AraBERT: Transformer-based Model for Arabic Language Understanding

Wissam Antoun, Fady Baly, Hazem Hajj


Abstract
The Arabic language is a morphologically rich language with relatively few resources and a less explored syntax compared to English. Given these limitations, Arabic Natural Language Processing (NLP) tasks like Sentiment Analysis (SA), Named Entity Recognition (NER), and Question Answering (QA), have proven to be very challenging to tackle. Recently, with the surge of transformers based models, language-specific BERT based models have proven to be very efficient at language understanding, provided they are pre-trained on a very large corpus. Such models were able to set new standards and achieve state-of-the-art results for most NLP tasks. In this paper, we pre-trained BERT specifically for the Arabic language in the pursuit of achieving the same success that BERT did for the English language. The performance of AraBERT is compared to multilingual BERT from Google and other state-of-the-art approaches. The results showed that the newly developed AraBERT achieved state-of-the-art performance on most tested Arabic NLP tasks. The pretrained araBERT models are publicly available on https://github.com/aub-mind/araBERT hoping to encourage research and applications for Arabic NLP.
Anthology ID:
2020.osact-1.2
Volume:
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection
Month:
May
Year:
2020
Address:
Marseille, France
Venue:
OSACT
SIG:
Publisher:
European Language Resource Association
Note:
Pages:
9–15
Language:
English
URL:
https://aclanthology.org/2020.osact-1.2
DOI:
Bibkey:
Cite (ACL):
Wissam Antoun, Fady Baly, and Hazem Hajj. 2020. AraBERT: Transformer-based Model for Arabic Language Understanding. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection, pages 9–15, Marseille, France. European Language Resource Association.
Cite (Informal):
AraBERT: Transformer-based Model for Arabic Language Understanding (Antoun et al., OSACT 2020)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-script-update/2020.osact-1.2.pdf
Code
 aub-mind/araBERT +  additional community code
Data
ARCDASTDArSentD-LEVHARDLABRSQuAD