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Abstract

This paper describes BUT-FIT’s submission at SemEval-2020 Task 5: Modelling Causal Reasoning
in Language: Detecting Counterfactuals. The challenge focused on detecting whether a given
statement contains a counterfactual (Subtask 1) and extracting both antecedent and consequent
parts of the counterfactual from the text (Subtask 2). We experimented with various state-of-the-art
language representation models (LRMs). We found RoBERTa LRM to perform the best in both
subtasks. We achieved the first place in both exact match and F1 for Subtask 2 and ranked second
for Subtask 1.

1 Introduction

One of the concerns of SemEval-2020 Task 5: Modelling Causal Reasoning in Language: Detecting
Counterfactuals (Yang et al., 2020) is to research the extent to which current state-of-the-art systems
can detect counterfactual statements. A counterfactual statement, as defined in this competition, is a
conditional composed of two parts. The former part is the antecedent – a statement that is contradictory
to known facts. The latter is the consequent – a statement that describes what would happen had the
antecedent held1. To detect a counterfactual statement, the system often needs to posses a commonsense
world knowledge to detect whether the antecedent contradicts with it. In addition, such a system must
have an ability to reason over consequences that would arise had the antecedent would have been true. In
some cases, the consequent might not be present at all, but instead a sequence resembling consequent, but
with no consequential statement, might be present. Figure 1 shows a set of examples drawn from the data.

If that was my daughter, I would have asked If I did something wrong.
Nike's revenue last quarter alone climbed a solid 5%, to $8.432 billion, and would have increased 7% had it not been for foreign-currency exchange.
Al Sharpton's storefront headquarters in Harlem, the gatherings were solemn, spirited and reflected the fraught nature of what would have been the Rev.

Figure 1: Three examples from the training data containing counterfactual statements. Antecedents are
highlighted with red bold, consequents with blue bold italic. The last example has no consequent.

Counterfactuals were studied across a wide spectrum of domains. For instance, logicians and philoso-
phers focus on logical rules between parts of counterfactual and its outcome (Goodman, 1947). Political
scientists conducted counterfactual thought experiments for hypothetical tests on historical events, policies
or other aspects of society (Tetlock and Belkin, 1996). However, there is only a small amount of work in
computational linguistics studying this phenomenon. SemEval-2020 Task 5 aims at filling this gap in the
field. The challenge consists of two subtasks:

1. Detecting counterfactual statements – classify whether the sentence has a counterfactual statement.

2. Detecting antecedent and consequence – extract boundaries of antecedent and consequent from the
input text.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1According to several definitions in literature, e.g. (Starr, 2019), the antecedent of counterfactual might not need to counter
the facts.
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The approaches we adopted follow recent advancements from deep pre-trained language representation
models. In particular, we experimented with fine-tuning of BERT (Devlin et al., 2019), RoBERTa (Liu et
al., 2019) and ALBERT (Lan et al., 2019) models. Our implementation is available online2.

2 System overview

2.1 Language Representation Models

We experimented with three language representation models (LRMs):
BERT (Devlin et al., 2019) is pre-trained using the multi-task objective consisting of denoising LM

and inter-sentence coherence (ISC) sub-objectives. The LM objective aims at predicting the identity
of 15% randomly masked tokens present at the input3. Given two sentences from the corpus, the ISC
objective is to classify whether the second sentence follows the first sentence in the corpus. The sentence is
replaced randomly in half of the cases. During the pre-training, the input consists of two documents, each
represented as a sequence of tokens divided by special [SEP ] token and preceded by [CLS] token used
by the ISC objective, i.e. [CLS]document1[SEP ]document2[SEP ]. The input tokens are represented
via jointly learned token embeddings Et, segment embeddings Es capturing whether the word belongs
into document1 or document2 and positional embeddings Ep since self-attention is position-invariant
operation. During fine-tuning, we leave the second segment empty.

