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Abstract
We study whether novel ideas in biomedical
literature appear first in preprints or traditional
journals. We develop a Bayesian method to
estimate the time of appearance for a phrase
in the literature, and apply it to a number of
phrases, both automatically extracted and sug-
gested by experts. We see that presently most
phrases appear first in the traditional journals,
but there is a number of phrases with the first
appearance on preprint servers. A compari-
son of the general composition of texts from
bioRxiv and traditional journals shows a grow-
ing trend of bioRxiv being predictive of tradi-
tional journals. We discuss the application of
the method for related problems.

1 Introduction

A paper submitted to a journal goes through several
stages: peer review, editorial work, copyediting,
publication. This leads to a long waiting time be-
tween submission and the final publication (Powell,
2016). The situation is especially bad in the life sci-
ences, where the waiting time between submission
and publication approaches the duration of a tradi-
tional PhD study, creating serious difficulties for
young scientists (Vale, 2015). While this is frustrat-
ing for scientists whose recognition and promotion
often depend on the publication record, it is also
bad for science itself, significantly slowing down
its progress (Qunaj et al., 2018).

Preprint servers were offered as a means of ac-
celerating science (Berg et al., 2016; Desjardins-
Proulx et al., 2013; Sarabipour et al., 2019; Schloss,
2017; Lauer et al., 2015; Peiperl, 2018), especially
in the wake of COVID-19 epidemics (Krumholz
et al., 2020). The discussion about the benefits (and
dangers) of preprint is no longer confined to the
scientific literature, coming to the pages of popular
newspapers (Eisen and Tibshirani, 2020).

*Equal contribution.

The benefits of preprints for accelerating science
are often raised in the discussions between regu-
latory agencies, funders, scientists and publishers.
Thus a method to objectively assess them is impor-
tant. One way to do this assessment is to look at
a new important idea and to measure whether it
first appears in a traditional journal or on a preprint
server.

An implementation of this approach requires one
to define what is an important idea, and how to find
the time of appearance for it. This is the goal of
our work.

The definition of novelty in science and the meth-
ods to determine and predict novelty have a long
history discussed in the next section. In this work
we use a very simple approach (Garfield, 1967; La-
tour and Woolgar, 1986): new ideas correspond to
new terms. Thus if we find new words and phrases
in scientific papers, we can surmise the appearance
of new ideas.

The definition of the time of appearance for a
new idea is not trivial. It is not enough to regis-
ter the first mention of a term. First, some hits
might be erroneous, and give us false positives. On
the other hand, we might miss some mentions of
a term due to the incompleteness of the corpus.
Therefore a more subtle method to determine the
time of appearance is needed. In this work we offer
a Bayesian approach to this problem.

Based on our definitions of novelty and the time
of appearance for novel ideas we compare the time
of appearance for several novel ideas in the pa-
pers published in bioRxiv/medRxiv https://www.

biorxiv.org/ and PubMed Central full text col-
lection https://www.ncbi.nlm.nih.gov/pmc/.

2 Related Works

Novel ideas and breakthroughs are among the cen-
tral concepts for the science of science. A number

https://www.biorxiv.org/
https://www.biorxiv.org/
https://www.ncbi.nlm.nih.gov/pmc/
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of studies propose different ideas to quantify orig-
inality in science and technology (Cozzens et al.,
2010; Alexander et al., 2013; Rzhetsky et al., 2015;
Rotolo et al., 2015; Wang et al., 2016; Wang and
Chai, 2018; Shibayama and Wang, 2020) or their
impact on the other works (Shi et al., 2010; Shahaf
et al., 2012; Sinatra et al., 2016; Hutchins et al.,
2016; Wesley-Smith et al., 2016; Herrmannova
et al., 2018b,a; Zhao et al., 2019; Bornmann et al.,
2019; Small et al., 2019). The prediction of break-
throughs, scientific impact and citation counts is a
well developed area (Schubert and Schubert, 1997;
Garfield et al., 2002; Dietz et al., 2007; Lokker
et al., 2008; Shi et al., 2010; Uzzi et al., 2013;
Alexander, 2013; Klimek et al., 2016; Tahamtan
et al., 2016; McKeown et al., 2016; Clauset et al.,
2017; Peoples et al., 2017; Salatino et al., 2018;
Dong et al., 2018; Iacopini et al., 2018; Feldman
et al., 2018; van den Besselaar and Sandström,
2018; Klavans et al., 2020). However, the ques-
tion asked in these works is different from the one
we ask. Most of the researchers tried to determine
what makes a work original or impactful, and how
to predict originality or impact. Our question is the
following: suppose we know a certain idea is novel
(or impactful). Can we pinpoint a moment in time
when this idea appeared, and where did it appear?

