
need to create a dataset that is sufficient for
the model to learn various task-specific termi-
nologies, such as ‘Entailment’, ‘Neutral’, and
‘Contradiction’ for NLI. As evidence, we show
that RoBERTA is able to achieve near-equal
performance on ∼ 2% data of SNLI. We also
observe competitive zero-shot generalization
on several OOD datasets. In this paper, we
propose a baseline algorithm to find the opti-
mal dataset for learning a task.

1 Introduction

Large scale datasets such as Imagenet (Rus-
sakovsky et al., 2015) in Vision, and SQUAD (Ra-
jpurkar et al., 2016) and SNLI (Bowman et al.,
2015) in NLP have accelerated our progress in
deep learning. The general trend has been to create
large scale datasets for various tasks such as Abduc-
tive NLI (Bhagavatula et al., 2019), DROP (Dua
et al., 2019), and SWAG (Zellers et al., 2018). The
process of creating big datasets involves heavy in-
vestment in resources, that further increases when
models are developed in response to these datasets,
and trained to top leaderboards. This makes deep
learning research and development inaccessible to
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communities where resources are scarce. Addi-
tionally, the heavy computation involved in train-
ing models adversely affects the environment on a
broader scale (Schwartz et al., 2019). This leads us
to the question: Do we always need to create big
datasets?

We probe this question with motivation from
the process by which we learn a certain topic/task.
Even though we have access to hundreds of materi-
als available online, we do not need to go through
all of them in order to learn the specific topic. In
fact, we intentionally avoid certain materials which
are noisy, distracting, or irrelevant to the topic. Hu-
mans have deep background knowledge about the
world which makes this possible. With the recent
developments in language modelling, pre-training
on huge datasets have imparted linguistic knowl-
edge to models like BERT (Devlin et al., 2018) and
RoBERTA (Liu et al., 2019). With this knowledge,
models need not learn everything from scratch;
instead they should just learn task specific termi-
nologies such as ‘Entailment’, ‘Neutral’, and ‘Con-
tradiction’ for NLI, which might not necessitate the
use of big datasets.

There are certain other factors that recommend
against creating big datasets. A growing number
of recent works (Poliak et al., 2018; Geva et al.,
2019; Kaushik and Lipton, 2018; Schwartz et al.,
2017; Mishra et al., 2020; Bras et al., 2020) have
exposed the presence of spurious bias in many pop-
ular benchmarks. Spurious bias represents unin-
tended correlations between input and output (e.g.:
the word ‘not’ is most often associated with the la-
bel ‘contradiction’(Gururangan et al., 2018)). Spu-
rious bias makes a task easy for models, allowing
them to exploit instead of learning generalizable
features like humans. Models finetuned on these
benchmarks fail to generalize in Out of Distribu-
tion (OOD) and Adversarial settings. Since the
sources of these spurious biases: data collection,
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Figure 1: Proposed baseline approach to select the optimal data necessary to learn a task.

and crowdsourcing are hard to control, carefully
selecting a smaller and optimal dataset may be a
viable alternative.

We propose a baseline in this paper to find the
optimal dataset for learning a task. Our approach
is inspired by the human tendency to first make a
rough estimate of the presence of relevant mate-
rials by glancing at various parts of an entire set
of available materials. After selecting a slice of
existing materials in the first phase, they remove
redundant/easy/already known/possible distracting
content from the slice. Finally, they use heuris-
tics based on their background knowledge about
the task to sort based on relevance and select the
most optimal content based on the priority of the
task and availability of time to learn it. We utilize
several recently proposed modules in our baseline.

We prune SNLI (Bowman et al., 2015) to ∼ 2%
of its original size using our baseline. Our results
show that RoBERTA on training with this pruned
set achieves near-equal performance on the SNLI
dev set and competitive zero-shot generalization
on three OOD datasets (i) NLI Diagnostics (Wang
et al., 2018), (ii) Stress Tests (Naik et al., 2018), (iii)
Adversarial NLI (Nie et al., 2019). Our analysis
shows that big datasets not only prevent general-
ization, but also impact IID testset performance.
Interestingly, we find the annotation of those data
to be correct and not noisy. This indicates that,
certain data samples might be distracting a model
by acting against the inductive bias created by rest
of the dataset. Our finding opens up the possible
existence of such distractors in real datasets, en-
couraging NLP community to explore the optimal
selection of certain samples in a dataset instead of

trying to dominate a leaderboard with the entire
dataset.