RoBERTa (Liu et al., 2019) is a BERT-like model with the different training procedure. This includes
dropping the ISC sub-objective, tokenizing via byte pair encoding (Sennrich et al., 2016) instead of
WordPiece, full-length training sequences, more training data, larger batch size, dynamic token masking
instead of token masking done during preprocessing and more hyperparameter tuning.

ALBERT (Lan et al., 2019) is a RoBERTa-like model, but with n-gram token masking (consecutive
n-grams of random length from the input are masked), cross-layer parameter sharing, novel ISC objective
that aims at detecting whether the order of two consecutive sentences matches the data, input embedding
factorization, SentencePiece tokenization (Kudo and Richardson, 2018) and much larger model dimension.
The model is currently at the top of leaderboards for many natural language understanding tasks including
GLUE (Wang et al., 2018) and SQuAD2.0 (Rajpurkar et al., 2018).

2.2 Subtask 1: Detecting counterfactual statements

The first part of the challenge is a binary classification task, where the participating systems determine
whether the input sentence is a counterfactual statement.

A baseline system applying an SVM classifier (Cortes and Vapnik, 1995) over TF-IDF features was
supplied by the organizers. We modified this script to use other simple classifiers over the same features –
namely Gaussian Naive Bayes and 6-layer perceptron network, with 64 neurons in each layer.

As a more serious attempt at tackling the task, we compare these baselines with state-of-the-art LRMs
– RoBERTa and ALBERT. The input is encoded the same way as in 2.3. We trained both models with
cross-entropy objective and we used the linear transformation of CLS-level output after applying dropout
for classification. After the hyperparameter search, we found that RoBERTa model performed the best on
this task. For our final system, we built an ensemble from the best checkpoints of RoBERTa model.

2.3 Subtask 2: Detecting antecedent and consequence

We extended each LRM in the same way Devlin et al. (2019) extended BERT for SQuAD. The input
representation for input x is obtained by summing the input embedding matrices E = Et +Es +Ep ∈
RL×di representing its word embeddings Et, position embeddings Ep and segment embeddings4 Es

with L being the input length and di input dimensionality. Applying LRM and dropout δ, an output matrix
δ(LRM(E)) = H ∈ RL×do is obtained, do being the LRM’s output dimensionality. Finally, a linear
transformation is applied to obtain logit vector for antecedent start/end as, ae and consequent start/end cs,

2https://github.com/MFajcik/SemEval_2020_Task-5
3The explanation of token masking is simplified and we refer readers to read details in the original paper (Devlin et al., 2019).
4RoBERTa is not using segment embeddings.



439

ce.
Pj(·|x) ∝ exp (w>j H); j ∈ {as, ae, cs, ce} (1)

For consequent, we do not mask CLS-level output and use it as a no consequent option for both cs and ce.
Therefore we predict that there is no consequent iff model’s prediction is cs = 0 and ce = 0; assuming 0
is the index of CLS-level output. Finally, the log-softmax is applied and model is trained via minimizing
cross-entropy for each tuple of inputs x and target indices t from the dataset D.

−
∑

(x,t)∈D

∑
j∈{as,ae,cs,ce}

logPj(tj |x) (2)

An ensemble was built using a greedy heuristic seeking the smallest subset from the pool of trained
models s.t. it obtains best exact match on a validation set 5.

3 Experimental setup

3.1 Data
For each subtask, training datasets without split were provided. Therefore we took the first 3000
examples from Subtask 1 data and 355 random examples from Subtask 2 data as the validation data. The
train/validation/test split was 10000/3000/7000 for Subtask 1 and 3196/355/1950 for Subtask 2. 88.2% of
the validation examples in Subtask 1 were labeled 0 (non-counterfactual).

3.2 Preprocessing & Tools
In case of Subtask 1, after performing a length analysis on the data, we truncated input sequences at length
of 100 tokens for the LM based models in order to reduce worst-case memory requirements, since only
0.41% of the training sentences were longer than this limit. A histogram of the example lengths in tokens
is presented in Appendix A.2. For Subtask 2, all the input sequences fit the maximum input length of 509
tokens.

