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Abstract
In the majority of the existing Visual Question
Answering (VQA) research, the answers con-
sist of short, often single words, as per instruc-
tions given to the annotators during dataset
construction. This study envisions a VQA task
for natural situations, where the answers are
more likely to be sentences rather than single
words. To bridge the gap between this natural
VQA and existing VQA approaches, a novel
unsupervised keyword extraction method is
proposed. The method is based on the prin-
ciple that the full-sentence answers can be
decomposed into two parts: one that con-
tains new information answering the question
(i.e., keywords), and one that contains infor-
mation already included in the question. Dis-
criminative decoders were designed to achieve
such decomposition, and the method was ex-
perimentally implemented on VQA datasets
containing full-sentence answers. The results
show that the proposed model can accurately
extract the keywords without being given ex-
plicit annotations describing them.

1 Introduction

Visual recognition is one of the most actively
researched fields; this research is expected to
be applied to real-world systems such as robots.
Since innumerable object classes exist in the real
world, training all of them in advance is impos-
sible. Thus, to train image recognition mod-
els, it is important for real-world intelligent sys-
tems to actively acquire information. One promis-
ing approach to acquire information on the fly
is learning by asking, i.e., generating questions
to humans about unknown objects, and conse-
quently learning new knowledge from the human
response (Misra et al., 2018; Uehara et al., 2018;
Shen et al., 2019). This implies that if we can
build a Visual Question Answering (VQA) sys-
tem (Antol et al., 2015) that functions in the real
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Figure 1: Example of the proposed task – keyword
extraction from full-sentence VQA. Given an image,
the question, and the full-sentence answer, the key-
word extraction model extracts a keyword from the
full-sentence answer. In this example, the word “can-
dles” is the most important part, answering the ques-
tion “What is in front of the animal that looks white?”.
Therefore, “candles” is considered as the keyword of
the answer.

world and extracts knowledge from human re-
sponses, we can realize an intelligent system that
can learn autonomously.

VQA is a well-known vision and language task
which aims to develop a system that can answer
a question about an image. One typical dataset
used in VQA is the VQA v2 dataset (Goyal et al.,
2017). The answers in the VQA v2 dataset are
essentially single words. This is because the an-
notators are instructed to keep the answer as short
as possible when constructing the dataset.

The ultimate goal of the present work is to
gain knowledge through VQA that can be eas-
ily transferred to other tasks, such as object class
recognition and object detection. Therefore, the
knowledge (VQA answers) should be represented
by a single word, such as a class label. How-
ever, in real-world dialog, answers are rarely ex-
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pressed by single words; rather, they are often ex-
pressed as complete sentences. In fact, in VisDial
v1.0 (Das et al., 2017), a dataset of natural con-
versations about images that does not have a word
limit for answers, the average length of answers is
6.5 words. This is significantly longer than the av-
erage length of the answers in the VQA v2 dataset
(1.2 words).

To bridge the gap between existing VQA re-
search and real-world VQA, a challenging prob-
lem must be solved: identifying the word in the
sentence that corresponds to the answer to the
question. It must also be considered that full-
sentence answers provided by humans are likely
to follow a variety of sentence structures. Thus,
the traditional approaches, such as rule-based ap-
proaches based on Part-of-Speech tagging or shal-
low parsing, require a great deal of work on defin-
ing rules in order to extract the keywords. Our
key challenge is to propose a novel keyword ex-
traction method that leverages information from
images and questions as clues, without the heavy
work of annotating keywords or defining the rules.

This work handles the task of extracting a key-
word when a full-sentence answer is obtained
from VQA (Full-sentence VQA). The simplest
approach to this task is to construct a dataset
containing full-sentence answers and keyword an-
notations, and then train a model based on this
dataset in a supervised manner. However, the cost
of constructing a VQA dataset with full-sentence
answers and keyword annotations is very high. If
a keyword extraction model can be trained on a
dataset without keyword annotations, we can elim-
inate the high cost of collecting keyword annota-
tions.

