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Abstract

This paper describes a workflow to impute
missing values in a typological database, a sub-
set of the World Atlas of Language Structures
(WALS). Using a world-wide phylogeny de-
rived from lexical data, the model assumes a
phylogenetic continuous time Markov chain
governing the evolution of typological val-
ues. Data imputation is performed via a Max-
imum Likelihood estimation on the basis of
this model. As back-off model for languages
whose phylogenetic position is unknown, a k-
nearest neighbor classification based on geo-
graphic distance is performed.

1 Introduction

Precise knowledge of the typological diversity of
natural languages is essential for several scientific
disciplines. It provides clues about cognitive biases
in language learning and processing, intrinsic ten-
dencies in language change, a window into deep
time regarding prehistoric population spread and
population contact, as well as scaffolds for setting
up NLP infrastructure for understudied languages.

While a growing body of digital data collections
has become available in this regard (e.g., Dryer
and Haspelmath, 2013; Bickel et al., 2018), these
resources are sparse and skewed both with respect
to the languages and the features covered. Given
that obtaining high-quality typological qualifica-
tion for underdocumented languages is a highly
demanding task, this situation is likely to persist. It
is therefore worthwhile to leverage statistical and
machine learning methods to impute missing ty-
pological feature values from existing resources.
Precisely this is the topic of the 2020 shared task1

of the ACL Special Interest Group on Typology
(SIGTYP). The organizers made three subset of the

1https://sigtyp.github.io/st2020.html,
(Bjerva et al., 2020)

WALS data (Dryer and Haspelmath, 2013) avail-
able, see Table 1. The task is to impute the 2, 410
missing values from the totality of known values.

2 General approach

The present approach is based on two simplifying
assumptions:

• The value of a typological feature in a given
language is stochastically independent from
the values of other features, and

• typological feature values are transmitted only
vertically, i.e. from ancestor language to de-
scendant language.

Both assumptions are known to be wrong. The first
one is falsified by the manifold findings regarding
implicative universals (established in Greenberg,
1963 and amply confirmed in subsequent typologi-
cal research). The second assumption ignores the
impact of language contact on typological proper-
ties. Research in areal linguistics has established
beyond doubt that typological properties can be
transmitted horizontally though (see, e.g., Camp-
bell, 2006 for an overview). It seems worthwhile,
however, to test how well a model based on these
idealizations fares with regard to typological pre-
dictions. This establishes a baseline to be improved
upon in future research.

The approach pursued here assumes that the
phylogeny, i.e. the family tree representing their
genealogical interrelatedness, including branch
lengths reflecting the time between divergence
events, of the languages under consideration is
known. I used the techniques described in (Jäger,
2018) to infer such a phylogeny from lexical data
(see next section for details).

Following much work in computational phylo-
genetics (see, e.g., Felsenstein, 2004, and Dunn

https://sigtyp.github.io/st2020.html
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dataset # languages # features # revealed values # blinded values release date

training 1,125 185 42,698 0 26 March 2020
development 83 182 3,246 0 26 March 2020
test 149 183 3,056 2,410 1 July 2020

Table 1: Subsets of WALS used in the Shared Task

Markov process Phylogeny

Figure 1: Phylogenetic CTMC

et al., 2011 for an application to linguistic typol-
ogy), the model assumes that typological values
evolve according to a Continuous Time Markov
Chain process (CTMC). This means that a muta-
tion, i.e., a change of the value of a typological
feature, can occur at any time according to a prob-
ability density governed by a rate parameter. If
a mutation occurs, another possible value of that
feature is chosen according to a given probability
distribution.

If a language splits into two daughter lineages,
both daughter branches continue to evolve accord-
ing to two independent copies of the mother lan-
guage’s CTMC. This is illustrated in Figure 1.

Let n be the number of values a given feature
can assume. By way of a further simplification,
I assume that the choice of a mutation target fol-
lows a uniform distribution. The probability of
a language being in state b at the end of a time
interval of length t if it was in state a at the begin-
ning of the interval is given by (1) (known as the
Jukes-Cantor model of molecular evolution, see for

instance Felsenstein, 2004).

P (b|a; t, r) = 1

n

{
1 + (n− 1)e−tr if a = b

1− e−tr else
(1)

The parameter r (r ∈ R+) is the rate of evolution,
i.e., the expected number of mutations per unit of
time.

Suppose the phylogeny, the parameters of the
CTMC and the states at the tips of the phylogeny
are observed. It is then possible to compute the pos-
terior probability distribution of the state at the root
of the tree via a postorder (bottom-up) recursion
through the phylogeny.

