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Abstract

Emotion recognition in conversation (ERC) is
an important topic for developing empathetic
machines in a variety of areas including so-
cial opinion mining, health-care and so on.
In this paper, we propose a method to model
ERC task as sequence tagging where a Con-
ditional Random Field (CRF) layer is lever-
aged to learn the emotional consistency in the
conversation. We employ LSTM-based en-
coders that capture self and inter-speaker de-
pendency of interlocutors to generate contextu-
alized utterance representations which are fed
into the CRF layer. For capturing long-range
global context, we use a multi-layer Trans-
former encoder to enhance the LSTM-based
encoder. Experiments show that our method
benefits from modeling the emotional consis-
tency and outperforms the current state-of-the-
art methods on multiple emotion classification
datasets.

1 Introduction

With the prevalence of conversation-based service,
emotion recognition in conversation (ERC) has
been attracting attention recently (Majumder et al.,
2019; Zhong et al., 2019; Ghosal et al., 2019). Due
to great potential in many scenarios such as recom-
mendation system, customer service feedback and
health-care, researchers keep focusing on empow-
ering machine to understand emotions in conver-
sation with emotional dynamics, which is a work
with challenges lying in several aspects such as
modeling the emotion inertia for each speaker and
the influence of the interaction between speakers
on emotional dynamics (Poria et al., 2019).

Recent works on ERC rely on recurrent neural
networks (RNNs) to compute context-dependent
representations of utterances (Poria et al., 2017;
Majumder et al., 2019). Due to a carefully de-
signed cell, RNNs like long short-term memory

Figure 1: Emotional consistency on IEMOCAP (Busso
et al., 2008). In a conversation, similar emotions tend
to appear adjacently while dissimilar emotions seldom
appear in the neighborhood. We call this phenomenon
emotional consistency. For example, if the emotion of
current utterance is happy, the tag of next utterance
tends to be happy, excited or neutral rather than sad,
angry or frustrated. This pattern also applies to other
emotions.

(LSTM) (Hochreiter and Schmidhuber, 1997) and
gated recurrent unit (GRU) (Chung et al., 2014)
memorize the sequential context to model the de-
pendency between utterances. Such scheme of con-
textualized emotion recognition has shown its supe-
riority in tracking emotional dynamics by modeling
self and inter-speaker dependency in conversations.

Nevertheless, including LSTM and GRU, RNNs
are limited in their capability to process tasks in-
volving very long sequences in practice (Brad-
bury et al., 2016; Khandelwal et al., 2018). For
mitigating this issue, the Transformer architec-
ture (Vaswani et al., 2017) and graph convolution
networks (GCNs) (Defferrard et al., 2016) have
been introduced to ERC for propagating contextual
information among distant utterances and yielded
state-of-the-art performance (Zhong et al., 2019;
Ghosal et al., 2019).

These approaches leverage contextualized utter-
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ance features to predict emotion tags, but they ig-
nore the inherent relation between emotion tags.
We observe, that the phenomenon of emotional
consistency exists widely in conversations, that is,
similar emotions are much more likely to appear
adjacently than dissimilar emotions, as shown in
Figure 1. We surmise modeling the emotional con-
sistency is helpful to find a more reasonable distri-
bution of emotion tags and thus further improves
the performance of emotion classification.

In this work, we propose a method to address
emotion classification as sequence tagging. For a
given conversation, instead of predicting the distri-
bution of emotion tags independently, we consider
relations between nearby emotion tags and choose
the globally best tag sequence for the entire conver-
sation at once. Hence, we employ a CRF (Lafferty
et al., 2001) to take into account the dependency
between emotion tags in neighborhoods. Contextu-
alized utterance representations fed into the CRF
layer are computed by LSTM-based context en-
coders. By the aid of individual context encoder,
our model tracks the self dependency which de-
picts emotional inertia of individual speakers. The
inter-speaker dependency reflecting the influence
of other speakers on a certain speaker is understood
by the global context encoder. We use a multi-layer
Transformer encoder to enhance the global context
encoder so that our model can take advantage of
long-range contextual information when comput-
ing contextualized utterance representations.