We propose an unsupervised keyword extrac-
tion model using a full-sentence VQA dataset
which contains no keyword annotations. Here, the
principle is based on the intuition that the keyword
is the most informative word in the full-sentence
answer, and contains the information that is not
included in the question (i.e., the concise answer).
Essentially, the full-sentence answer can be de-
composed into two types of words: (1) the key-
word information that is not included in the ques-
tion, and (2) the information that is already in-
cluded in the question. For example, in the an-
swer “The egg shaped ghost candles are in front
of the bear.” to the question “What is in front of
the animal that looks white?”, the word “candles”

is the keyword, while the remaining part “The egg
shaped ghost something is in front of the bear” is
either information already included in the question
or additional information about the keyword. In
this case, words like “egg,” “ghost,” and “bear” are
also not in the question, making it difficult to find
the keyword via naive methods, e.g., rule-based
keyword extraction. Our proposed model utilizes
image features and question features to calculate
the importance score for each word in the full-
sentence answer. Therefore, based on the contents
of the image and the question, the model can ac-
curately estimate which words in the full-sentence
answer are important. To the best of our knowl-
edge, this is the first attempt at extracting a key-
word from full-sentence VQA in an unsupervised
manner. The main contributions of this work are as
follows: (1) We propose a novel task of extracting
keywords from full-sentence VQA with no key-
word annotations. (2) We designed a novel, unsu-
pervised keyword extraction model by decompos-
ing the full-sentence answer. (3) We conducted
experiments on two VQA datasets, and provided
both qualitative and quantitative results that show
the effectiveness of our model.

2 Related Work

2.1 Unsupervised Keyword Extraction for
Text

Unsupervised keyword extraction methods can
be broadly classified into two categories: graph-
based methods and statistical methods.

Graph-based methods construct graphs from
target documents by using co-occurrence
between words (Mihalcea and Tarau, 2004;
Wan and Xiao). These methods are only appli-
cable to documents with a certain length, as they
require the words in the document to co-occur
multiple times. The target document in this work
is a full-sentence answer of VQA, whose average
length is about 10 words. Therefore, graph-based
methods are not suitable here.

Statistical methods rely on statistics obtained
from a document. The most basic statistical
method is TF-IDF (Ramos, 2003), which calcu-
lates the term frequency and inverse document
frequency and scores each word in the target
document. Recent work such as EmbedRank
(Bennani-Smires et al., 2018) have utilized word
embeddings for the unsupervised keyword extrac-
tion. EmbedRank calculates the cosine similarity
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Figure 2: Illustration of the key concept. In this example, the word “candles” is the keyword for the full-sentence
answer, “The egg shaped ghost candles are in front of the bear.” We consider the keyword extraction task as the
decomposition of the full-sentence answer into answer information and question information. Therefore, if the
keyword (i.e., the most informative word in the full-sentence answer) can be accurately extracted, the original full-
sentence answer can be reconstructed from it. Additionally, the question can be reconstructed from the decomposed
question information in the full-sentence answer.

between the candidate word (or phrase) embed-
dings and the sentence embeddings to retrieve the
most representative word of the text.

2.2 Visual Question Answering

VQA is a well-known task that involves learn-
ing from image-related questions and an-
swers. The most popular VQA dataset is VQA
v2 (Goyal et al., 2017), and much research has
used this dataset for performance evaluations.
In VQA v2, the average number of words in an
answer is only 1.2, and the variety of answers is
relatively limited.

As stated in Section 1, in natural question an-
swering by humans, the answers will be expressed
as a sentence rather than a single word. Some
datasets that have both full-sentence answers and
keyword annotations exist.

FSVQA (Shin et al., 2016) is a VQA dataset
with answers in the form of full sentences. In
it, full-sentence answers are automatically gen-
erated by applying the numerous rule-based nat-
ural language processing patterns to the ques-
tions and single-word answers in the VQA v1
dataset (Antol et al., 2015).

The recently proposed dataset, named
GQA (Hudson and Manning, 2019), also con-
tains automatically generated full-sentence
answers. This dataset is constructed on the Visual
Genome (Krishna et al., 2017), which has rich
and complex annotations about images, including
dense captions, questions, and scene graphs. The
questions and answers (both single-word and
full-sentence) in the GQA dataset are created
from scene graph annotations of the images.

The full-sentence answers in both datasets de-
scribed above are annotated automatically, i.e.,

not by humans. Therefore, neither dataset has
both full-sentence answers and manually anno-
tated keywords.

2.3 Attention
The attention mechanism is a technique originally
proposed in machine translation (Bahdanau et al.,
2015), aimed at focusing on the most important
part of the input sequences for a task. Since
the method proposed herein utilizes an attention
mechanism to calculate the importance score of
the word in the full-sentence answer, some prior
works on attention mechanisms are discussed.