The likelihood of an observed state at a tip is 1,
and the likelihood of all other states is 0. The like-
lihood of state a at an internal node α, conditional
on the observed states at all tips descending from
α, is given by the following equation, where dr(α)
are the immediate daughter nodes of α.

Lα(a) =
∏

β∈dr(α)

∑
b∈states

P (a|b; tα,β, r)Lβ(b),

Here tα,β is the length of the branch from α to β.
Applying this equation recursively via postorder

traversal through the phylogeny, we obtain the like-
lihood of the individual states at the root.

By assuming a uniform prior over states and
applying Bayes’ rule, the posterior probability of
state a at the root of the phylogeny is

P (a|root) = Lroot(a)∑
b∈states Lroot(b)

.

This algorithm is called ancestral state reconstruc-
tion (ASR). A detailed study of applications of
ASR in linguistics for lexical evolution is given in
(Jäger and List, 2018). An individual step of the
recursion is graphically illustrated in Figure 2.

It is a convenient feature of the Jukes-Cantor
model that it is time reversible. This means that
the likelihood of a state at a node, given partial
knowledge of the states at other nodes, remains
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Figure 2: Elementary step of ASR

constant if the phylogeny is re-rooted and thereby
the time arrow at some branches is reversed. Due
to this property, it is possible to use ASR to im-
pute unknown values at a tip of a tree. Suppose a
phylogeny and the states of a feature at some, but
not all, tips is known. To estimate the probability
distribution over states at a particular tip α with
missing value, the following steps are performed:

1. Prune the phylogeny by removing all tips with
unknown value except α.

2. Reroot the tree so that α becomes the root.

3. Apply ASR.

This is graphically illustrated in Figure 3. The
training set of the Shared Task contains the value
of twelve Uralic languages for the feature Order
of Verb and Object. The value for Udmurt (which
is OV) is contained in the development set. Ap-
plying the described method (and using a known
phylogeny and an estimated value for r; see next
section), the posterior probability for OV in Ud-
murt, given the information in the training set, is
≈ 0.86. The maximum likelihood estimation of
this feature value is therefore OV, which happens
to be correct.

3 Data and methods

3.1 Phylogeny

In (Jäger, 2018) a method is described how
to infer a world tree of languages from the
40-item Swadesh lists collected by the Automated
Similarity Judgment Project (ASJP; Wichmann
et al., 2020). The original paper used version
17 of ASJP. The results of applying precisely
the same workflow to version 18 are made
available at https://osf.io/sdca4/ and were
used here. More precisely, the phylogeny

VO
OV

c)

a)

b)

Figure 3: Value imputation via rerooting and ASR. a)
Original phylogeny with missing value for Udmurt. b)
Rerooting and recursive application of ASR. c) Result-
ing imputation.

https://osf.io/sdca4/
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RAxML bestTree.world sc ccGlot was
used, which is the result of using Maximum
Likelihood phylogenetic inference over all
characters and using the Glottolog classification
(Hammarström et al., 2020) as constraint tree.

3.2 Matching WALS and ASJP

Among the 7,346 doculects for which the method
described in the previous subsection provides cog-
nate classification, only one doculect per glot-
tocode was retained — generally the one with the
least number of missing entries in ASJP. The meta-
data from WALS v.2020 were used to match glot-
tocodes to WALS codes.

Among the 1,357 languages in the union of the
three datasets from the Shared Task, 1,212 could
be uniquely matched to an ASJP doculect with the
same glottocode in this way.

For the 124 languages in the training set and the
six languages in the development set for which no
corresponding ASJP doculect could be identified in
this way, I used the following procedure to define
an ASJP proxy:

1. Use the closest geographic neighbor (accord-
ing to great-circle distance, using the geo-
graphic coordinates supplied with the Shared
Task data) within the same WALS genus
among the 1,212 languages identified above.

2. If the language in question is a singleton
within its genus, choose the closest geo-
graphic neighbor within its Glottolog family.

3. If the language is an isolate, choose the closest
geographical neighbor.

The ASJP world tree was pruned to the 1,212
doculects which correspond to languages within
the Shared Task data.

3.3 Phylogenetic value imputation

ASR, and therefore phylogenetic value imputation,
depends on the rate parameter r. This value was
estimated by maximizing the total marginal log-
likelihood of all defined values within the training
set under the CTMC model and the ASJP phy-
logeny. The log-likelihood as a function of r is
shown in Figure 4. The Maximum-Likelihood esti-
mation is r ≈ 5.13.