In summary, our contributions are as follows:

• For the first time we model ERC task as se-
quence tagging and use CRF to model the
emotional consistency in conversation. The
CRF layer exploits past and future emotion
tags to jointly decode the best tag sequence
for the entire conversation.

• We apply a multi-layer Transformer encoder
to enhancing the LSTM-based global context
encoder. The enhanced encoder is able to cap-
ture long-range sequential context which is
essential for computing contextualized utter-
ance representations.

• Extensive experiments demonstrate that mod-
eling the emotional consistency and long-
range contextual dependency promotes the
performance of emotion classification. Our
method advances the state of the art for ERC
on three conversation datasets.

The remainder of this paper is organized as fol-
lows. Section 2 discusses related works. Section 3
describes our sequence labeling architecture. Sec-
tion 4 presents the experimental setting. Section 5
reports extensive experimental results and makes a
detailed analysis. We conclude this paper in Sec-
tion 6.

2 Related Work

Emotion Recognition in Conversation: Early re-
searches on emotion recognition in conversation
mainly use lexicon-based methods and audio fea-
tures (Lee et al., 2005; Devillers and Vidrascu,
2006). Some open-source conversation datasets
with visual, acoustic and textual features have been
available in the past few years (Busso et al., 2008;
Poria et al., 2018). Along with these datasets, a
number of deep learning methods are applied to
emotion recognition. Poria et al. (2017) proposes
context LSTM to capture contextual information
for sentiment classification. DialogueRNN (Ma-
jumder et al., 2019) models the emotional dy-
namics by its party GRU and global GRU. It
employs attention mechanisms to pool informa-
tion from global context for each target utter-
ance. Zhong et al. (2019) proposes Knowledge-
Enriched Transformer(KET), which learns struc-
tured conversation representation by hierarchical
self-attention and external commonsense knowl-
edge. DialogueGCN (Ghosal et al., 2019) applies
the graph neural network to context propagation is-
sues present in the current RNN-based methods for
ERC and achieves the state-of-the-art performance
on multiple conversation datasets.

Transformer: Transformer has achieved great
success in various NLP tasks due to its rich rep-
resentation and high computation efficiency. Self-
attention mechanisms endow Transformer with the
capability of capturing longer-range dependencies
than RNNs. Recent works such as BERT (Devlin
et al., 2018) and GPT (Radford et al., 2018) use
Transformer encoder and decoder respectively to
learn representations on large-scale datasets. These
representations are transferred to down-stream
tasks such as named entity recognition (NER) and
question answering and achieves state-of-the-art
results. Dai et al. (2019) introduces the notion of
recurrence to address context fragmentation limita-
tions of Transformer. Wang et al. (2019) explores
Transformer with additional LSTM layers to better
capture the sequential context while retaining the
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high computation efficiency.

Sequence Tagging: Sequence tagging has
drawn research attention for a few decades. It in-
cludes a bunch of NLP tasks such as part of speech
tagging (POS), chunking and NER. The most com-
mon statistical models for sequence tagging in-
cludes hidden Markov model (HMM), maximum
entropy Markov model (MEMM) and CRF (Rati-
nov and Roth, 2009; Passos et al., 2014). These
traditional sequence tagging methods rely heavily
on hand-crafted features. In the past few years,
convolutional neural networks (CNNs) and RNNs
are introduced to tackle sequence tagging problems
and achieves competitive performance against tra-
ditional methods (Graves et al., 2013; Chiu and
Nichols, 2016). Huang et al. (2015) has pointed
out that the combination of bidirectional LSTM
and CRF can efficiently use both past and future
input features as well as past and future tags in-
formation. Hence, BiLSTM-CRF model produces
state-of-the-art results on many sequence tagging
tasks.