In general, an attention mechanism essentially
learns the mapping between a query and key-value
pairs. Transformer (Vaswani et al., 2017) is one
of the most popular attention mechanisms for ma-
chine translation. It enables machine translation
without using recurrent neural networks, using a
self-attention mechanism and feed-forward net-
works instead.

Another study uses an attention mechanism for
weakly supervised keyword extraction (Wu et al.,
2018). They first trained a model for document
classification and extracted the word to which the
model pays “attention” to perform the classifi-
cation. This system requires additional annota-
tions of document class labels to train the model,
whereas we aim to extract keywords without any
additional annotations.

3 Model

This section describes the proposed method in de-
tail.

First, the principal concept of the model is
shown in Figure 2. To extract the keyword, we in-
tend to obtain two features from the full-sentence
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answer, each representing the keyword informa-
tion and the information derived from the ques-
tion, respectively. To ensure that these two fea-
tures discriminatively include keyword informa-
tion and question information, we intend to re-
construct the original questions and answers from
the question features and keyword features, re-
spectively. Thus, if we successfully extract the
keyword and the question information from the
full-sentence answer, we can reconstruct original
full-sentence answer and the question. Essentially,
given an image, its corresponding question, and
full-sentence answer, our proposed model extracts
the keyword of the answer by decomposing the
keyword information and the question information
in the answer.

3.1 Overview
An overview of the model is shown in Figure 3.
To realize decomposition-based keyword extrac-
tion, we designed a model which consists of the
encoder E, the attention scoring modules Sa and
Sq, and the decoder modules Dall, Da, and Dq.

An image I and the corresponding
question Q and full-sentence answer
A = {w(a)

1 , w(a)
2 , . . . , w(a)

n } are consid-
ered as the model input. Here, w(a)

i represents the
i-th word in the full-sentence answer.

Given I and Q, E extracts image and question
features and integrates them into joint features fj ,
i.e., E(I,Q) = fj .

Next, Sa and Sq use fj and A as input and
output the weight vectors ak and aq. Here,
ak = {a(k)1 , a(k)2 , . . . , a(k)n } and aq =

{a(q)1 , a(q)2 , . . . , a(q)n } for each word in A. We
denote ai ∈ (0, 1) as the weight score of the i-th
word in A.

Then, we consider the keyword vector fk as the
embedding vector of the word with the highest
weight score in ak. Meanwhile, the question in-
formation vector fq is considered as the weighted
sum of the embedding vectors of A corresponding
to the weight score aq.

Following this, Dall uses LSTM to reconstruct
the original full-sentence answer using fq and fk.
fq and fk are intended to represent the question
information and the keyword vector of the full-
sentence answer, respectively. However, Dall only
ensures that both features have the information of
the full-sentence answer. To separate them, we de-
signed the additional decoders, Da and Dq. The

former reconstructs the BoW features of the an-
swer using fk, while the latter reconstructs those
of the question using fq with auxiliary vectors.
The objective of this operation is to make fk and
fq representative features for the full-sentence an-
swer and the question, respectively.

The entire model is trained to minimize the dis-
parity between the reconstructed sentences Arecon

and the original full-sentence answers, as well as
that between the BoW features of the full-sentence
answers and the questions.

3.2 Encoder

The module E encodes the image I and the ques-
tion Q and obtains the image feature fI , the ques-
tion feature fQ, and the joint feature fj . To gen-
erate fI , we use the image feature extracted from
a deep CNN, which is pre-trained on a large-scale
image recognition dataset. For fQ, each word to-
ken was converted into a word embeddings and av-
eraged. Following this, l2 normalization was per-
formed on both features. Finally, those features
were concatenated to the joint feature fj ∈ Rdj ,
i.e., E(I, Q) = fj = [fI ; fQ], where dj is the di-
mension of the joint feature and [; ] indicates con-
catenation. Note that we did not update the model
parameters of E during training.

3.3 Attention Scoring Module

This module takes fj as input and weights each
words in the full-sentence answer. We used two of
these modules, Sa and Sq. Sa and Sq compute the
weights based on the importance of a word for the
full-sentence answer and that for the question, re-
spectively. Sa and Sq have a nearly identical struc-
ture. Therefore, the details of Sa are presented
first, following which the difference between Sa

and Sq is described.
The weight scoring in these modules is based

on the attention mechanism used in Trans-
former (Vaswani et al., 2017). First, each
word in the full-sentence answer was encoded,
and the full-sentence answer vector fA =

{w(a)
1 , w(a)

2 , . . . , w(a)
n } ∈ Rde×n was created.