Sentence level novelty detection was a topic
of novelty tracks of Text Retrieval Conferences
(TREC) from 2002 to 2004 (Soboroff and Harman,
2003; Harman, 2002; Clarke et al., 2004; Sobo-
roff and Harman, 2005). The goal of these tracks
was to highlight the relevant sentences that con-
tain novel information, given a topic and an or-
dered list of relevant documents. At the document
level, Karkali et al. (2013) computed novelty score
based on the inverse document frequency scoring
function. Another work by Verheij et al. (2012)
presents a comparison study of different novelty
detection methods evaluated on news articles where
language model based methods perform better than
the cosine similarity based ones. Dasgupta and Dey
(2016) conducted experiments with information en-
tropy measure to calculate novelty of a document.
Again, the work that we present here significantly
differs from the existing novelty detection meth-
ods since we use the novelty detection as a starting
point rather than a goal. We first get candidate
phrases from the documents with the most appro-
priate key phrases extraction method, and then de-
termine the appearance timing of these phrases.

Another field that is relevant to our research is
the detection of change points in a stream of events.
Change point detection (or CPD) detects abrupt
shifts in time series trends that can be easily iden-
tified via the human eye, but are harder to pin-
point using traditional statistical approaches. The
research in CPD is applicable across an array of in-
dustries, including finance, manufacturing quality
control, energy, medical diagnostics, and human
activity analysis. There are many representative
methods of CPD. Binary segmentation (Bai, 1997)
is a sequential approach: first, one change point is
detected in the complete input signal, then series
is split around this change point, then the opera-
tion is repeated on the two resulting sub-signals.
As opposite to binary segmentation, which is a
greedy procedure, bottom-up segmentation (Fry-
zlewicz, 2007) is generous: it starts with many
change points and successively deletes the less sig-
nificant ones. First, the signal is divided in many
sub-signals along a regular grid. Then contigu-
ous segments are successively merged according
to a measure of how similar they are. Because the
enumeration of all possible partitions is impossi-
ble, Pelt (Killick et al., 2012) relies on a pruning
rule. Many indexes are discarded, greatly reducing
the computational cost while retaining the ability
to find the optimal segmentation. Window-based
change point detection (Aminikhanghahi and Cook,
2016) uses two windows which slide along the data
stream. Dynamic programming was also used for
this task (Truong et al., 2020). In this work we pro-
pose a simple Bayesian approach to the detection
of change points, which seems to give intuitively
reasonable results for our purpose.

3 Bayesian Approach to Novelty
Detection

P(X = t, Y = n) = e−μtμn
t

n!

μt = α μt = α + β(t − τ)

τ

t [time interval]

n
[fr

equ
enc

y]

Figure 1: Our Bayesian Approach to Novelty Detec-
tion (BAND). The goal is to find the inflection point τ
that indicates the earliest point attributed to the rapid
research growth associated with a novel idea.
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Our proposed Bayesian Approach to Novelty
Detection (BAND) finds the time interval τ that
maximizes the observed series of publication fre-
quency for a phrase (Figure 1). Paper publications
are events, so it is reasonable to assume that the
number of publications n in a unit interval at the
time t containing the given phrase z follows a Pois-
son distribution. The joint density function for
publication frequency is given by the equation

P (X = t, Y = n) =
e−µtµnt
n!

, (1)

where µt is modeled by a piecewise linear function
of t:

µt =

{
α t < τ,

α+ β(t− τ) t ≥ τ.
(2)

Prior to τ , we expect the number of publications
containing the given phrase to be small, ideally
zero. The parameter α > 0 controls for the noise
(misattributed papers, improper or ambiguous us-
age of the phrase, etc.). After the moment τ , we
expect the steady grow of phrase popularity with
the rate β. In other words, τ is the point in time
ehen the phrase begins to be adopted.

