
ACL 2020

Neural Generation and Translation

Proceedings of the Fourth Workshop

July 5 - 10, 2020 Online (due to COVID-19 pandemic)

c©2020 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-952148-17-0

ii

Introduction

Welcome to the Fourth Workshop on Neural Generation and Translation. This workshop aims to cultivate
research on the leading edge in neural machine translation and other aspects of machine translation,
generation, and multilinguality that utilize neural models. We received a total of 28 submissions in total.
From the 21 long papers we accepted 16. There were two cross-submissions, three extended abstracts.
All research papers were reviewed twice through a double blind review process, and avoiding conflicts
of interest. The topics of the papers were split equally between the natural language generation and
machine translation themes. We would like to thank all authors for their submissions, and the program
committee members for their valuable efforts in reviewing the papers for the workshop.

iii

Organizers:

Alexandra Birch, (Edinburgh)
Andrew Finch, (Apple)
Hiroaki Hayashi (CMU)
Kenneth Heafield (Edinburgh)
Marcin Junczys-Dowmunt (Microsoft)
Ioannis Konstas (Heriot Watt University)
Xian Li (Facebook)
Graham Neubig, (CMU)
Yusuke Oda, (Google)

Program Committee:

Roee Aharoni Martin Andrews
Duygu Ataman Joost Bastings
Alexandre Berard Klinton Bicknell
Nikolay Bogoychev Chris Brockett
Chris Brust Daniel Cer
Boxing Chen David Chiang
Nathan Dalal Michael Denkowski
Li Dong Kevin Duh
Ondřej Dušek Marc Dymetman
Elozino Egonmwan Andrew Finch
Markus Freitag Claire Gardent
Kevin Gimpel Isao Goto
Roman Grundkiewicz Jiatao Gu
Felix Hieber Hieu Hoang
Sébastien Jean Mihir Kale
Yuta Kikuchi Philipp Koehn
Ioannis Konstas Shumpei Kubosawa
Sneha Kudugunta Lemao Liu
Hongyin Luo Benjamin Marie
Bill McDowell Hideya Mino
Will Monroe Makoto Morishita
Vivek Natarajan Yusuke Oda
Vinay Rao Andrew Runge
Chinnadhurai Sankar Jean Senellart
Rico Sennrich Alessandro Suglia
Simeng Sun Alexey Tikonov
Yulia Tsvetkov Ivan Vulić
Rui Wang Xiaolin Wang
Taro Watanabe Ruiyi Zhang
Biao Zhang

v

Invited Speakers:

He He
Jiatao Gu
Shashi Narayan
Claire Gardent

vi

Table of Contents

Findings of the Fourth Workshop on Neural Generation and Translation
Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, Ioannis Konstas, Andrew Finch, Graham Neubig,

Xian Li and Alexandra Birch . 1

Learning to Generate Multiple Style Transfer Outputs for an Input Sentence
Kevin Lin, Ming-Yu Liu, Ming-Ting Sun and Jan Kautz . 10

Balancing Cost and Benefit with Tied-Multi Transformers
Raj Dabre, Raphael Rubino and Atsushi Fujita . 24

Compressing Neural Machine Translation Models with 4-bit Precision
Alham Fikri Aji and Kenneth Heafield . 35

Meta-Learning for Few-Shot NMT Adaptation
Amr Sharaf, Hany Hassan and Hal Daumé III .43

Automatically Ranked Russian Paraphrase Corpus for Text Generation
Vadim Gudkov, Olga Mitrofanova and Elizaveta Filippskikh . 54

A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with Bilingual Semantic Similar-
ity Rewards

Zi-Yi Dou, Sachin Kumar and Yulia Tsvetkov . 60

A Question Type Driven and Copy Loss Enhanced Frameworkfor Answer-Agnostic Neural Question
Generation

Xiuyu Wu, Nan Jiang and Yunfang Wu . 69

A Generative Approach to Titling and Clustering Wikipedia Sections
Anjalie Field, Sascha Rothe, Simon Baumgartner, Cong Yu and Abe Ittycheriah 79