3 CESTa: Contextualized Emotion
Sequence Tagging

Existing works (Majumder et al., 2019; Zhong
et al., 2019; Ghosal et al., 2019) define the ERC
task as the prediction of emotion tags of constituent
utterances. However, emotional consistency which
is an important characteristic of the conversation is
not taken into consideration. CESTa differs from
those methods in that it treats ERC as a task of
sequence tagging of which performance is gener-
ally improved by choosing the globally best set
of tags for the entire sequence at once. To this
end, CESTa employs a CRF to take advantage of
past and future tags to predict the current tag. For
the tth utterance in a conversation, the textual fea-
ture ut is extracted by a single-layer CNN and
fed into the global and individual context encoders
which learn inter-speaker and self dependency re-
spectively. Moreover, the global context encoder
is enhanced by a number of Transformer blocks
to propagate long-range contextual information ef-
fectively. The concatenation of the global context
encoding gt and individual context encoding st is
considered as a matrix of scores and fed into the
final CRF layer. The overall architecture is shown
in Figure 2.
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Figure 2: Overview of CESTa. The Transformer-
enhanced global context encoder takes the textual fea-
ture ut of the tth utterance in a conversation as input
and produces encoding gt. Also, ut is fed into the in-
dividual context encoder to update states for the cor-
responding speaker of which index is q = q(ut) and
outputs another encoding st. A CRF layer is applied
over the concatenation of each gt and st to obtain the
final prediction for each utterance in the conversation.

3.1 Utterance Feature Extraction

We employ convolutional neural networks (CNNs)
to extract textual features for each utterance. Fol-
lowing Kim (2014), we use a simple architecture
consisting of a single convolutional layer followed
by max-pooling layer and a fully connected layer.
Specifically, three distinct convolutional filter re-
gion sizes of 3, 4, 5 are used to obtain n-gram
features. For each region size, we use 100 filters
to learn complementary features. The max-pooling
results of each feature map are activated by a rec-
tified linear unit (RELU) and concatenated before
fed into a fully connected layer consisting of 100
hidden units, of which the activation forms the ut-
terance representation.

We explore two methods to train this network.
It can be trained jointly with CESTa and thus its
gradients will be updated during the training of the
whole architecture. On the other hand, it also can
be trained as an individual task of utterance clas-
sification with emotion tags. According to charac-
teristics of different datasets, we choose pertinent
strategies for the utterance feature extraction. The
strategy choices are reported in Section 4.3.
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3.2 Global Context Encoder
It is essential to take the contextual information
into account when classifying an utterance in a
sequence since other utterances in this sequence
have a substantial effect on the emotion of current
utterance. In other words, the emotion of current
speaker can be forced to change by utterances of
counterparts. This fact reflects the inter-speaker
dependency which is closely related to the tendency
for speakers to mirror their counterparts during the
conversation (Navarretta, 2016) and is crucial to
model emotional dynamics in a conversation.

Given the sequential nature of the conversa-
tion, we employ a bidirectional LSTM (BiLSTM)
to capture the contextual information. However,
modeling the long-range contextual information
is a weakness of RNNs. Due to self-attention
mechanisms, the Transformer is superior to RNN-
based models in processing long-range context.
Hence, we use a multi-layer Transformer encoder
to enhance the context encoder. Specifically, the
enhanced context encoder takes textual features
of utterances as input, applies a multi-head self-
attention operation (Vaswani et al., 2017) over
them followed by point-wise fully connected feed-
forward layers to produce contextualized vectors
of utterances. Finally, contextualized utterance rep-
resentations are fed into the BiLSTM layer which
fuses long-range sequential contextual information
to produce the context encoding:

h0 = (u1, . . . ,uT )

hl = TransformerBlock(hl−1), l ∈ [1, N ]

gt = BiLSTMt(h
t
N ), t ∈ [1, T ]

(1)

where N is the number of Transformer layers, T is
the length of conversation, gt is the context encod-
ing that is formed by the concatenation of left con-
text vector −→gt and right context vector←−gt , which
is generated by a forward LSTM and a backward
LSTM respectively.