We consider each phrase independently and use
Bayesian modeling to find the most probable pa-
rameters α, β, and τ given the observed data using
the standard Bayesian approach

P (α, β, τ |X,Y ) ∝
P (α, β, τ)P (X,Y |α, β, τ). (3)

We use a flat uniformative prior with

P (α, β, τ) = const. (4)

Our motivation for finding τ using BAND is
to compare the impact of different publication
venues (i.e. preprint servers and peer-reviewed
journals) that cover overlapping research topics.
For a single phrase z, we use the observed data
from two sources and estimate the posterior proba-
bility P (α, β, τ) for each source separately. Then
we run a simulation to find the 95% confidence
interval of τ using the following procedure:

1. For a single data source, compute P (α, β, τ)
for all possible configurations on a grid.

2. Sample a large number of triplets (α, β, τ)
from the posterior computed in Step 1.

3. Remove 2.5% of the triples with the highest
value of τ , and 2.5% of triplets with the lowest
value of τ . The probability for τ to lie in the
remaining interval can be estimated as 95%.

In order to compare two sources, we create two
sets of tuples, one for each source. Then we ran-
domly draw a tuple from the first set and a tuple
from the second one. For each pair i we compute
δi, the expected difference between the two sources
where τ (s)i is the i-th sample in source s:

δi = τ
(s0)
i − τ (s1)i . (5)

The conclusion about the priority is based on distri-
bution of δ around zero. If δ > 0 for the majority
of the pairs, then the phrase gains traction first on
source s0. Otherwise the second source wins.

4 Experimental Setup

In this section we describe our data collection pro-
cedure and background on methods of text pro-
cessing and assessing data quality. Our code for
running experiments is publicly available.1

4.1 Data Sources (Publication Venues)
We consider two types of publication venues: peer-
reviewed journals and preprint servers. There
are now many preprint servers for various areas
of science, including arXiv, bioRxiv, medRxiv,
PsyArXiv, SocArXiv, ChemRxiv, AgriRXiv, and
others. To compare a preprint server to a traditional
venue one needs a large open access collection of
traditionally published papers. In biomedical sci-
ences there is a huge Pubmed Central Open Access
Dataset described below, which drove our choice
for bioRxiv/medRxiv as a comparison venue. An-
other reason for this choice of data sources is that
one of our organizations, Chan Zuckerberg Initia-
tive, has a special interest in biomedical sciences
in general and bioRxiv & medRxiv in particular.

PubMed is a central repository for biomedical
papers published in peer-reviewed journals. It con-
tains over 26 million journal publications. Ab-
stracts are publicly available for all papers, and
for a subset (the PubMed Central Open Access
Dataset with over 1.6 million papers) full texts are
available.2

1https://github.com/seasonyao/
BiorXivImpact

2A minute percentage of titles are missing from the
PubMed data. This is attributed to noisy data entry rather
than some data being closed or open.

https://github.com/seasonyao/BiorXivImpact
https://github.com/seasonyao/BiorXivImpact
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In contrast to PubMed, bioRxiv is a preprint
server for the biological sciences. Papers published
there are not required to pass a strict and lengthy
review process. BioRxiv hosts over 70,000 full
text articles, each open to the public. Recently
medical papers were separated into a special server
medRxiv. Since the search engine provided by
bioRxiv can search both servers, below we use the
term “bioRxiv” for the longer, but more correct
term “the union of bioRxiv and medRxiv papers”.

PubMed and bioRxiv cover the two representa-
tive categories of publication venue. We also in-
clude data sources using information from COVID-
19 Open Research Dataset Challenge (Wang et al.,
2020).

4.2 Text Processing and Data Collection
In our experiments and analysis we leverage a large
collection of phrases collected in an unsupervised
way using TextRank (Mihalcea and Tarau, 2004;
Nathan, 2016). The procedure to extract the phrase
is the following:

1. First we extract all candidate phrases from
bioRxiv abstracts using TextRank. This re-
sults in 1,587,408 phrases.

2. We filter the phrases from Step 1 to the
239,608 phrases by eliminating phrases that
were detected by TextRank only once.