The Unreasonable Volatility of Neural Machine Translation Models
Marzieh Fadaee and Christof Monz . 88

Leveraging Sentence Similarity in Natural Language Generation: Improving Beam Search using Range
Voting

Sebastian Borgeaud and Guy Emerson . 97

Distill, Adapt, Distill: Training Small, In-Domain Models for Neural Machine Translation
Mitchell Gordon and Kevin Duh . 110

Training and Inference Methods for High-Coverage Neural Machine Translation
Michael Yang, Yixin Liu and Rahul Mayuranath . 119

Meeting the 2020 Duolingo Challenge on a Shoestring
Tadashi Nomoto . 129

English-to-Japanese Diverse Translation by Combining Forward and Backward Outputs
Masahiro Kaneko, Aizhan Imankulova, Tosho Hirasawa and Mamoru Komachi 134

POSTECH Submission on Duolingo Shared Task
Junsu Park, Hongseok Kwon and Jong-Hyeok Lee . 139

vii

The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Translation Task
Rejwanul Haque, Yasmin Moslem and Andy Way. .144

Expand and Filter: CUNI and LMU Systems for the WNGT 2020 Duolingo Shared Task
Jindřich Libovický, Zdeněk Kasner, Jindřich Helcl and Ondřej Dušek . 153

Exploring Model Consensus to Generate Translation Paraphrases
Zhenhao Li, Marina Fomicheva and Lucia Specia . 161

Growing Together: Modeling Human Language Learning With n-Best Multi-Checkpoint Machine Trans-
lation

El Moatez Billah Nagoudi, Muhammad Abdul-Mageed and Hasan Cavusoglu 169

Generating Diverse Translations via Weighted Fine-tuning and Hypotheses Filtering for the Duolingo
STAPLE Task

Sweta Agrawal and Marine Carpuat . 178

The JHU Submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase
for Language Education

Huda Khayrallah, Jacob Bremerman, Arya D. McCarthy, Kenton Murray, Winston Wu and Matt
Post . 188

Simultaneous paraphrasing and translation by fine-tuning Transformer models
Rakesh Chada . 198

The NiuTrans System for WNGT 2020 Efficiency Task
Chi Hu, Bei Li, Yinqiao Li, Ye Lin, Yanyang Li, Chenglong Wang, Tong Xiao and Jingbo Zhu 204

Efficient and High-Quality Neural Machine Translation with OpenNMT
Guillaume Klein, Dakun Zhang, Clément Chouteau, Josep Crego and Jean Senellart 211

Edinburgh’s Submissions to the 2020 Machine Translation Efficiency Task
Nikolay Bogoychev, Roman Grundkiewicz, Alham Fikri Aji, Maximiliana Behnke, Kenneth Heafield,

Sidharth Kashyap, Emmanouil-Ioannis Farsarakis and Mateusz Chudyk . 218

Improving Document-Level Neural Machine Translation with Domain Adaptation
Sami Ul Haq, Sadaf Abdul Rauf, Arslan Shoukat and Noor-e- Hira . 225

Simultaneous Translation and Paraphrase for Language Education
Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill McDowell, Will Monroe and Burr Settles232

viii

Workshop Program

Findings of the Fourth Workshop on Neural Generation and Translation
Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, Ioannis Konstas, Andrew Finch,
Graham Neubig, Xian Li and Alexandra Birch

Learning to Generate Multiple Style Transfer Outputs for an Input Sentence
Kevin Lin, Ming-Yu Liu, Ming-Ting Sun and Jan Kautz

Balancing Cost and Benefit with Tied-Multi Transformers
Raj Dabre, Raphael Rubino and Atsushi Fujita

Compressing Neural Machine Translation Models with 4-bit Precision
Alham Fikri Aji and Kenneth Heafield

Meta-Learning for Few-Shot NMT Adaptation
Amr Sharaf, Hany Hassan and Hal Daumé III

Automatically Ranked Russian Paraphrase Corpus for Text Generation
Vadim Gudkov, Olga Mitrofanova and Elizaveta Filippskikh