2 Proposed Algorithm

We mimic the relevant material selection process in
humans to propose algorithm for selecting the opti-
mal dataset necessary to learn a task, as illustrated
in Figure 1. We use robotics terminology (Rauch
et al., 2019) to explain the stages of learning (i)
coarse action (ii) fine action. Algorithm 1 details
our approach. We briefly explain each stage below.

Formalization: Let D represent the entire
dataset, s represent samples, M be the model, S
be the pruned set, E(s), C(s) and P (s) be the
evaluation score, correct evaluation score and pre-
dictability score of each sample s respectively. In
this preliminary work, we just explore the first term
of DQIc1. Expanding this to other terms will be
the immediate future work.

Coarse Action: We start with a random subset
of a% of dataset (D), train model (M ) on it and
calculate accuracy on the IID testset. We iteratively
append a random subset of b% of data from the rest
of D, train M on the combined data and calculate
accuracy on the testset. We continue adding b%
of data until the testset accuracy stops increasing.
L1-L8 of algorithm 1 explains coarse action.

Fine Action: We use two key modules (i) AFLite
(Bras et al., 2020; Sakaguchi et al., 2019) and (ii)
DQI (Mishra et al., 2020) for fine action on the
data selected after coarse action. AFLite is a recent
technique for adversarial filtering of dataset biases,
whereas DQI has a method to quantify quality of
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samples with or without annotation.

AFLite: In our setup, AFLite randomly selects
10% of data (selected after coarse action) for fine
tuning on M , and then discards them. It randomly
partition the data into train and test set, and does
it in parallel several times. It trains linear models
(logistic regression and SVM) with the train data,
and evaluate on the test data. It combines parallel
sessions by calculating predictability score (P (s))
of every data as the number of time it has been cor-
rectly predicted (C(s)) divided by the number of
times it has been evaluated (E(s)). It then shortlists
samples for which predictability score is greater
than a threshold (tau).

DQI: DQI stands for Data Quality Index. It is a
compilation of various linguistic parameters related
to dataset biases. It has seven components –(i) Vo-
cabulary, (ii) Inter-Sample N-gram Frequency and
Relation, (iii) Inter-Sample STS (Semantic Tex-
tual Similarity), (iv) Intra-Sample Word Similarity,
(v) Intra-Sample STS, (vi) N-Gram Frequency per
Label, (vii) Inter-Split STS – that cover various
possible inter/intra-sample interactions (a subset
of which leads to biases) in an NLP dataset. DQI
has a total of 20 subcomponents and 133 terms.
Higher DQI is meant to indicate lower existence of
spurious bias and higher generalizable features.

Leveraging AFLite and DQI in Fine Action:
We use DQI in the pruning step of AFLite; instead
of sorting samples based on the predictability score,
we sort them based on the DQI values. L9-L34 and
L34-36 of algorithm 1 explain the usage of AFLite
and DQI respectively in fine action.

Size Performance on IID test set

5000 36.77
10000 77.45
15000 81.69
20000 84.69
25000 80.96

Table 1: Coarse Action results on SNLI dataset
3 Results

Hyperparameters: We use a = 5000, b = 5000
and use other hyperparameters from AFLite (Bras
et al., 2020) and DQI (Mishra et al., 2020) papers.

Analysis: Table 1 shows that IID testset accuracy
decreases after 20k, so we stop there and proceed
for fine action with 20k data. With fine action, we

prune 20k data further to the size of 5k-15k, as
shown in Table 2. Our results in Table 2 shows
that the pruned datasets achieves near equal perfor-
mance on IID testset and competitive performance
on various sections of three OOD datasets. Since
we have included just the first term of DQIc1, we
perform ablation study of that specific term. Our re-
sults in Table 3 shows that the first term of DQIc1
helps in improving performance on most of the
cases. Interestingly we observe that, 20k data has
lower IID testset accuracy than 5k, 8k, 10k, 12k
and 15k datasets, as shown in Table 2.
Algorithm 1: Optimal Sample Selection

Result: Input: Dataset D, Hyper-Parameters a, b, m,
n, t and tau and Output: Pruned dataset S

1 for a < 100 do
2 Randomly Select a% of samples from D and

Check IID testset accuracy of model M ;
3 if IID accuracy is increasing then
4 a=a+b
5 else
6 break
7 end
8 end
9 D= a% of samples from D;