3.3 Individual Context Encoder
Individual context encoder keeps track of the self
dependency which reflects the emotional influence
that speakers have on themselves during the conver-
sation. Under the effect of emotional inertia, each
individual speaker in a conversation tends to main-
tain a stable emotional state during the conversation
until counterparts lead into changes (Poria et al.,

2019). Since our model is only evaluated on tex-
tual modality, we hypothesize the self-dependency
of each individual speaker could be deduced by
its own textual utterances. This leads to an effec-
tive but simpler speaker-level context encoder than
those used in other works (Majumder et al., 2019;
Ghosal et al., 2019).

We implement an LSTM as the individual con-
text encoder to output all speaker states for each
time step. It exploits the current input utterance to
update states only for the corresponding speaker.
Specifically, for the tth utterance in a conversation,
let q = q(ut) denote the speaker of ut. The state
sq,t of an individual speaker q at timestep t in the
conversation is updated by the following formula:

sq,t = LSTMq,t(ut) (2)

where sq,t is specific to the speaker q and is up-
dated by the current utterance ut while excluding
utterances from other speakers.

3.4 CRF Layer

Inspired by the emotional consistency of conver-
sations, we consider ERC as a task of sequence
tagging which is beneficial to consider the correla-
tions of nearby tags and choose the globally best
chain of tags for a given input sequence. For this
reason, a CRF is employed in CESTa to yield fi-
nal predictions with the aid of neighboring tags.
In our scenario, U = (u1, . . . ,uT ) represents an
input sequence where ut is the feature vector of
the tth utterance, y = (y1, . . . , yT ) represents a
generic sequence of tags for U, Y (U) represents
all possible tag sequences for U. The probability
of y is generated by a softmax over all possible tag
sequences:

p (y | U) =
es(U,y)∑

y′∈Y (U) e
s(U,y′)

(3)

where s (U,y) is the score for y which is given
by the sum of two matrices: one K × K matrix
of transition scores, one T ×K matrix of scores
comes from the concatenation of the global and
individual context encoding, K is the number of
distinct tags.

During training, we maximize the log-likelihood
of correct tag sequences for a training set
{(Ui,yi)}, which is given by:

L =
∑
i

log (p (y | U)) (4)
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Dataset #Dialogues(Train/Val/Test) #Utterances(Train/Val/Test) #Classes
IEMOCAP 108/12/31 4810/1000/1523 6

DailyDialogue 11118/1000/1000 87170/8069/7740 7
MELD 1038/114/280 9989/1109/2610 7

Table 1: Statistics of training, validation and test datasets. For IEMOCAP, we use 10% of the training dialogues as
the validation dataset. For DailyDialogue and MELD, we split train/val/test according to the same ratio provided
by Zhong et al. (2019).

While decoding, we search for the tag sequence
that obtains the maximum score, given by:

y∗ = argmax
y∈Y (U)

s (U,y) (5)

Since we only model interactions of two succes-
sive tags, both the training and decoding can be
solved efficiently by dynamic programming (Ra-
biner, 1989). In addition, it is favourable for im-
proving results to apply a non-linear transformation
to the concatenation of the global and individual
context encoding before feeding it into the CRF
layer (Lample et al., 2016). Accordingly, results
with our method reported in Section 5 incorporate
an extra hidden layer.

4 Experimental Setting

4.1 Datasets
For ease of comparison with state-of-the-art meth-
ods, we evaluate CESTa on three artificial conver-
sation datasets: IEMOCAP (Busso et al., 2008),
MELD (Poria et al., 2018) and DailyDialogue (Li
et al., 2017) rather than natural emotions cor-
pus such as LEGO (Schmitt et al.; Ultes et al.,
2015). IEMOCAP and MELD are both multimodal
datasets with visual, acoustic and textual features,
while DailyDialogue only contains textual features.
For this work, we focus on emotion recognition in
textual conversation. These three datasets are all
split into training, validation and test datasets. The
statistics are reported in Table 1.