Increasing Lexical Diversity in Plug and Play Language Models
Soham Parikh, Daphne Ippolito and Satyarth Vaidya

A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with Bilin-
gual Semantic Similarity Rewards
Zi-Yi Dou, Sachin Kumar and Yulia Tsvetkov

A Question Type Driven and Copy Loss Enhanced Frameworkfor Answer-Agnostic
Neural Question Generation
Xiuyu Wu, Nan Jiang and Yunfang Wu

When and Why is Unsupervised Neural Machine Translation Useless?
Yunsu Kim, Miguel Graça and Hermann Ney

A Generative Approach to Titling and Clustering Wikipedia Sections
Anjalie Field, Sascha Rothe, Simon Baumgartner, Cong Yu and Abe Ittycheriah

The Unreasonable Volatility of Neural Machine Translation Models
Marzieh Fadaee and Christof Monz

ix

No Day Set (continued)

Leveraging Sentence Similarity in Natural Language Generation: Improving Beam
Search using Range Voting
Sebastian Borgeaud and Guy Emerson

Transformers without Tears: Improving the Normalization of Self-Attention
Toan Q. Nguyen and Julian Salazar

Masked Language Model Scoring
Julian Salazar, Davis Liang, Toan Q. Nguyen and Katrin Kirchhoff

Distill, Adapt, Distill: Training Small, In-Domain Models for Neural Machine
Translation
Mitchell Gordon and Kevin Duh

Improving Neural Machine Translation Using Energy-Based Models
Subhajit Naskar, Amirmohammad Rooshenas and Andrew McCallum

Training and Inference Methods for High-Coverage Neural Machine Translation
Michael Yang, Yixin Liu and Rahul Mayuranath

Meeting the 2020 Duolingo Challenge on a Shoestring
Tadashi Nomoto

English-to-Japanese Diverse Translation by Combining Forward and Backward
Outputs
Masahiro Kaneko, Aizhan Imankulova, Tosho Hirasawa and Mamoru Komachi

POSTECH Submission on Duolingo Shared Task
Junsu Park, Hongseok Kwon and Jong-Hyeok Lee

The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Trans-
lation Task
Rejwanul Haque, Yasmin Moslem and Andy Way

Expand and Filter: CUNI and LMU Systems for the WNGT 2020 Duolingo Shared
Task
Jindřich Libovický, Zdeněk Kasner, Jindřich Helcl and Ondřej Dušek

Exploring Model Consensus to Generate Translation Paraphrases
Zhenhao Li, Marina Fomicheva and Lucia Specia

x

No Day Set (continued)

Growing Together: Modeling Human Language Learning With n-Best Multi-
Checkpoint Machine Translation
El Moatez Billah Nagoudi, Muhammad Abdul-Mageed and Hasan Cavusoglu

Generating Diverse Translations via Weighted Fine-tuning and Hypotheses Filter-
ing for the Duolingo STAPLE Task
Sweta Agrawal and Marine Carpuat

The JHU Submission to the 2020 Duolingo Shared Task on Simultaneous Transla-
tion and Paraphrase for Language Education
Huda Khayrallah, Jacob Bremerman, Arya D. McCarthy, Kenton Murray, Winston
Wu and Matt Post

Simultaneous paraphrasing and translation by fine-tuning Transformer models
Rakesh Chada

The NiuTrans System for WNGT 2020 Efficiency Task
Chi Hu, Bei Li, Yinqiao Li, Ye Lin, Yanyang Li, Chenglong Wang, Tong Xiao and
Jingbo Zhu

Efficient and High-Quality Neural Machine Translation with OpenNMT
Guillaume Klein, Dakun Zhang, Clément Chouteau, Josep Crego and Jean Senellart

Edinburgh’s Submissions to the 2020 Machine Translation Efficiency Task
Nikolay Bogoychev, Roman Grundkiewicz, Alham Fikri Aji, Maximiliana Behnke,
Kenneth Heafield, Sidharth Kashyap, Emmanouil-Ioannis Farsarakis and Mateusz
Chudyk

