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Abstract

The dominant language modeling paradigm
handles text as a sequence of discrete to-
kens. While that approach can capture the la-
tent structure of the text, it is inherently con-
strained to sequential dynamics for text gener-
ation. We propose a new paradigm for intro-
ducing a syntactic inductive bias into neural
text generation, where the dependency parse
tree is used to drive the Transformer model to
generate sentences iteratively.

Our experiments show that this paradigm is
effective at text generation, with quality be-
tween LSTMs and Transformers, and compa-
rable diversity, requiring less than half their de-
coding steps, and its generation process allows
direct control over the syntactic constructions
of the generated text, enabling the induction of
stylistic variations.

1 Introduction

The currently dominant text generation paradigm is
based on generating a sequence of discrete tokens
in a left-to-right autoregressive way. Most neural
language models (LMs) fall into this autoregressive
generation category. Some neural architectures are
sequential in nature, such as those based on recur-
rent neural networks (RNNs), lending themselves
naturally to the autoregressive approach when used
together with teacher forcing (Williams and Zipser,
1989). Other architectures, such as Transformer
(Vaswani et al., 2017), while not intrinsically se-
quential, have also been targeted for sequential
generation. On the other hand, some recent lines of
research have focused on nonsequential generation.
In this work, we propose a new paradigm for text
generation and language modeling called Iterative
Expansion Language Model, which generates the
final sequence following a token ordering defined
by the sentence dependency parse by iteratively
expanding each level of the tree.

2 Related Work

In this section, we provide an overview of
works related to ours, including dependency tree-
driven LMs (§2.1), syntax-driven generation (§2.2),
insertion-based approaches (§2.3) and iterative re-
finement approaches (§2.4).

2.1 Dependency LMs

The use of dependency parse trees to drive a lan-
guage model was first proposed by Chelba et al.
(1997), with a similar structure to an n-gram LM,
but where the context of a word is its preceding
bigram plus a list of preceding words whose parent
does not precede it. Shen et al. (2008) make use of
the dependency tree in a probabilistic LM, comput-
ing the probability of each word conditioned on its
parent and the sibling words between both.

Mirowski and Vlachos (2015) propose a de-
pendency LM based on RNNs, where the depen-
dency tree is decomposed into a collection of un-
rolls, that is, paths from the root to one of the
leaves, and where the probability of a word can
be predicted from these unrolls. Buys and Blun-
som (2018) propose a shift-reduce transition-based
LSTM (Hochreiter and Schmidhuber, 1997) depen-
dency LM that can be used for language modeling
and generation by means of dynamic programming.

2.2 Syntax-driven Generation

Recurrent neural network grammars (Dyer et al.,
2016) are recursive models that operate with a stack
of symbols that can be populated with terminals or
nonterminals, or “reduced” to generate a syntactic
constituent, obtaining as a result a sentence and its
associated constituency parse tree.

Shen et al. (2018) use skip-connections to in-
tegrate constituent relations with RNNs, learning
the underlying dependency structures by leverag-
ing a syntactic distance together with structured
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attention.
Akoury et al. (2019) use a simplified con-

stituency tree as latent variables, modeling it au-
toregressively to later use it as input for a non-
autoregressive transformer that generates the out-
put sentence.

Ordered neurons (Shen et al., 2019) are modified
LSTMs where the latent sentence tree structure is
used to control the dependencies between recurrent
units with a special “master” input and forget gates.

2.3 Insertion-based Generation
Stern et al. (2019) propose a conditional generative
model that iteratively generates tokens plus the po-
sition at which they should be inserted within the
sequence. Emelianenko et al. (2019) further pro-
pose to optimize the generation order by sampling
from the ordering permutations. Instead, Chan et al.
(2019) optimize a lower bound of the marginalized
probability over every possible ordering.

Gu et al. (2019a) handle the generation order as
a latent variable that is captured as the relative po-
sition through self-attention, optimizing the ELBO
to train the model.