Here, w(a)
i denotes the embedding vector of the

i-th word, n is the length of the full-sentence an-
swer, and de is the dimension of the word embed-
ding vector. To represent the word order, posi-
tional encoding was applied to fA. Specifically,
before feeding fA into scoring modules, we add
positional embedding vectors to fA, similar to



55

Image

What is in front of the 
animal that looks white?
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candles are in front of 
the bear.

Answer
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Average GloVe

BoW Question

Full-sentence 
Answer

BoW Answer

Encoder

Attention 
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Figure 3: Overall pipeline of the model. First, the Encoder Module extracts the image features fI and the question
features fQ and integrates them into a joint feature fj . Then, the Attention Scoring Modules Sa and Sq compute
the attention weight and calculate the weighted sum of the word-embedding vectors of the full-sentence answer.
The output of Sa i.e., fk, is the keyword-aware feature of the full-sentence answer, and the output of Sq i.e., fq ,
is the question-aware feature. Dall reconstructs the full-sentence answer from both fk and fq . Da estimates the
Bag-of-Words(BoW) feature of the full-sentence answer from fk and fQ. Additionally, Dq estimates the BoW
feature of the question from fq and fI .

those introduced in BERT (Devlin et al., 2019).
We describe our attention mechanism as a map-

ping between Query and Key-Value pairs. First,
we calculate Query vector Q ∈ Rh, Key vector
K ∈ Rh×n, and Value vector V ∈ Rh×n.

Q = FFNq(fj) (1)
K = FFNk(fA) (2)

V = FFNv(fA) = {v(a)
1 , v(a)

2 , . . . , v(a)
n } (3)

where FFNq, FFNk, FFNv are single-layer feed-
forward neural networks. Then, the attention
weight vector ak = {a(k)1 , a(k)2 , . . . , a(k)n } ∈ Rn,
where a(k)i is the weighted score of the i-th word,
is computed as the product of Q and K, as shown
below.

ak = KTQ (4)

Then, the word with the highest weighted score
is chosen as the keyword of the full-sentence an-
swer:

i(k) = argmax
i

(a(k)i ) (5)

fk = v(a)
i(k)

(6)

However, the argmax operation is non-
differentiable. Therefore, we use an approx-
imation of this operation by softmax with
temperature.

fk = V softmax(
ak

τ
) (7)

where τ is a temperature parameter, and as τ ap-
proaches 0, the output of the softmax function be-
comes a one-hot distribution.
Sq has the same structure as Sa up to the point

of computing the attention weight vector aq. For
the keyword vector, we have the intention to focus
on the specific word in the full-sentence answer.
Therefore, we use the softmax with temperature.
However, for the question vector, there is no need
to focus on one word. Therefore, the question vec-
tor is calculated as the weighted sum of the atten-
tion score:

fq = V softmax(aq) (8)

Then, we applied single-layer feed-forward
neural network, followed by layer normaliza-
tion (Ba et al., 2016) to the output of this module
fk,fq.

3.4 Decoder

Entire Decoder In the entire decoder Dall, the
full-sentence is reconstructed from the output of
the attention scoring modules fk and fq, i.e.,
Arecon = Dall(fk,fq), where Arecon denotes
the reconstructed full-sentence answer. We use an
LSTM as the sentence generator. As the input to
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the LSTM at each step (xt), fk and fq are concate-
nated to the output of the previous step as follows:

x0 = Wx0 [fk; fq] (9)
xt = Wx [fk; fq; ŝt−1] (10)

where ŝt−1 is the output of the LSTM at the t− 1
step, and Wx0 and Wx are the learned parameters.

The objective of Dall is defined by the cross-
entropy loss:

Lall = −
n∑

t=1

log(p(ŝt = s(ans)t | s(ans)1:t−1)) (11)

where s(ans) is the ground-truth full-sentence an-
swer.

Further, word dropout (Bowman et al., 2016),
a method of masking input words with a specific
probability, is applied. This forces the decoder to
generate sentences based on the fk and fq rather
than relying on the previous word.