IEMOCAP: This dataset contains five sessions,
each of them was recorded from two actors. Train-
ing dataset is composed of dyadic conversations
from session one to four. Annotations of utterances
include six basic emotions, namely happy, sad, neu-
tral, angry, excited and frustrated.

DailyDialogue: DailyDialogue is a human-
written dyadic conversation dataset, reflecting daily
communication way and covering various topics
about human daily life. Emotion labels contains

anger, disgust, fear, happiness, sadness, surprise
and other. Since DailyDialogue does not provide
speaker information, we treat utterance turns as
speaker turns by default.

MELD: Multimodal Emotion Lines Dataset
(MELD) is collected from TV-series Friends con-
taining 1438 multi-party conversations. Each ut-
terance is annotated with one of the seven emotion
labels including happy/joy, anger, fear, disgust,
sadness, surprise and neutral.

4.2 Baselines

CNN (Kim, 2014): A single-layer CNN which is
identical to our utterance feature extraction network
described in Section 3.1, which is the only baseline
model without modeling contextual information.

CNN+cLSTM (Poria et al., 2017): Textual fea-
tures of utterances are obtained by a CNN, over
which a context LSTM (cLSTM) is applied to learn
the contextual information.

DialogueRNN (Majumder et al., 2019): The
RNN-based method that models both context and
speaker information. After extracting textual fea-
tures by a fine-tuned CNN, DialogueRNN applies
global GRU and party GRU to the task of modeling
speaker state and contextual information respec-
tively.

DialogueGCN (Ghosal et al., 2019): Textual ut-
terance features are extracted by a CNN in the same
way as DialogueRNN does before they are fed into
a bidirectional GRU to capture contextual infor-
mation. After that, a graph convolutional network
is applied to modeling speaker-level information.
Contextual features and speaker-level features are
concatenated and a similarity-based attention mech-
anism is used to obtain utterance representations
for the final classification.

KET (Zhong et al., 2019): Enriched by the ex-
ternal commonsense knowledge, KET employs the
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Models IEMOCAP DailyDialogue MELD
Happy Sad Neutral Angry Excited Frustrated Avg.(w) Avg.(micro) Avg.(w)

CNN 35.34 53.66 51.61 62.17 50.66 55.56 51.28 49.27 55.86
CNN+cLSTM 33.90 69.76 48.40 57.55 62.37 57.64 56.04 51.84 56.87
DialogueRNN 37.94 78.08 58.95 64.86 68.11 58.85 62.26 51.64 57.07
DialogueGCN 42.75 84.54 63.54 64.19 63.08 66.99 64.18 - 58.10

KET - - - - - - 59.56 53.37 58.18
CESTa 47.70 80.82 64.76 63.41 75.95 62.65 67.10 63.12 58.36

Table 2: Comparisons with baselines and state-of-the-art methods. Best performances are highlighted in bold.

Transformer encoder to capture the contextual in-
formation and uses the Transformer decoder to pre-
dict the emotion tag for the target utterance.

4.3 Training Setup

All three datasets are preprocessed by lower-casing
and tokenization1. In order to relieve the effect of
out-of-vocabulary (OOV) words, we also impose a
stemming procedure on these datasets.

GloVe vectors trained on Common Crawl 840B
with 300 dimensions are used as fixed word em-
beddings. We use a 12-layers 4-heads Transformer
encoder of which the inner-layer dimensionality
is 2048 and the hidden size is 100. The num-
ber of hidden units of both context BiLSTM and
speaker LSTM is 30. Along with a batch size of
64 and learning rate of 0.0005, the Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9, β2 =
0.98 and ε = 10−9 is used throughout the training
process.