Levenshtein Transformer (Gu et al., 2019b) is a
non-autoregressive approach trained with reinforce-
ment learning (RL) to generate token insertion and
deletion actions. While it benefits from the same
generation speed-ups over autoregressive models as
our model, it has the added difficulty of learning an
insertion/deletion policy using RL without any lin-
guistically or empirically motivated priors, which
can be slow or difficult to obtain convergence in
practice. By comparison, our approachmakes uses
a linguistically motivated prior for word insertion
in a fully supervised way, avoiding the optimization
difficulties of RL.

Welleck et al. (2019) use cost minimization imi-
tation learning to learn a policy to generate a binary
tree that is used to drive the token generation.

2.4 Iterative Refinement
Lee et al. (2018) propose a latent variable non-
autoregressive machine translation model where
first the target length is predicted by the model, and
then, the decoder is iteratively applied to its own
output to refine it.

Mask-predict (Ghazvininejad et al., 2019) also
predicts the target sentence length and then non-
autoregressively predicts the sentence itself, itera-
tively refining it a fixed number of times, masking
out and regenerating the tokens it is least confident

about. Lawrence et al. (2019) follow a similar ap-
proach and start with a sequence of placeholder
tokens (all the same) of a specified length, and
they iteratively replace them with normal tokens
via masked LM-style inference. As the masking
strategy for the training data, the authors propose
different stochastic processes to randomly select
which placeholders are to be uncovered.

3 Iterative Expansion LMs

Our proposal is to train a new kind of language
model where the token generation order is driven
by the dependency parse tree of the sentence and
where the generation process is iterative.

My dog also likes eating sausage

poss

nsubj

advmod xcomp dobj

ROOT

Figure 1: Example of dependency parse tree.

The input vocabulary contains terminal tokens
as well as non-terminal special tokens called de-
pendency placeholders, each of which is associated
with one of the possible dependency relations to
the heads. For the dependency tree in Figure 1, the
dependency placeholders are [poss], [nsubj],
[advmod], [xcomp], [dobj] and [ROOT].

The input of the first iteration is the sequence
with the [ROOT] element. At each iteration, the
model receives as input a sequence Itok with tokens
from the input vocabulary and non-autoregressively
generates two new sequences, each with the same
length as the input.

The first output sequence, Otok , contains tokens
from a vocabulary with all possible textual tokens
(terminal tokens). The second output, Oexp , is
a sequence of tokens called expansion placehold-
ers, which are taken from a separate vocabulary.
Each expansion placeholder is associated with a
pattern describing the left and right dependencies
of the token at that position in the Otok sequence.
An example of dependency expansion could be
[nsubj-advmod-HEAD-xcomp] for the word
“likes” in the dependency parse tree from Figure 1.

After each iteration, the output of the model is ex-
panded.1 This consists of creating a new sequence

1The expansion of the output to be fed as input in the next
iteration occurs in the CPU outside of the neural model itself.
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by combining the tokens from Itok ,Otok andOexp .
This process is illustrated in Figure 2, making use
of the dependency tree from Figure 1.

When there is a padding token [pad] in the
output (either Otok or Oexp ), this means that the
output at that position is ignored when computing
the loss function. This occurs when the terminal
token has already been computed in previous iter-
ations and has therefore been received as part of
Itok , and the model does not need to compute it
again.

Note also that an empty dependencies token
[HEAD] marks the end of a branch and that there
is no need for an end of sequence token <eos>. As
shown in the example from Figure 1, the generation
of different branches occurs in parallel, needing
only 3 iterations to generate a 6-token sentence.

Iteration 1

Itok : [ROOT]

Otok : likes
Oexp :[nsubj-advmod-HEAD-xcomp]

Iteration 2

Itok : [nsubj] [advmod] likes [xcomp]

Otok : dog also [pad] eating
Oexp :[poss-HEAD] [HEAD] [pad] [HEAD-dobj]

Iteration 3

Itok : [poss] dog also likes eating [dobj]

Otok : my [pad] [pad] [pad] [pad] sausage
Oexp :[HEAD] [pad] [pad] [pad] [pad] [HEAD]

Figure 2: Example of iterative text generation.