Using this parameter estimate, the missing val-
ues from the test set for the 134 languages which

Figure 4: Log-likelihood of training set as a function of
the mutation rate

Figure 5: Average accuracy of geographic knn classifi-
cation on the training set (20-fold cross-validation) as
a function of k

directly correspond to an ASJP doculect were im-
puted. All known values from the training, devel-
opment and test sets were used as input for the
inference.

3.4 Geographical k-nearest neighbor
back-off

15 languages in the test set do not correspond to
an ASJP doculect with the same glottocode. For
the missing values from these languages, phyloge-
netic value imputation was therefore not possible.
As back-off for these languages model I chose k-
nearest neighbor based on geographical distances.

The value of k was estimated using 20-fold cross-
validation over all feature-value pairs of the training
set (see Figure 5). The optimal cross-validation ac-
curacy was achieved at k = 8. Using this value, the
missing values for the 15 test languages missing an
ASJP counterpart were predicted via geographical
knn-classification from the union of the training
and the validation set.
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4 Error analysis

To assess which factors influence the performance
of the phylogenetic imputation method, I con-
ducted a 20-fold cross-validation on all language-
feature pairs for which the language corresponds
to a tip in the ASJP phylogeny. This provides a
dataset of 44,598 language-feature pairs for which
both a goldstandard value and an inferred value
are available. Not surprisingly, the accuracy of the
predictions depend on the following three factors:

• Entropy of the feature value. The more values
a feature can take and the more evenly the
possible values are distributed, the harder it is
to predict the correct value.

• Size of the language family. The inferred
phylogeny used here is fairly reliable within
language families but less so across families.
Therefore predictions based on phylogeneti-
cally close languages is the more reliable the
more close relatives a language has.

• Coverage of the feature. The more languages
have a known value within the training data,
the easier it is to impute a missing value in the
test data.

The effect of these predictors is visualized in
Figure 6.

To test whether each of those three factors are rel-
evant given the other two, I conducted a Bayesian
mixed-effects logistic regression with accuracy of
prediction as dependent variable, feature entropy,
log-transformed size of language family and log-
transformed feature coverage as fixed effects, and
language family and feature as random effects. The
analysis was carried out using the R-package brms
(Bürkner, 2017), which is based on the the pro-
grammning lanuage Stan (Carpenter et al., 2017).

The results are shown in Table 2.
It demonstrates that feature entropy has a credi-

ble negative effect, and both family size and feature
coverage have a credible positive effect on accu-
racy.

5 Results and discussion

According the evaluation script provided by the
organizers of the Shared Task, this combination of
phylogenetic and geographic knn value imputation
achieved an overall accuracy of ≈ 0.68 — as com-
pared to ≈ 0.51 both for the frequency baseline
and the knn imputation baseline.
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Figure 6: Impact of feature entropy, language family
size and feature coverage on accuracy of phylogenetic
imputation.



41

Family: bernoulli
Links: mu = logit

Formula: y ˜ entropy + log10(featureFreq) + log10(famSize) + (1 | glotFam)
+ (1 | feature)

Data: dat (Number of observations: 44598)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000

Group-Level Effects:
˜feature (Number of levels: 185)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.35 0.03 0.31 0.41 1.00 1456 2384

˜glotFam (Number of levels: 164)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 0.31 0.03 0.26 0.36 1.00 1376 2310

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.68 0.24 0.21 1.16 1.00 1061 1849
entropy -1.08 0.05 -1.17 -0.98 1.00 1408 2072
log10featureFreq 0.57 0.09 0.39 0.75 1.00 1029 1912
log10famSize 0.37 0.05 0.26 0.47 1.00 1056 1534

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Table 2: Mixed-effects logistic regression

As pointed out in the Introduction, this model
makes several simplifying assumptions. The most
serious one is arguably the presumed independence
of typological features. The phylogenetics liter-
ature contains techniques for dealing with corre-
lated discrete features (Dunn et al., 2011; Pagel and
Meade, 2006). However, applying this approach
on a large scale would lead to an explosion of pa-
rameters that cannot be estimated with the sparse
data available in WALS or similar data sources.
Therefore it seems more promising in the long run
to attempt an embedding of discrete typological
features into a continuous high-dimensional space
and combine this with phylogenetic ASR for con-
tinuous characters (using, e.g., a Brownian motion
model of evolution). Such an approach can be
combined with multivariate techniques like PCA
to detect correlations between features.

Furthermore, a principled study of the interplay
between vertical/phylogenetic and horizontal trans-
mission mechanisms is called for to make further
progress in the task of typological value imputa-
tion.

6 Data and code

Data and code are freely available at github.com/
gerhardJaeger/emnlp2020.
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