Note that due to utterances in the MELD dataset
rarely contain emotion specific expressions, our
model needs more expressive utterance features
which can be extracted by a separate fine-tuned
CNN. According to (Majumder et al., 2019; Ghosal
et al., 2019), we train a CNN at utterance level
with the emotion labels for MELD. As for datasets
of IEMOCAP and DailyDialogue involving rich
emotion representations in utterances, a CNN to
extract textual features is trained jointly with the
whole architecture of our model.

5 Results and Discussions

5.1 Comparison Results

We compare the performance of our model with
baseline methods, as shown in Table 2. Note that

1https://www.tensorflow.org/datasets/
api_docs/python/tfds/features/text/
Tokenizer

Dataset Max. Min. Avg.
IEMOCAP 110 8 50

DailyDialogue 35 2 8
MELD 33 1 10

Table 3: Statistics of conversation length of three
datasets.

statistics of conversation lengths which play an im-
portant role in ERC vary greatly between different
datasets, as shown in Table 3, the performance of
our model on different datasets changes accord-
ingly, as what we analyze in the following.

IEMOCAP: The weighted macro-F1 is used as
the evaluation metric following (Majumder et al.,
2019; Ghosal et al., 2019; Zhong et al., 2019). F1
scores of individual labels are also reported since
the six emotion labels in IEMOCAP are unbal-
anced. As evidenced by Table 2, our model is
around 3% better than DialogueGCN, 5% better
than DialogueRNN and at least 7.5% better than
all other baseline models.

To explain the gap in performances, one
major reason is that some models like CNN,
CNN+cLSTM and KET neglect the speaker-level
information modeling so that models will treat ut-
terances equally from different speakers, leading to
certain loss in performance. Besides, considering
that the average conversation length in IEMOCAP
is 50 and the maximum length exceeds 100, the
Transformer is capable of better capturing long-
range dependency compared to RNNs-based con-
text encoders like LSTM or GRU. Moreover, our
model utilizes CRF to exploit the influence that past
and future tags have on the current tag, which is not
taken into account by any of existing models. We
surmise that the CRF layer takes the emotional con-
sistency into consideration when classifying similar
emotions, such as ”happy” and ”excited”, hence
CESTa is aware of the similarity between them and

https://www.tensorflow.org/datasets/api_docs/python/tfds/features/text/Tokenizer
https://www.tensorflow.org/datasets/api_docs/python/tfds/features/text/Tokenizer
https://www.tensorflow.org/datasets/api_docs/python/tfds/features/text/Tokenizer
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Figure 3: The performance of different models on con-
versations with different length. Yellow solid: our
CESTa. Blue solid: the contrast model with only
LSTM-based global context encoder. Red dotted: the
difference between CESTa and the contrast model.

outperforms other models on these emotions.

DailyDialogue: In this dataset, the majority
class(neutral) accounts for more than 80% in the
test dataset. We use the micro-averaged F1 exclud-
ing the neutral class as the evaluation metric due
to the imbalanced data distribution. DailyDialogue
contains lots of short dyadic conversations of which
average length is 8, this leads to frequent speaker
turnovers. In this case, modeling speaker-level in-
formation with speaker encoder releases more abil-
ity in improving the performance. According to Li
et al. (2017), DailyDialogue contains rich emotions
so that our model can learn more expressive repre-
sentations for utterances. Furthermore, DailyDia-
logue reflects human communication style, which
means a definite emotional consistency can be uti-
lized by the CRF layer in CESTa. This explains the
reason of our model outperforming baselines by a
large margin.