The strategy for composing tree expansion to-
kens (e.g., [nsubj-advmod-HEAD-xcomp])
may not scale well when single words have many
direct dependencies. To alleviate this, we introduce
a preprocessing step to modify the dependency tree
so that every word has at most one dependency to
the left and one to the right. For each word with
more than one dependency on any of its sides, we
rearrange the tree to force left-to-right dependen-
cies. Although this tree binarization reduces the
degree of parallelism, it reduces data sparsity and
allows handling constructions with a number of
dependencies may otherwise be too large for the
model to properly capture, such as enumerations
(e.g., “I bought a pair of shoes, an umbrella, a beau-
tiful jacket and a bracelet”).

Iterative expansion LMs can be naturally ex-
tended to subword vocabularies, like byte-pair en-
coding (BPE; Sennrich et al., 2016): for each word,
we decompose its node in the tree into as many

nodes as subwords in the word, rearranging the tree
so that the head of the old word is now the head
of the first subword, and each subsequent subword
depends on the previous one, while every depen-
dency of the old word node now depends on the
last subword.

3.1 Neural Architecture

The neural architecture proposed is based on a
Transformer decoder (Vaswani et al., 2017). To
generate the dual output (terminal tokens and ex-
pansion placeholders) we condition the generation
of terminals on the expansions: the probability dis-
tribution over the expansion token space is gener-
ated first by projecting from one of the intermediate
layers’ hidden states. We sample from it and use the
resulting expansion IDs as an index to a trainable
expansion embedding layer; the embedded vectors
are added to the hidden state used to generate them
for use as input to subsequent layers.

As described in Section 3, the input and output
token vocabularies are different: the latter only
contains terminal tokens (plus some special tokens
such as [PAD]); the former also contains depen-
dency placeholders. However, for practical pur-
poses, at the model level, we define both vocabular-
ies to be the same, both with terminal tokens and
dependency placeholders, and we mask the entries
of dependency placeholders in the final softmax.

To inject the syntactic dependency information
as input into the model, we add a layer of learned
positional embeddings containing the position of
the head of each token, and we refer to this embed-
ding layer as head position embedding.

The self-attention mask used in Transformer to
force causality is not used in our proposal. The
input is therefore not masked at all, and the token
predictions have access to the full input sequence.

3.2 Training

For training iterative expansion LMs, the main in-
put of the model is the tokens at one of the levels of
the dependency parse tree (Itok ), while the output
is the following level tokens (Otok ) and expansion
placeholders (Oexp ). A secondary input to the
model are the dependency indexes, which are used
in the head position embedding.

The model is trained with the categorical cross-
entropy for both tokens and expansion placehold-
ers, then adding both sublosses into the final loss
(with equal weights). Tokens generated in previous
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iterations appear as [PAD] tokens in the expected
output and are ignored when computing the loss.

Training takes place in batches; as the trainable
unit is a level transition, a training batch is com-
posed of level transitions from different sentences.

3.3 Inference and Text Generation

In iterative expansion LMs, inference takes place
iteratively. The initial state is a batch of [ROOT]
tokens, together with the head positions initialized
to the special value representing the root node and,
in constrained attention variants, a mask with the
self-dependency of the single node in each sentence
in the batch. At each iteration, the model generates
the probability distributions for terminal tokens
and expansion tokens. We use nucleus sampling
(Holtzman et al., 2020) to sample from them. The
terminal token sequences are expanded according
to the expansion tokens (see §3), and these are
the inputs for the following iteration if there are
still unfinished branches. Before sampling from
the token and expansion probability distributions,
we mask the <unk> token and the dependency
placeholders to avoid generating them.

Although iterative expansion LMs could be sub-
ject to beam search across iterations, we have not
covered such a possibility as part of this work.