For the preliminary experiments with simpler machine learning methods, we adopted the baseline
script provided by the organizers, which is based on sklearn Python module. We implemented our
neural network models in PyTorch (Paszke et al., 2019) using transformers (Wolf et al., 2019) library.
In particular, we experimented with roberta-large and albert-xxlarge-v2 in Subtask 1 and with bert-
base-uncased, bert-large-uncased, roberta-large and albert-xxlarge-v1 models in Subtask 2. We used
hyperopt (Bergstra et al., 2013) to tune model hyperparameters. See Appendix A.1 for further details on
hyperparameters. We used the Adam optimizer with a decoupled weight decay (Loshchilov and Hutter,
2017). For Subtask 2, we combined this optimizer with lookahead (Zhang et al., 2019). All models were
trained on 12GB GPU.

4 Results and analysis

For Subtask 1, we adapted the baseline provided by the task organizer to asses how more classical
machine learning approaches perform on the dataset. After seeing the subpar performance, we turned our
attention to pre-trained LRMs, namely RoBERTa and ALBERT. The results of the best run of each model
can be found in Table 1. A more comprehensive list of results for different hyperparameters can be found
in the Appendix 3.

Our final submission is an ensemble of RoBERTa-large models since we found that this LRM performs
better than ALBERT for this task. We trained a number of models on the train set and computed F1 scores
on the validation part. 10 best (in terms of F1) single models were selected, and the output probabilities
were averaged for all the possible combinations of these models. The combination with highest F1 score
was selected as a final ensemble. Then we trained new models with the same parameters as the models in
the ensemble, but using the whole training data, including the part that was previously used for validation.
Finally, for our submitted ensemble, we used checkpoints saved after the same number of updates as the
best checkpoints for the systems trained only on part of the training data.

5For more details on how the ensemble was built, see TOP-N fusion in Fajcik et al. (2019).
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Model Precision Recall F1
SVM 80.55 8.19 14.87
Naive Bayes 22.81 28.81 25.47
MLP 39.01 29.09 33.33
RoBERTa-large 98.11± 0.11 85.71± 0.61 91.48± 0.51

ALBERT-xxlarge 97.99± 0.15 84.19± 0.55 90.59± 0.67

RoBERTa-large-ens 98.95 87.30 92.76

Table 1: Results of different models on validation part of Subtask 1 training data (first 3000 sentences).
Results for RoBERTa and ALBERT models are averaged over ten training runs with the best found
hyperparameters.

We performed an error analysis of the best single RoBERTa and ALBERT models. RoBERTa model
misclassified 52 examples (29 false positives, 23 false negatives), while ALBERT misclassified 60
examples (32 false positives, 23 false negatives). 29 wrongly classified examples were common for both
of the models. Examples of wrongly classified statements are presented in the Appendix A.3.

BERT-base BERT-large ALBERT RoBERTa RoBERTa(Ensemble)

EM 73.03± 0.4 72.68± 0.6 73.59± 0.8 73.92± 0.3 74.93

F1 87.13± 0.4 87.31± 0.5 88.13± 0.4 88.27± 0.4 80.80

AEM 77.18 76.56 77.97 77.58 79.44

AF1 91.11 90.93 91.71 91.33 91.96

CEM 68.87 68.70 69.21 70.28 70.42

CF1 83.15 83.70 84.54 85.23 85.65

ACCno−c 90.37 91.10 91.49 91.69 91.83

#θ 109M 335M 223M 355M -

Table 2: Results on the Subtask 2 validation data. For EM/F1, we report means and standard deviations.
The statistics were collected from 10 runs. #θ denotes the number of model’s parameters. We also
measured EM/F1 for the extraction of antecedent/consequent separately; denoted as AEM , AF1 and CEM ,
CF1 respectively. At last ACCno−c denotes no-consequent classification accuracy.