MELD: On MELD, we follow the same metric
used on IEMOCAP. The performance differences
between baseline models and our CESTa is not as
contrasting as they are on IEMOCAP and Daily-
Dialogue. This is mostly because of the nature of
MELD. In MELD, there are many conversations
containing more than 5 speakers while the average
conversation length is only 10 and the minimum
length is only 1. For short conversations, the ad-
vantage of the Transformer which is superior to
RNNs in capturing the long-range inter-speaker de-
pendency is not obvious. In general, majority of
the speakers attending the conversation in MELD
only utter a small amount of utterances. This leads

Figure 4: Statistics of pairs consisting of two identical
tags which are consecutive in the conversation given
by different models. Yellow: our CESTa. Blue: the
contrast model without the CRF layer.

the difficulty of modeling the self dependency. Ad-
ditionally, utterances in MELD suffer a shortage of
emotion specific expressions, this further increases
the difficulty for emotion modeling. Nevertheless,
CESTa achieves better results than baselines. We
attribute this to the CRF layer which has an insight
into the emotional consistency.

5.2 Model Analysis
Analysis of Transformer Enhancing: We eval-
uate the effect of Transformer enhancing on conver-
sations with different lengths. On the test dataset
of IEMOCAP, conversations are grouped by length
and fed into two models: one is our CESTa with
the Transformer-enhanced global context encoder,
another is the contrast model that only uses LSTM-
based global context encoder. The average F1 score
of different groups are shown in Figure 3.

It is easy to observe that both context encoders
have similar effect on relatively short conversations.
However, the advantage of Transformer enhancing
are more obvious as the length of conversation ex-
ceeds 54. This confirms the contribution of Trans-
former to the modeling of long-range contextual
information.

Analysis of Emotional Consistency: We exper-
iment on the test dataset of IEMOCAP to check
the fitting of emotional consistency. We compare
two models: one is our CESTa with the CRF layer,
another is the contrast model that uses a softmax
layer instead of CRF for classification. Statistics
are given by Figure 4.

For most emotion tags, CESTa demonstrates a
more obvious emotional consistency, that is, the
same tag are more likely appear adjacently in given
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Transformer
LSTM-based Global

Context Encoder
Individual

Context Encoder
CRF IEMOCAP DailyDialogue

No Yes Yes Yes 64.25 60.28
Yes No Yes Yes 64.86 59.13
Yes Yes No Yes 62.35 57.10
Yes Yes Yes No 65.31 60.17
Yes Yes Yes Yes 67.10 63.12

Table 4: Ablation results on IEMOCAP and DailyDialogue.

conversations. We assume CESTa has learnt the
emotional consistency very well and thus achieves
a better performance. For the tag of “angry” and
“excited”, CESTa reflects less emotional consis-
tency than the contrast model. However, we find
that the quantitative distribution of next tags of “an-
gry” and “excited” given by CESTa is closer to the
ground truth than the contrast model. This trade-off
between the emotional consistency and evaluation
of performance is worth to further study.

Ablation Study: We conduct ablation study to
investigate the necessities of the Transformer en-
hancing, global context encoder, individual context
encoder and the CRF layer. The study is performed
on IEMOCAP and DailyDialogue by removing one
component at a time. Results are given in Table 4.

The results align with our analysis as the four
components all improve performance by varying
extents. The individual context encoder contributes
most of the improvements against the baseline on
both datasets. This shows the individual context
encoder can capture emotional inertia for each
speaker.

For IEMOCAP, the Transformer enhancing
brings CESTa almost 3% increase of performance,
which is the second biggest increase only after the
increase 4.75% brought by the individual context
encoder. For DailyDialogue, the dataset of which
conversations are generally short, the Transformer
enhancing leads to the minimum growth of perfor-
mance. This demonstrates the importance of the
Transformer enhancing for processing long conver-
sations.

For both datasets, the performance falls by
2.24% and 3.99% respectively if we remove the
LSTM-based global context encoder while keeping
only the Transformer encoder. This demonstrates
the importance of sequential contextual informa-
tion captured by LSTM. Also, the CRF layer con-
tributes 1.69% and 2.95% respectively to our model
performance on IEMOCAP and DailyDialogue by

optimizing globally with past and future emotion
tags which contain information of emotional con-
sistency.