4 Experimental Setup

4.1 Unconditional Text Generation

We conducted experiments on unconditional text
generation following the methodology used by Cac-
cia et al. (2020). The goal is to assess both the
quality and diversity of the text generated by the
model and the baselines. For the quality evalua-
tion, we use the BLEU score (Papineni et al., 2002)
over the test set, where each generated sentence is
evaluated against the whole test set as a reference.
For diversity, we used the self-BLEU score (Zhu
et al., 2018), computed using as references the rest
of the generated sentences. For each model, the
temperature of the final softmax τ is tuned to gen-
erate text in the closest quality/diversity regime to
the training data.

Iterative expansion LMs are compared against
a standard LM baselines, namely, AWD-LSTM2

(Merity et al., 2018) and a Transformer LM
(Vaswani et al., 2017), both with word (w) and
BPE subword (sw) vocabularies. The models

2Abbreviation of ASGD weight-dropped LSTM, where
ASGD stands for averaged stochastic gradient descent.

were trained on the EMNLP2017 News dataset,
which contains news in English, enriched with de-
pendency annotations by corenlp, an automatic
annotation tool that provides pre-trained models.
Syntax-driven generation baseline models were not
included because the only model with an available
implementation that is able to do unsupervised text
generation are RNNGs, but they proved not to scale
even to medium-sized datasets like EMNLP2017
News. When sampling from models, we use nu-
cleus sampling (Holtzman et al., 2020), a form of
ancestral sampling that constrains the candidate
pool by discarding the distribution tail. Samples
from the training and validation data are included
for reference. Full hyperparameters and data pro-
cessing details are described in Appendices D and
B.

4.2 Style Variation

Iterative expansion LMs drive the generation of text
with the dependency parse tree. It is possible to
influence the generated trees by altering artificially
the probability of the different expansion tokens.
To demonstrate this, we modified the decoding pro-
cess of iterative expansion LMs to force the proba-
bility of generating adjectival constructions to be
higher than normal, aiming at generating a more
descriptive style: during decoding, we multiply the
probabilities of the expansion placeholders that ex-
press adjectival dependencies (i.e. those containing
adjectival modifier “amod” relations), and renor-
malize the probabilities by dividing by the sum.

We conducted this experiment with the word-
level models trained on EMNLP2017 News data.
We compute the ratio of adjectives per sentence to
verify the increased presence of adjectives, while
controlling quality and diversity measures over the
generated text for potential degradation.

5 Results and Analysis

We assess the ability of iterative expansion LMs
to unconditionally generate text in terms quality
(BLEU-5) vs. diversity (self BLEU-5), comparing
against sequential baselines, each with a softmax
temperature τ tuned separately.

In order to tune the output softmax termperature
τ , we generated text with each model at different
temperatures and chose the value of τ that was the
most similar to a sample from the training data in
terms of BLEU-5 against a sample from the val-
idation set (proxy for quality) and self BLEU-5
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Figure 3: Quality vs. diversity on EMNLP2017 News (BLEU-5). Models with word-level vocabulary on the left
and subword-level on the right. The point marker is color-filled for the chosen value of τ . Each point represents
the average over 20 generated text samples, and is surrounded by a small colored ellipse representing the standard
deviation.

τ
ITEXP (w) AWD-LSTM (w) Transformer (w)

valid ↑ self ↓ valid ↑ self ↓ valid ↑ self ↓
0.70 30.1± 0.8 22.3± 1.0 39.2± 0.9 33.4± 1.1 40.5± 0.6 35.0± 1.1

0.80 26.8± 0.8 16.0± 1.0 33.0± 0.7 23.2± 1.0 35.8± 0.7 26.3± 0.8

0.90 23.5± 0.7 12.4± 0.7 26.0± 0.6 14.7± 0.8 30.4± 0.7 19.0± 0.8

1.00 20.0± 0.6 9.4± 0.5 19.4± 0.6 9.0± 0.6 25.2± 0.5 13.3± 0.5

1.10 16.4± 0.5 6.8± 0.5 13.4± 0.4 5.0± 0.4 19.9± 0.6 9.0± 0.6

1.20 13.4± 0.6 5.1± 0.4 9.0± 0.5 2.9± 0.3 15.8± 0.5 6.2± 0.5

τ
ITEXP (sw) AWD-LSTM (sw) Transformer (sw)

valid ↑ self ↓ valid ↑ self ↓ valid ↑ self ↓
0.70 28.6± 0.9 20.3± 1.1 39.0± 0.8 33.5± 1.1 36.9± 0.7 30.6± 1.2