Discriminative Decoders Dall attempts to re-
construct the full-sentence answer from fk and fq.
Thus, Dall allows the feature vectors to contain
the answer information. However, the keyword
and question information are intended to be repre-
sented by fk and fq, respectively. Therefore, we
designed the discriminative decoders, Da and Dq,
to generate fk and fq, respectively, thus capturing
the desired information separately.
Da and Dq reconstruct the full-sentence answer

and the question, respectively. This reconstruction
is performed with the target of the BoW features of
the sentence, rather than the sentence itself. This
is because we intend to focus on the content of the
sentence and not its sequential information. Sen-
tence reconstruction was also considered as an al-
ternative, but this is difficult to train using LSTM.
The BoW feature b ∈ Rns is represented as a vec-
tor whose i-th elements is Ni/Ls, where ns is the
vocabulary size, Ni is the number of occurrences
of the i-th word, and Ls is the number of the words
in the sentence.

The input to these discriminative decoders con-
sists not only of feature vectors, but also auxiliary
vectors, the additional features that assist in recon-
struction. Specifically, the auxiliary vector for Da

is the average of the word embedding vectors in
the question, fQ, and, for Dq, the auxiliary vector
is the image feature fI .

We build the decoder as the following fully-
connected layers:

ya = WA[fk; fQ] +BA (12)
yq = WQ[fq; fI ] +BQ (13)

The loss function for the discriminative decoder
is the cross-entropy loss between the ground-truth
BoW features and the predicted BoW features:

La = −
na∑

i=1

ba[i] log(softmax(ya[i])) (14)

Lq = −
nq∑

i=1

bq[i] log(softmax(yq[i])) (15)

where b denotes the ground-truth of the BoW fea-
tures, and na and nq are the vocabulary sizes of
the answer and the question, respectively.

3.5 Full Objectives
Finally, the overall objective function for the pro-
posed model is written as

L = λallLall + λaLa + λqLq, (16)

where λall, λa, and λq are hyper-parameters that
balance each loss function.

3.6 Implementation Details
In the encoder E, image features of size
2048 × 14 × 14 were extracted from the pool-
5 layer of the ResNet152 (He et al., 2016).
These were pre-trained on ImageNet, and
global pooling was applied to obtain 2048-
dimensional features. To encode the question
words, we used 300-dimensional GloVe embed-
dings (Pennington et al., 2014). These were pre-
trained on the Wikipedia / Gigaword corpus1.

To convert each word in the full-sentence an-
swer into fA, the embedding matrix in the atten-
tion scoring module was initialized with the pre-
trained GloVe embeddings. The temperature pa-
rameter τ is gradually annealed using the schedule
τi = max(τ0 e−ri, τmin), where i is the overall
training iteration, and other parameters are set as
τ0 = 0.5, r = 3.0×10−5, τmin = 0.1. The LSTM
in the Dall has a hidden state of 1024 dimensions.
The word dropout rate was set to 0.25.

We used the Adam (Kingma and Ba, 2015) op-
timizer to train the model, which has an initial
learning rate of 1.0× 10−3.

1http://nlp.stanford.edu/projects/glove/
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Dataset Size Answer length

GQA train 943,000 6.69
val 132,062 6.70

FSVQA train 139,038 6.11
val 68,265 6.07

VQA v2 train 443,757 1.16
val 214,354 1.16

Table 1: Basic statistics of the dataset we used. Note
that these FSVQA dataset values were taken after pre-
processing. Although VQA v2 was not used in this
work, it is included in this table for reference.

4 Experimental Setup

4.1 Dataset
We conducted experiments on two datasets: GQA
and FSVQA. In Table 1, we present the basic
statistics of both datasets.
GQA GQA (Hudson and Manning, 2019) con-
tains 22M questions and answers. The questions
and answers are automatically generated from im-
age scene graphs, and the answers include both
the single-word answers and the full-sentence an-
swers. The questions and answers in GQA have
unbalanced answer distributions. Therefore, we
used a balanced version of this dataset, which is
down-sampled from the original dataset and con-
tains 1.7M questions. As pre-processing, we re-
moved the periods, commas, and question marks.
FSVQA FSVQA (Shin et al., 2016) contains
370K questions and full-sentence answers. This
dataset was built by applying rule-based process-
ing to the VQA v1 dataset (Antol et al., 2015),
and captions in the MSCOCO dataset (Lin et al.,
2014), to obtain the full-sentence answers. There
are ten annotations (i.e., single-word answers) per
question in the VQA v1 dataset. Of these, the
annotations with the highest frequency is chosen
to create full-sentence answers. If all the fre-
quencies are equal, an annotation is chosen at
random. Since the authors do not provide the
mapping between single-word answers and full-
sentence answers, we considered the annotations
with the highest frequency as the single-word an-
swers matching the full-sentence answers. Ques-
tions for which the highest frequency annotation
cannot be determined were filtered out. Follow-
ing this process, we obtained 139,038 questions
for the training set, and 68,265 questions for the
validation set.