3. For each phrase from Step 2 we generate
monthly time series data for both PMC and
bioRxiv using full text.3

We use this data collection procedure and recom-
mendations from CZI biomedical curators to create
three groups of phrases:

(a) Common phrases: 20 banal phrases manually
selected that are also extracted by TextRank
(includes ‘medical history’, ‘heart disease’,
‘x-ray’, etc.).

(b) Novel phrases: 20 phrases selected by experts
(includes ‘mass cytometry’, ‘gene editing’,
‘fluorescence activated cell sorting’, etc.).

(c) Top extracted phrases: The top 7000 phrases
extracted by TextRank determined by average
importance score.

3For computing time series, we simply count if a phrase
occurred in a document independent of its importance score
from TextRank. This approach scales easily to large corpora
such as full text from PubMed papers.

All common and novel phrases, and a subset
of the top ranking phrases are shown in Appen-
dices A.2, A.1.2, and A.1.1.

4.3 Baselines for finding τ
To assess the effectiveness of BAND for finding
τ we include a strong baseline in our experiments.
In our analysis (Section 5.2), we compare these
methods to BAND not only for finding the first
clear inflection point, but also how relevant τ is for
the end goal of novelty detection and comparing
research impact.

The baseline we include is Window-based
Change Point Detection (see Section 2). It works
by maximizing the discrepancy measuring function

d(xa, xb) = c(xa, xb)− c(xa, τ)− c(τ, xb), (6)

which is large when the left segment c(xa, τ) is
dissimilar from the right segment c(τ, xb).

Window-based Changepoint Detection (WCPD)
is flexible and has been successful when applied
to many tasks. However, for a number of novel
phrases (see the first two examples on Figure 3) it
gives intuitively unsatisfactory results for the detec-
tion of the idea onset. The reason is, WCPD tries
to find the point where the publication frequency
significantly changes, which often corresponds to
the moment the idea is widely adopted. Our task,
on the other hand, is to find the point when the
idea appears, which is a different problem. There-
fore one may expect BAND to work better for the
cause of the novelty detection because its model of
growth starting from zero might be more suitable to
describe the publication frequency than the generic
model of WCPD.

We found necessary to run WCPD using the fi-
nite difference approximation of the publication fre-
quency gradient to obtain reasonable predictions.

We use the implementation of WCPD provided
in ruptures (Truong et al., 2020) with an L2-cost
function (c), window size of 10, penalty of 1, and
no specification on how many changepoints to re-
turn.4 In our figures we display all changepoints
from WCPD to illustrate these changepoints do
not solely identify the point before rapid growth
in idea adaptation. On the other hand our method

4A simple heuristic to get one changepoint is to use the
first one, although this does not work universally well. Con-
straining WCPD to return a single changepoint (e.g. highest
discrepancy) similarly does not consistently return the most
desirable changepoints.



46

50 0 50
0.0

0.2

0.4

0.6

0.8

1.0
R

el
at

iv
e 

Fr
eq

ue
nc

y

2014 2016 2018 2020
Time Interval

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Fr

eq
ue

nc
y bioRxiv

2014 2016 2018 2020
Time Interval

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Fr

eq
ue

nc
y PubMed

(a) CEL-Seq. Across simulations, δ is typically positive indicating relevant papers appeared first on bioRxiv.
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(b) CRISPR. Across simulations, δ is typically negative indicating relevant papers appeared first on PubMed.

Figure 2: The distribution of δ (left column), publication frequency on bioRxiv (center), and publication frequency
on PubMed (right) for two phrases

(BAND) consistently finds changepoints that match
this criterion.

5 Results and Analysis

In this section we discuss the following hypotheses
and research questions:

• Can we find the point τ in time when a phrase
is determined novel using our Bayesian Ap-
proach to Novelty Detection (BAND)?

• Is the value of τ effective for comparing the
impact of two publication venues?

• Do our findings verify that preprint servers are
having a positive impact on the development
of novel ideas?

• How effective is publication frequency for dis-
tinguishing from novel and banal phrases?

Below we answer each of these questions.

5.1 Are pre-print servers accelerating
research?

The common wisdom is the preprint servers have
positive impact on research, by making research
available openly and quickly. We attempt to verify
that ideas develop faster on bioRxiv rather than on
PubMed. Our results indicate that this might be true
in some, but not all, cases. For some phrases δ leans

positive (see Figure 2 top), indicating the relevant
phrase and presumably the novel idea appeared
first on bioRxiv. However, the opposite is true
more often than not (see Figure 2, bottom).