0.80 25.5± 0.5 15.1± 0.7 32.3± 0.7 22.4± 0.7 32.5± 0.7 22.4± 1.0

0.90 22.7± 0.6 11.5± 0.7 25.6± 0.6 14.3± 0.6 27.8± 0.7 16.0± 0.8

1.00 19.9± 0.6 9.2± 0.5 19.2± 0.5 8.9± 0.5 22.9± 0.8 11.0± 0.7

1.10 16.9± 0.8 7.0± 0.6 13.9± 0.5 5.5± 0.4 18.4± 0.7 7.6± 0.6

1.20 14.1± 0.6 5.4± 0.5 9.7± 0.4 3.3± 0.3 14.5± 0.5 5.2± 0.5

Table 1: Validation and self BLEU-5 scores of the text generated by the word-level (top) and subword-level
(bottom) models under study at different temperatures τ , showing the average and standard deviation over 20
different generated text samples. The selected generation regime is highlighted for each model, being the closest
to the training sample, which has a validation BLEU-5 of 17.8 and a self BLEU-5 of 6.6.

(proxy for diversity). Each model was used to gen-
erate 20 samples of 400 sentences, and self-BLEU5
and validation-BLEU5 were computed over each
of them, taking the average and the standard devia-
tion. Figure 3 and Table 1 show these BLEU values,
highlighting the chosen τ for each model. Given
the low values for the standard deviation, we de-
cided not to include it in subsequent tables to avoid

unnecessary clutter. Note that in all BLEU vs. self-
BLEU figures, each model is shown as a different
line (each with its own color and/or dashed pattern)
and that the data points computed for each temper-
ature value are plotted with a specific marker shape
(square, diamond, triangle, or flipped triangle).

Apart from BLEU scores, we also include extra
quality measures, namely the perplexity obtained
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τ
Test BLEU-5 Self BLEU-5 AWD-LSTM Transformer GPT-2

(quality ↑) (diversity ↓) perplex. ↓ perplex. ↓ perplex. ↓
AWD-LSTM (w) 1.0 22.9 8.9 37.0 47.9 99.5
Transformer (w) 1.1 23.8 9.0 33.6 18.6 66.5

ITEXP (w) 1.0 23.7 9.4 40.8 40.7 85.2
AWD-LSTM (sw) 1.0 22.7 8.9 43.5 56.9 113.5
Transformer (sw) 1.1 22.1 7.6 37.5 31.6 77.1

ITEXP (sw) 1.0 23.6 9.2 45.2 49.2 97.1
Train sample - 21.5 6.6 49.5 29.1 37.7
Valid sample - 21.2 7.2 53.3 44.7 36.7

Table 2: Quality and diversity on EMNLP2017, with τ generating the closest text to the validation data.

by other language models: an AWD-LSTM word-
level LM and a Transformer word-level LM, both
trained on EMNLP2017 News, plus OpenAI GPT-
2 (1.5 B parameters) (Radford et al., 2019). The
results are shown in Table 2.

These results show how the generated text im-
proves over AWD-LSTM in terms of quality by all
measures, with a comparable level of diversity. In
comparison to the Transformer, while the quality
measured with BLEU-5 is better for ITEXP, the
rest of the quality measures indicate that the text
generated by the Transformer is of better quality.

Adjective Adjs. per Test Self
probability sentence BLEU-5 BLEU-5
×1 1.2 23.7 9.4
×10 3.4 21.3 8.4
×20 4.2 20.6 8.8
×50 5.2 19.8 8.9

Table 3: ITEXP (w, τ = 1.0) with increased adjectives.

The results of the styled text generation experi-
ments, shown in Table 3, confirm that the style of
the resulting text can be successfully modulated to
the desired degree and that the quality and diversity
are only slightly degraded at moderate increases of
the probability of adjectival clause generation.