For Subtask 2, the results are presented in Table 2. The hyperparameters were the same for all LRMs.
An ensemble was composed of 11 models drawn from the pool of 60 trained models. We found the
ALBERT results to have a high variance. In fact, we recorded our overall best result on validation data
with ALBERT, obtaining 75.35/89.00 EM/F1. However, in competition, we submitted only RoBERTa
models due to less variance and slightly better results on average6.

5 Related work

Closest to our work, Son et al. (2017) created a counterfactual tweet dataset and built a pipeline classifier to
detect counterfactuals. The authors identified 7 distinct categories of counterfactuals and firstly attempted
to classify the examples into one of these categories using a set of rules. Then for certain categories, they
used a linear SVM classifier (Cortes and Vapnik, 1995) to filter out tricky false positives.

A large effort in computational linguistics was devoted to the specific form of counterfactuals – so-called
what-if questions. A recent paper by Tandon et al. (2019) presents a new dataset for what-if question
answering, including a strong, BERT-based baseline. The task is to choose an answer to a hypothetical
question about cause and an effect, e.g. Do more wildfires result in more erosion by the ocean?. Each
question is accompanied by a paragraph focused on the topic of the question, which may or may not
contain enough information to choose the correct option. The authors show that there is still a large

6We submitted the best ALBERT model in the post-evaluation challenge phase, obtaining worse test data results than the
ensemble.



441

performance gap between humans and state-of-the-art models (73.8% accuracy for BERT against 96.3%
for a human). This gap is caused mainly by the inability of the BERT model to answer more complicated
questions based on indirect effects, which require more reasoning steps. However, the results show that the
BERT model was able to answer a large portion of the questions even without accompanying paragraphs,
indicating that the LRM models have a notion of commonsense knowledge.

6 Conclusions

We examined the performance of current state-of-the-art language representation models on both subtasks
and we found yet another NLP task benefits from unsupervised pre-training. In both cases, we found
RoBERTa model to perform slightly better than other LRMs, while its results also being more stable. We
have ended up first in both EM and F1 on Subtask 2 and second in Subtask 1.
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A Supplemental Material

A.1 Hyperparameters

A.1.1 Subtask 1
The results of RoBERTa models with their training hyperparameters are presented in Table 3.

batch size learning rate best acc best F1
48 2.00E-05 0.9829943314 0.9209302326
70 1.00E-05 0.9823274425 0.9180834621
72 2.00E-05 0.9829943314 0.9199372057
90 4.00E-05 0.9829943314 0.9209302326
90 1.00E-05 0.9783261087 0.8992248062
96 3.00E-05 0.9839946649 0.9240506329
120 3.00E-05 0.9809936646 0.9107981221
132 4.00E-05 0.9796598866 0.9060092450

Table 3: Different batch sizes and learning rates used to train RoBERTa-large models, results of the best
checkpoint on the validation part of the data.

We kept other RoBERTa model hyperparameters as shown in Table 4 for all training runs.

Hyperparameter Value
Max gradient norm 1.0

Epochs 8
Maximum input length 100

Dropout 0.1
Optimizer Adam (ε = 1e-8)

Table 4: Hyperparameters for Subtask 2, shared for all runs.
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A.1.2 Subtask 2
Our tuned hyperparameters are in Table 5. All other hyperparameters were left the same as PyTorch’s
default. We did not use any learning rate scheduler.

Hyperparameter Value
Dropout rate (last layer) 0.0415

Lookahead K 1.263e-5
Lookahead α 0.470

Max gradient norm 7.739
Batch size 64

Weight Decay 0.02
Patience 5

Max antecedent length 116
Max consequent length 56

Table 5: Hyperparameters for Subtask 2. We tune only dropout at the last layer (the dropout mentioned in
2.3). Patience denotes the maximum number of epochs, after which we stop the training if there was no
EM improvement. All parameters were tuned using HyperOpt (Bergstra et al., 2013).