Why is PubMed frequently the first place that
novel ideas appear? One reason might be that
bioRxiv is relatively new, did not gain enough trac-
tion yet, and its benefits are not widely appreciated.
One can even say it is surprising and encouraging
that some novel ideas appear first on bioRxiv de-
spite the it being a relative newcomer. Thus one
interpretation of our finding is that while preprint
servers are already having a positive impact on re-
search, there is still a potential for the growth. In
this case we expect that in the future novel ideas
will appear first on bioRxiv at a higher rate. We
further check this assumption in Section 5.3.

5.2 Is BAND effective at determining τ?

We assume that curves of publication frequency
of novel ideas follow a particular shape—they are
relatively flat followed by a growth period. This
assumption is built in the design of BAND. To ver-
ify BAND’s effectiveness, we use a set of novel
phrases provided by the team of biomedical cura-
tors at Chan Zuckerberg Initiative (CZI), extract
their publication frequency data from PubMed, and
calculate τ using BAND. Qualitatively, we see in
Figure 3 that BAND results agree with the intuition
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Figure 3: BAND often finds a more desirable point of inflection than WCPD (left). In addition, WCPD may return
multiple points (center). However, in cases when the evolution of a term does not follow our model, WCPD is
more effective (right).
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-12 -8 -4 0 4 8 11
Time Shift by Month

0.55

0.6

0.65

0.7

0.75

Av
er

ag
e 

C
or

re
la

tio
n

(b) Novel Phrases
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(c) Top Extracted Phrases

Figure 4: Coarse-grained correlation analysis. We report average correlation between PubMed and bioRxiv for
publication frequency in a 6-year window. We shift the window for bioRxiv one month at a time, where positive
values on the x-axis correspond to shifts back in time and negative values indicate shifts forward in time. If at the
highest value (indicated by the dotted red line) the offset is positive bioRxiv is a predictor of PubMed’s content. If
the offset is negative, the opposite is true. We perform this analysis for 3 subsets of terms: common phrases (a),
novel phrases (b), and phrases from TextRank (c) starting in January 2014.

about the novelty onset.
As discussed in Section 4.3, WCPD is another

technique for finding points of inflection. WCPD
is a useful method because it finds inflection points
without requiring any prior model of the data. As
expected, if the evolution of data follows our model
of growth, BAND gives a better estimate for the
novelty onset (Figure 3, left and center). On
the other hand, if the data do not follow BAND
model, BAND is not supposed to work well, and
assumption-free models like WCPD might work
better. An example is shown on (Figure 3, right),
where a period of growth is followed by a plateau
rather than the growth assumed by BAND model.

5.3 Are pre-print servers mature?

A potentially confounding variable in our exper-
imental setup is the relative recency in the estab-
lishment of bioRxiv (2013) compared to PubMed
(1996). This motivates us to measure the corre-
lation between the publication frequency of these
two data sources. We proceed by looking at three

groups of phrases: (a) common phrases found in
medical terminology, (b) novel phrases provided by
experts, and (c) highest scoring phrases according
to TextRank.

First, we aggregated the last 6 years of data.
We found the similarity between PubMed and
bioRxiv for common phrases and phrases extracted
from TextRank most similar when comparing the
early snapshot of bioRxiv with the later snapshot
of PubMed (Figure 4). Thus for these phrases
bioRxiv is predictive of PubMed. On the other
hand, phrases selected by experts (Section 5.2) tend
to appear on PubMed first (Figure 4, center).