Together these results provide important insights
into what really counts in ERC. First, long-range
sequential global context encoder is essential for
emotion recognition in conversation. Modeling ad-
equate contextual information enables the model to
know the background of the current utterance. Be-
sides, with the help of individual context encoder,
emotion inertia can be learned by our model to
seize the personality of the current speaker. Finally
yet importantly, emotion tags flowing throughout
a conversation to some extent have coherence nat-
urally, which makes it meaningful to exploit the
influence that past and future emotion tags have on
the current tag with CRF.

6 Conclusion

We have introduced a new method, CESTa, to
model ERC task as sequence tagging. Based on the
contextualized utterance representations, it lever-
ages past and future emotion tags to jointly decode
the best tag sequence for the entire conversation at
once. We conduct numerous experiments on three
benchmark datasets. Through ablation studies, we
have confirmed modeling the emotional consis-
tency via CRF and enhancing the context encoder
via the Transformer are beneficial to our model.
Experimental results show that CESTa leads to a
further performance improvement against strong
baselines and achieves new state-of-the-art results.

Future works will focus on the representation of
emotional consistency for each interlocutor in the
conversation. We also plan to incorporate multi-
modal information into CESTa and evaluate it on
more natural conversation datasets. Since CESTa
needs to use emotion information of the whole dia-
logue, we will study its performance on the online
dialogue system which has no access to the infor-
mation of future emotions.
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Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In
Advances in neural information processing systems,
pages 3844–3852.

Laurence Devillers and Laurence Vidrascu. 2006. Real-
life emotions detection with lexical and paralin-
guistic cues on human-human call center dialogs.
In Ninth International Conference on Spoken Lan-
guage Processing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Deepanway Ghosal, Navonil Majumder, Soujanya Po-
ria, Niyati Chhaya, and Alexander Gelbukh. 2019.
Dialoguegcn: A graph convolutional neural network
for emotion recognition in conversation. arXiv
preprint arXiv:1908.11540.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal process-
ing, pages 6645–6649. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Urvashi Khandelwal, He He, Peng Qi, and Dan Juraf-
sky. 2018. Sharp nearby, fuzzy far away: How neu-
ral language models use context. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 284–294.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Chul Min Lee, Shrikanth S Narayanan, et al. 2005.
Toward detecting emotions in spoken dialogs.
IEEE transactions on speech and audio processing,
13(2):293–303.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 986–995.

Navonil Majumder, Soujanya Poria, Devamanyu Haz-
arika, Rada Mihalcea, Alexander Gelbukh, and Erik
Cambria. 2019. Dialoguernn: An attentive rnn for
emotion detection in conversations. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6818–6825.

Costanza Navarretta. 2016. Mirroring facial expres-
sions and emotions in dyadic conversations. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 469–474.

Alexandre Passos, Vineet Kumar, and Andrew McCal-
lum. 2014. Lexicon infused phrase embeddings for
named entity resolution. CoNLL-2014, page 78.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Context-dependent sentiment anal-
ysis in user-generated videos. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
873–883.

http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860


195

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, Gautam Naik, Erik Cambria, and Rada Mi-
halcea. 2018. Meld: A multimodal multi-party
dataset for emotion recognition in conversations.
arXiv preprint arXiv:1810.02508.

Soujanya Poria, Navonil Majumder, Rada Mihalcea,
and Eduard Hovy. 2019. Emotion recognition in
conversation: Research challenges, datasets, and re-
cent advances. arXiv preprint arXiv:1905.02947.

Lawrence R Rabiner. 1989. A tutorial on hidden
markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–
286.

Alec Radford, Karthik Narasimhan, Tim Sali-
mans, and Ilya Sutskever. 2018. Improving
language understanding by generative pre-training.
URL https://s3-us-west-2.amazonaws.com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper.pdf.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155.

Alexander Schmitt, Stefan Ultes, and Wolfgang Minker.
A parameterized and annotated spoken dialog corpus
of the cmu let’s go bus information system.
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