5.1 Human Evaluation
In order to better assess the quality of the generated
text, we also include a human evaluation. For this,
we took a sample of 60 sentences of each model
under study, including also a sample of the same
size from the validation data, to serve as reference.
The sentences were evaluated by a pool of anno-
tators, who were requested to rate the sentence in
an integer scale from 1 to 5, taking into account its
fluency and correctness.

The pack of sentences rated by each annotator
contained 10 sentences from each of the models un-
der evaluation. Each sentence under evaluation was
part of the packs of 3 evaluators; this redundancy
was used to measure the discrepancies in the rat-
ing of each sentence among annotators, which was
quantified by means of the average per-sentence
standard deviation.

Model
Average Per sentence
rating avg. stddev

AWD-LSTM (w) 3.08 0.74
Transformer (w) 3.43 0.78

ITEXP (w) 3.28 0.73
AWD-LSTM (sw) 2.66 0.68
Transformer (sw) 3.33 0.83

ITEXP (sw) 3.09 0.70
Valid sample 4.49 0.61

Table 4: Human evaluation for the different models.

Table 4 shows the statistics of the obtained rat-
ings, were we can see the average rating of the
sentences generated by each model, together with
the average per-sentence standard deviation, to un-
derstand how different the ratings for each sentence
were among the different evaluator ratings. We can
see that the highest human ratings were obtained
by the Transformer, both with word and subword-
level vocabularies, followed by ITEXP and then
AWD-LSTM.

Table 5 shows the human evaluation for the mod-
els from the style variation experiments presented
in Table 3. As we can see, there is a small degrada-
tion in quality as we force high levels of adjectival
presence.
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Adjective Average Per sentence
probability rating avg. stddev

×1 3.28 0.73
×10 3.16 0.79
×20 2.98 0.84
×50 3.19 0.70

Table 5: Human evaluation for ITEXP (w) models with
increased adjectival construction probability.

6 Further Comparison with Real Text

Given that the generation process in iterative ex-
pansion LMs is not sequential, we studied the dis-
tribution of the sentence lengths it generates. This
is shown in Figure 4 for the text generated by
a word-level iterative expansion LM trained on
EMNLP2017 News, along with the lengths of a
sample from the training data.

15 20 25 30 35 40 45
Sentence length in tokens

ItExp LM (w)
train sample

Figure 4: Distribution of generated text length.

Iterative expansion LMs generate the depen-
dency parse tree as they generate text. We studied
the depths of the dependency trees of generated
text in relation to those parsed from the training
data, as shown in Figure 5.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Dependency parse tree depth

ItExp LM (w)
train sample

Figure 5: Histogram of generated text tree depth.

We also measured the degree to which the gener-
ated trees adhere to the trees obtained by parsing
their lexicalized representation. Specifically, we
computed the labeled and unlabeled attachment
scores between both for the text generated at dif-
ferent softmax temperatures τ . Attachment scores
are the standard performance measure in depen-
dency parsing and are computed as the percentage

of words that have been assigned the same head as
the reference tree, over a test set. The attachment
score is "labeled" if the dependency label is taken
into account or "unlabeled" otherwise. As shown
in Table 6, the obtained labeled attachment scores
(LAS) and unlabeled attachment scores (UAS) are
very high across the different values of the genera-
tion temperature τ .

τ 0.7 0.8 0.9 1.0 1.2
LAS 96.4 95.3 94.2 92.3 86.2
UAS 98.0 97.3 96.5 95.2 90.7

Table 6: Attachment scores of the generated trees.

6.1 Quantification of the Generation Speedup
Text generation with autoregressive models like
LSTM or Transformer models offers a linear com-
putational complexity with respect to the length
of the generated sequence. In comparison, the de-
pendency tree-driven decoding used by iterative
expansion LMs generates text in parallel for each
branch in the tree. If the tree was a perfectly bal-
anced binary tree, then the computational complex-
ity would be logarithmic. However, dependency
trees in general are not balanced and, given the tree
binarization postprocessing that we introduce, the
parallelization is slightly reduced.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ratio of tree-based decoding steps with respect to sequential decoding

Binarized tree
Non-binarized tree
Ideal binary tree

Figure 6: Histogram of the ratio of the decoding steps
needed to generate a sentence with tree-based decoding
with respect to sequential generation.