Taking into account that bioRxiv is still evolving,
we performed a more fine-grained analysis where
results are only aggregated across 2 years instead
of 6. This also allowed us to study how the con-
tent alignment between PubMed and bioRxiv has
changed over time. The result is shown on Fig-
ure 5. According to this figure, as bioRxiv matures,
it becomes a better leading indicator of PubMed.
Perhaps more critically, it also shows that the con-
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(a) Common Phrases
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(b) Novel Phrases
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(c) Top Extracted Phrases

Figure 5: Fine-grained correlation analysis. We perform the same analysis as in Figure 4, except with a smaller
window (two years) and shifting both bioRxiv (x-axis) and the starting month (y-axis). If x = 1 and y = 3,
then the start month is April 2014 for PubMed and March 2014 for bioRxiv. The data are shown on a grid with
darker red indicate high correlation and dark blue indicating low or inverse correlation. In general, we see higher
correlation between bioRxiv and PubMed as bioRxiv matures.
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(a) Virus outbreaks that took place be-
fore the start of bioRxiv. The outbreak
and year it began is shown above each plot.
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(b) Virus outbreaks that took place after the start of bioRxiv. The outbreak and year it began is shown above each plot.

Figure 6: Outbreaks that occurred before bioRxiv became widespread (top row, a) with publishing activity
plateaued in recent years v. outbreaks occurring after bioRxiv was founded (bottom row, b) with recent growth in
research activity.

tent alignment is indeed changing.
The analysis we provide in this work at best is

a glimpse into the relationship between pre-print
servers and peer-reviewed journals. It will likely
change as bioRxiv continues to mature.

5.4 Qualitative analysis for the spread of
ideas during virus outbreaks

During natural disasters such as virus outbreaks,
scientific progress towards understanding diseases
and their cures is critical, warranting fast dissem-
ination of ideas and results of research. Pre-print
servers are particularly well suited to this end. Thus
we compare bioRxiv to PubMed for five recent

virus outbreaks, some of which took place prior to
the founding of bioRxiv.

Each virus outbreak was analyzed using a com-
posite of publication frequency of multiple related
phrases. For example, values for ‘sars-cov2’ and
‘covid-19’ are aggregated in the COVID-19 plot.
The five relevant outbreaks are listed below:

• Prior to bioRxiv establishment (before
November 2013, Figure 6, top): MERS and
SARS.

• After bioRxiv establishment (Figure 6, bot-
tom): Zika, Ebola, and COVID-19.
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The first group of outbreaks exhibits the ex-
pected behavior: bioRxiv activity is fairly min-
imal given that the growth of research on those
topics had begun to saturate by the time bioRxiv
was formed. But the second group exhibits a dif-
ferent behavior. For Ebola outbreak, which took
place in 2015, the activity in bioRxiv is fairly low
compared to PMC. For Zika (2017) and Covid-19
(2019) bioRxiv has an early activity spike.

Through this analysis we can see that bioRxiv
has become increasingly important in emergency
situations during recent years.

6 Future Directions

Our work serves as a first attempt for discovering
research impact of publication venues using full
text analysis. One notable assumption we make is
that all phrase mentions are treated equally. In the
future, we may want to distinguish how a phrase is
being used. For example, if the phrase of interest
is z, then a research paper may write about works
extending z, but alternatively it may simply dis-
cuss techniques similar to z. Similar analysis has
provided useful for citations (Jurgens et al., 2018).

Furthermore, our approach leverages TextRank
to find many relevant phrases, but we do not clus-
ter phrases, so two or more phrases with similar
meaning will be treated separately (i.e. FACS and
Fluorescence Activated Cell Sorting). A simple
alias table or string similarity extension (Tam et al.,
2019) would be a clear improvement. Leveraging
high precision concept extraction systems (King
et al., 2020) might improve clustering even more.

Another approach would be to use a better proxy
for ideas than textual phrase, like concepts or topics
extracted from the corpus.

7 Conclusions

We introduce a Bayesian model for novelty detec-
tion (BAND), and use this model to investigate
how quickly new ideas form on pre-print servers
compared to peer-reviewed journals. Our findings
indicate that novel phrases, which we use as a proxy
for new ideas, in most cases appear on pre-print
servers and in peer reviewed journals. In some
cases, novel phrases appear on pre-print servers
first. In many cases the content of preprints is a pre-
dictor of the content of peer reviewed journals. As
the preprint servers mature, this feature becomes
more prominent. When a fast review time is in
high demand (such as during epidemic outbreaks),

pre-print servers have a high utility, and the related
novel phrases appear on pre-print servers first.
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A Appendices

A.1 Summary of phrases found in data
sources

In our experiments and analysis we primarily con-
sider two data sources: bioRxiv (representative of
pre-print servers) and PubMed (representative of
peer-reviewed journals). We extract phrases using
TextRank as described in Section 4.2. In this sec-
tion of the appendix, we summarize the phrases
considered in the experiments.