4.2 Settings

The model performance was determined based on
the keyword accuracy and the Mean Rank. Mean
Rank is the average rank of the correct keyword
when sorting each word in order of the importance
score. Mean Rank is formulated as:

Mean Rank =
1

N

∑

i

ranki. (17)

Here, ranki is the number representing the key-
word rank when the words in the i-th answer sen-
tence are arranged in order of the importance (TF-
IDF score or attention score, i.e., a(k)i in Eqn. 5),
and N is the size of the overall samples.

We ran experiments with the various exist-
ing unsupervised keyword extraction methods for
the comparison: (1) TF-IDF (Ramos, 2003),
(2) YAKE (Campos et al., 2020), and (3) Em-
bedRank (Bennani-Smires et al., 2018). Since
YAKE removes the words with less than three
characters as preprocessing, the Mean Rank can-
not be calculated under the same conditions as
other methods. Therefore, the Mean Rank of
YAKE is not shown. We also conducted an abla-
tion study to show the importance of Da and Dq.
In addition, we changed the reconstruction method
from BoW estimation to the original sentence gen-
eration using LSTM.

5 Experimental Results

The experimental results are shown in Table 2.
Also, we provide the accuracy per question types
in Appendix A for further analysis. The proposed
model, which used BoW estimation in Da and
Dq, achieves superior performance on almost all
metrics and datasets except for the Mean Rank of
FSVQA. As can be seen in the results of the ab-
lation study, this superior performance is achieved
even without Da and Dq, which demonstrates the
effectiveness of the proposed reconstruction-based
method. When using LSTM in Da and Dq, the
accuracy and mean rank worsens as compared to
those of the proposed model, which reconstructs
the BoW in those modules. This is considered to
be because sentence reconstruction with LSTM re-
quires management of the sequential information
of the sentence, which is more complex than BoW
estimation. Since we intended to focus on the con-
tents of the sentence, the BoW is more suitable for
these modules.
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GQA FSVQA
Model Accuracy (↑) Mean Rank (↓) Accuracy (↑) Mean Rank (↓)

TF-IDF 0.275 2.86 0.278 3.22
YAKE 0.269 – 0.107 –
EmbedRank 0.306 2.15 0.302 2.32
Ours 0.429 ± 0.03 2.04 ± 0.10 0.351 ± 0.04 2.38 ± 0.14
Ours w/o Dq 0.318 ± 0.02 2.44 ± 0.04 0.298 ± 0.03 2.67 ± 0.05
Ours w/o Da, Dq 0.350 ± 0.06 3.01 ± 0.49 0.347 ± 0.05 2.49 ± 0.21
Ours (LSTM Da, Dq) 0.329 ± 0.01 2.36 ± 0.04 0.347 ± 0.01 3.35 ± 0.11

Table 2: Keyword extraction performanc on GQA and FSVQA. Higher accuracies and lower Mean Ranks are
desirable. We conducted experiments three times using the proposed method. Note that comparison methods are
deterministic algorithms, experiments with them were conducted only once.
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Figure 4: Examples of the keyword extraction results in the GQA dataset (a, b) and the FSVQA dataset (c, d).

We provide some examples in Figure 4. The
examples on the left and right are from GQA and
FSVQA, respectively. Since the statistical meth-
ods such as TF-IDF tend to choose rarer words as
keywords, they are likely to fail if the keyword is
a common word (Figure 4 (a), (c)). On the other
hand, the model proposed herein can accurately
extract keywords even in such cases.

6 Conclusion

In this paper, we proposed the novel task of un-
supervised keyword extraction from full-sentence
VQA. A novel model was designed to handle this
task based on information decomposition of full-
sentence answers and the reconstruction of ques-
tions and answers. Both qualitative and quantita-
tive experiments show that our model successfully
extracts the keyword of the full-sentence answer
with no keyword supervision.

In future work, the extracted keywords will

be utilized in other tasks, such as VQA, object
classification, or object detection. This work
could also be combined with recent works on
VQG (Uehara et al., 2018; Shen et al., 2019). In
these works, the system generates questions to ac-
quire information from humans. However, they
assume that the answers are obtained as single
words, which will pose a problem when applying
it to the real-world question answering. By com-
bining these studies with our research, an intelli-
gent system can ask humans about unseen objects
and learn new knowledge from the answer, even if
the answer consists of more than a single word.
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