A.2 Data analysis
The distribution of lengths for examples from Subtask 1 is presented in Figure 2. We truncate sequences
in this subtask to maximum of 100 tokens per example.

Figure 2: Histogram of example lengths in tokens in the training data for Subtask 1.

A.3 Wrongly classified examples
Table 6 shows examples of statements classified wrongly by both ALBERT and RoBERTa models.

A.4 Ambiguous labels
During the error analysis, we noticed a number of examples where we were not sure whether the labels
are correct (see Table 7).
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Statement Predicted Correct
MAUREEN DOWD VISITS SECRETARY NAPOLITANO - ”New Year’s
Resolutions: If only we could put America in Tupperware”: ”Janet Napoli-
tano and I hadn’t planned to spend New Year’s Eve together.

0 1

If the current process fails, however, in hindsight some will say that it
might have made more sense to outsource the whole effort to a commercial
vendor.

1 0

Table 6: Examples of wrong predictions.

Statement Label
Given that relatively few people have serious, undiagnosed arrhythmias with no symptoms
(if people did, we would be screening for this more often), this isn’t the major concern.

0

A flu shot will not always prevent you from getting flu, but most will have a less severe
course of flu than if they hadn’t had the shot,” Dr. Morens said.

0

Table 7: Examples of ambiguous annotation.

A.5 Measurement of results
The individual measurements for Subtask 2 statistics presented in 2 can be found at https://tinyurl.
com/y8zncw7p. Note that we did not use the same evaluation script as used in official baseline. Our
evaluation script was SQuAD1.1 like, ground truth and extracted strings were firstly normalized the same
way as in SQuAD1.1, then the strings were compared. For details see our implementation of method
evaluate semeval2020 task5 in scripts/common/evaluate.py.

A.6 Wrong predictions in Subtask 2

Ground Truth Prediction
GLOBAL FOOTPRINT Mylan said in a separate
statement that the combination would create ”a ver-
tically and horizontally integrated generics and spe-
cialty pharmaceuticals leader with a diversified rev-
enue base and a global footprint.” On a pro forma
basis, the combined company would have had rev-
enues of about $4.2 billion and a gross profit, or
EBITDA, of about $1.0 billion in 2006, Mylan said.

GLOBAL FOOTPRINT Mylan said in a separate
statement that the combination would create ”a ver-
tically and horizontally integrated generics and spe-
cialty pharmaceuticals leader with a diversified rev-
enue base and a global footprint.” On a pro forma
basis, the combined company would have had rev-
enues of about $4.2 billion and a gross profit, or
EBITDA, of about $1.0 billion in 2006, Mylan said.

Shortly after the theater shooting in 2012, he told
ABC that the gunman was ”diabolical” and would
have found another way to carry out his massacre
if guns had not been available, a common argu-
ment from gun-control opponents.

Shortly after the theater shooting in 2012, he told
ABC that the gunman was ”diabolical” and would
have found another way to carry out his massacre
if guns had not been available, a common argument
from gun-control opponents.

Now, if the priests in the Vatican had done their
job in the first place, a quiet conversation, behind
closed doors and much of it would have been pre-
vented.

Now, if the priests in the Vatican had done their
job in the first place, a quiet conversation, behind
closed doors and much of it would have been pre-
vented.

The CPEC may have some advantages for Pakistan’s
economy – for one, it has helped address the coun-
try’s chronic power shortage – but the costs are wor-
risome and unless they can be wished away with a
wand, it will present significant issues in the future.

The CPEC may have some advantages for Pakistan’s
economy – for one, it has helped address the coun-
try’s chronic power shortage – but the costs are wor-
risome and unless they can be wished away with
a wand, it will present significant issues in the fu-
ture.

Table 8: An example of bad predictions from LRM over Subtask 2 validation data. Antecedents are
highlighted with red bold, consequents with blue bold italic.