A.1.1 Phrases from TextRank
TextRank extracted 1,587,408 phrases from
bioRxiv abstracts. We further filter this list to
239,608 by only including phrases that were de-
tected by TextRank more than once. This does not
necessarily mean that the phrases that were filtered
only occur in the bioRxiv abstracts a single time
but that TextRank only found it to be a key phrase
once. The distribution of phrase lengths is shown in
Figure 7. A sample of phrases is listed in Table 3.
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Figure 7: Frequency of various phrase lengths that were
extracted from our corpus using TextRank.

A.1.2 Phrases from Experts
To validate the effectiveness of BAND, we use a
small set of curated phrases provided by experts at
CZI. Those results are discussed in detail in Sec-
tion 5.2. The complete list of phrases is shown in
Table 1.

A.2 Common phrases used in bio-medicine

In conducting the correlation study, explained in
Section 5.3, we used a set of phrases that can be
considered to be commonly used in biomedical
literature. The complete list can be found in the
Table 2.

A.2.1 Phrases for Crises
Pre-print servers are especially useful during crises
such as pandemics. We chose 5 recent virus out-
breaks to study their response which is discussed
in Section 5.4: SARS, MERS, Ebola, Zika, and
Covid-19. We made one compound time series
curve for each virus’s frequency based occurrence
in PubMed and bioRxiv. Table 4 shows two lists.
The phrases are obtained using all ordered com-
binations of entries from column 2 and column 3.
For example we can combine “SARS-Cov” and
“epidemic” to form “SARS-Cov epidemic”. Each
epidemic is associated with a set of phrases to form
one compound set of phrases.
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10X Genomics
chromosome conformation
CRISPR
CyTOF
electrospray ionization
Mass Spectroscopy
Proximity Extension Assay
Whole Genome Amplification
gene editing
laser capture microdissection
LINNAEUS

ELISA
enzyme linked immunosorbent assay
Exome
FACS
Fluorescence Activated Cell Sorting
Matrix-assisted laser desorption ionization
scATAC-seq
MALDI
Mass cytometry
Microfluidics
Translating Ribosome Affinity Purification

Table 1: The list of phrases used in Section 5.2. These phrases were provided by experts at CZI.

antibiotic
medicine
physical therapy
chemotherapy
kidney dialysis
organ transplant
X-Ray
MRI
general practitioner
scar tissue

compound fracture
anti-inflammatory
trauma care
medical history
intensive care unit
nervous system
digestive system
digestive tract
urinary tract
heart disease

Table 2: The list of common phrases used in our correlation analysis in Section 5.3. These phrases are phrases that
can be considered common in medical literature

brain age estimation
te loads
cell cycle stages
cancer stem cell plasticity
marker selection methods
serum uric acid
drug structural information
hand performance
repetition effects
vigorous physical activity
cell isolation
x-chromosome dosage compensation
terminal cell differentiation
trophic niche breadth
npy neurons

e2 ubiquitin conjugating enzymes
acoustic droplet ejection
trauma care
age prediction models
co-functioning genes
structural mri images
anti-sense transcripts
recursive splicing
partial gene trees
published phylogenetic trees
iron distribution
dna mixtures
place cell responses
fossil age uncertainty
context reinstatement

Table 3: The list of top ranked phrases from TextRank used in our correlation analysis Section 5.3.
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Outbreak Phrase component

SARS
SARS
SARS-cov
Severe Acute Respiratory Syndrome

MERS
MERS
MERS-Cov
Middle Eastern Respiratory Syndrome

Ebola
Ebola
Ebov
Ebolavirus

Zika
Zika
ZIKV
Zika Virus

COVID-19

COVID2019
2019-nCov
novel coronavirus
coronavirus
COVID-19
nCov

(a) First component

Phrase component

epidemic
forecasting
model
modeling
spreading
outbreak

(b) Second component

Table 4: A reference table for constructing phrases used in 5.4. For each virus outbreak, the list of phrases consists
of all combinations of the first component concatenated with the second component. For instance, ‘SARS epidemic’
or ‘COVID-19 forecasting’.