10 Fine tune RoBERTA on 10 % of D and get the
embeddings of rest of the dataset D. Discard 10 %
of D used in Training.;

11 S = D;
12 E(s) = 0 and C(s) = 0 for all s in S ;
13 while ‖S‖ > n do
14 forall i ∈ m do
15 Randomly select trainset of size t from S ;
16 Train Logistic Regression on t and evaluate

on rest of S i.e. V ;
17 forall s ∈ V do
18 E(s) = E(s) + 1;
19 if model prediction is correct then
20 C(s) = C(s) + 1
21 end
22 end
23 Train SVM on t and evaluate on V ;
24 forall s ∈ V do
25 E(s) = E(s) + 1;
26 if model prediction is correct then
27 C(s) = C(s) + 1
28 end
29 end
30 end
31 forall s ∈ S do
32 P (s) = C(s)/E(s)
33 end
34 Shortlist instances for which P (s) > tau ;
35 Sort shortlisted instances based on DQI values

and delete k instances with lowest DQIs
36 end
37

4 Discussion

We perform a preliminary analysis on the 15k sam-
ples retained using our algorithm and observe that
the 15k retained data contains 4939, 5058 and 4983
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Size IID Test OOD ANLI OOD NLI Diagnostics OOD Stress Combined

R1 R2 R3 Knowl. LS Logic PAS Comp. Distraction Noise

550k 89.64 36.6 30.5 31.33 57.64 62.23 53.8 66.51 51.63 72.13 79.52
20k 84.69 33.1 32.2 30.42 39.93 51.9 39.95 63.21 33.79 57.77 61.84

5k 87.47 32.6 31.8 28 50.35 61.14 48.37 67.45 35.29 65.72 73.97
8k 87.54 34.7 31.5 28.92 51.74 55.98 51.63 65.57 40.21 68.99 75.08

10k 87.93 34.5 33 31.67 55.9 61.14 53.26 66.75 45.94 74.88 74.62
12k 88.56 32.6 32.7 30.67 49.31 57.61 50.82 66.27 39.03 67.84 73.67
15k 88.95 37.2 28.3 29.17 56.6 56.79 54.62 65.8 45.94 70.66 77.71

Table 2: Fine Action on the selected subset of SNLI post coarse action: Highlighted points have best performances.
First row represent the original SNLI dataset of size 550k, second row represents the dataset of size 20k selected
after coarse action. Last five rows (5k-15k) represent the dataset retained after pruning in fine action.

Size IID Test OOD ANLI OOD NLI Diagnostics OOD Stress Combined

R1 R2 R3 Knowl. LS Logic PAS Comp. Distraction Noise

5k 86.76 34.4 29.8 27.75 50.04 56.52 47.01 65.33 38.1 66.14 72.01
8k 87.08 33.1 31.2 28.42 46.18 56.52 47.01 65.57 37.93 68.91 71.85

10k 88.39 33.5 31.6 30.42 53.47 60.05 47.28 66.27 40.05 67.02 73.26
12k 88.38 33.9 31.1 29.17 51.04 57.42 50.27 66.98 38.81 69.42 76.32
15k 88.92 35.4 33.9 28.5 49.31 57.88 51.9 67.22 50.24 70.45 75.07

Table 3: Ablation Study for DQIc1: Highlighted points show sections of various datasets where addition of DQI
has resulted in higher performance

Figure 2: Sentence length vs. percentage of samples
for the dataset retained (15k, Blue) and removed (5k,
Red) after fine action

samples of contradiction, entailment and neutral
respectively. This is similar to the distribution of
the original SNLI dataset which has around 183k
samples for each class. However, figure 2 illus-
trates that sentence length of retained and removed
samples follow different distributions.

5 Conclusion

We propose a baseline approach to find the opti-
mal set of samples required to learn a task. Our

approach mimics humans in identifying relevant
materials for learning a task. In the first stage,
our algorithm finds a rough estimate as part of the
coarse action. The second stage leverages two re-
cently proposed modules AFLite (for adversarial
filtering of dataset biases) and DQI (for quantify-
ing the quality of data) to perform fine action. We
show the efficacy of our baseline by pruning SNLI
to 2% of its original size. Our results show that
RoBERTA on training with this pruned set achieves
near-equal performance on the SNLIdev set and
competitive zero-shot generalization on three OOD
datasets. Our analysis shows that big datasets not
only prevent generalization, but also impact IID
performance. Our findings about distracting sam-
ples will encourage community to look for the pos-
sible existence of such distractors in real datasets
and subsequently explore the optimal selection of
samples in a dataset instead of trying to dominate a
leaderboard with the entire dataset. Studying the ef-
fect of our algorithm on model training time, mem-
ory footprint, model interpretation research and
better understanding of how deep learning models
work in general are some of the potential future
directions to explore.
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