Figure 6 shows the speedup of the needed de-
coding steps of tree-based decoding with respect
of auto-regressive decoding, taking a sample of the
training data and computing the needed steps to
decode them should the sentences have an ideal-
ized binary dependency parse tree, a normal parse
tree, and a binarized parse tree. On average, the
binarized parse tree, which is the decoding used by
iterative expansion LMS, needs only 45% of the
decoding steps needed by autoregressive decoding.
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American students were 62 percent more likely to die in a heart attack during the first week of 2004, according
to the study.
For 150 days, Hillary Clinton will do more to improve access to affordable quality care, support and education
funding for millions of Americans, she says.
For those on this list, it’s likely that I would rather be able to train them up, she said.
He made it clear the SNP repeated on Friday as a response, saying they discussed a contract getting the extra
cost here.
He’ll pay $25, 000 for rent and more buses and bring his collection to The Academy on Channel 31.
Six years later, at least eight people died as a result of the shooting.
The health prime minister told CNN Thursday that he was willing to back up against the US and remove all
of the relevant items at the end of the transition.
Then, another man told police that was a friend’s friend, and as a child, he made the decision to call his
mother.
They are 40 - 60 among the top 50, 000 women in the last year in that group since 2014 - 15.
They’ve worked hard on Twitter and they think they’ve tried to focus on our sport, she said.
We like to think that if you try to get this game done, we can get a lower success rate out of 15.

Table 7: Samples of text generated by iterative expansion LMs with word vocabulary.

I feel that they’re going to Syria because we had this explanation, that they have an indication of their advance.
The girl’s mother told the group of three she needed treatment and the family said her daughter would still
be alive with another child.
But she added: "The data is important to the EU that the UK can attract more businesses.
Though he also spoke to Mr Wilson on Saturday morning at the Netherlands Police trial, Johnson referred it
to the No. 1 commission.
It’s a collective belief and it’s a statement to us, he said.
It’s just the first thing we’re feeling now and I don’t like it.
So if you want to be sitting in a garden, you have to wait for something to make sure that this does not end.
So, for example, we need to argue about what the president did, but I’m just interested in having any talk.
The British defence ministry confirmed action had been taken at the hospital but could not confirm the details
until now.
We’ll ask for a fair share of Russia to stop border security, particularly for people of color, he added.

Table 8: Samples of text generated by iterative expansion LMs with subword vocabulary.

6.2 Generation Examples

Table 7 shows a selection of text samples gener-
ated by iterative expansion LMs with a word-level
vocabulary, while Table 8 shows samples gener-
ated with a subword-level vocabulary. We can see
that, despite being generated non-sequentially and
each branch of the dependency parse tree being
generated in parallel, the resulting sentences main-
tain coherence and syntactic agreement, confirming
that conditioning on the token dependencies in the
parse tree provides enough information to generate
it while speeding up the decoding process.

7 Conclusion

In this work, we presented iterative expansion LMs,
which are iterative non-autoregressive text genera-
tion models that rely on syntactic dependency trees

to generate sentence tokens in parallel. As opposed
to other syntax-driven generation mechanisms, the
training of iterative expansion LMs can be natu-
rally computed in batches and they are amenable
to subword-level vocabularies.

We showed that our proposed method generates
text with quality between LSTMs and Transform-
ers, with comparable diversity, both regarding auto-
matic measurements and human judgement, while
generating text in half of the decoding steps needed
by sequential LMs, and also allowing direct control
over the generation process at the syntactic level,
enabling the induction of stylistic variations in the
generated text.

Our code is available as open source at https://
github.com/noe/iterative_expansion_lms .

https://github.com/noe/iterative_expansion_lms
https://github.com/noe/iterative_expansion_lms
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