Improving Document-Level Neural Machine Translation with Domain Adaptation
Sami Ul Haq, Sadaf Abdul Rauf, Arslan Shoukat and Noor-e- Hira

Simultaneous Translation and Paraphrase for Language Education
Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill McDowell, Will Monroe and
Burr Settles

xi

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 1–9
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Findings of the Fourth Workshop on Neural Generation and Translation

Kenneth Heafield♠, Hiroaki Hayashi♦, Yusuke Oda♣, Ioannis Konstas4,
Andrew Finch♥, Graham Neubig♦, Xian Li?, Alexandra Birch♠

♦Carnegie Mellon University, ♣Google Research, ♠University of Edinburgh
4Heriot-Watt University, ♥Apple, ?Facebook

Abstract

We describe the finding of the Fourth Work-
shop on Neural Generation and Translation,
held in concert with the annual conference of
the Association for Computational Linguistics
(ACL 2020). First, we summarize the research
trends of papers presented in the proceedings.
Second, we describe the results of the three
shared tasks 1) efficient neural machine trans-
lation (NMT) where participants were tasked
with creating NMT systems that are both accu-
rate and efficient, and 2) document-level gener-
ation and translation (DGT) where participants
were tasked with developing systems that gen-
erate summaries from structured data, poten-
tially with assistance from text in another lan-
guage and 3) STAPLE task: creation of as
many possible translations of a given input
text. This last shared task was organised by
Duolingo.

1 Introduction

Neural sequence to sequence models (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015) are the workhorse behind a
wide variety of different natural language process-
ing tasks such as machine translation, generation,
summarization and simplification. The 4th Work-
shop on Neural Machine Translation and Genera-
tion (WNGT 2020) provided a forum for research
in applications of neural models to machine transla-
tion and other language generation tasks (including
summarization, NLG from structured data, dialog
response generation, among others). Overall, the
workshop was held with two goals. First, it aimed
to synthesize the current state of knowledge in neu-
ral machine translation and generation: this year
we continued to encourage submissions that not
only advance the state of the art through algorith-
mic advances, but also analyze and understand the
current state of the art, pointing to future research

directions. Towards this goal, we received a num-
ber of high-quality research contributions on the
workshop topics, as summarized in Section 2. Sec-
ond, the workshop aimed to expand the research
horizons in NMT: we continued to organize the
Efficient NMT task which encouraged participants
to develop not only accurate but computationally
efficient systems. This task had three participants
each with a number of individual systems. We orga-
nized the second shared task on “Document-level
Generation and Translation”, which aims to push
forward document-level generation technology and
contrast the methods for different types of inputs.
Unfortunately this task only had one participant. Fi-
nally, we introduced a new shared task, organised
by Duolingo, which encouraged models to produce
as many correct translations as possible for a given
input. This task generated a lot of interest and there
were 11 participants. The results of the shared task
are summarized in Sections 3, 4 and 5.

2 Summary of Research Contributions

Similar to last year we invited the MT and NLG
community to contribute to the workshop with long
papers, extended abstracts for preliminary work,
and cross-submissions of papers that have appeared
in other venues. Keeping up with with the main vi-
sion of the workshop, we were aiming for a variety
of works at the intersection of Machine Translation
and Language Generation tasks.

We received a total of 28 submissions, from
which we accepted 16. There were 2 cross-
submissions, 3 extended abstracts and 11 full pa-
pers. There were also 15 system submission papers.
We elicted two double-blind reviews for each sub-
mission, avoiding conflicts of interest.

With regards to thematology there were 8 pa-
pers with a focus on Natural Language Generation
and 8 with the application of Machine Translation

1

https://www.aclweb.org/anthology/D19-56%2d

in mind. The underlying emphasis across submis-
sions was placed this year on capitalizing on the use
of pre-training models (e.g., BERT; (Devlin et al.,
2019) especially for low-resource datasets. The
quality of the accepted publications was very high;
there was a significant drop in numbers though in
comparison to last year (36 accepted papers from
68 submissions) which is most likely due to the
extra overhead on conducting research under lock-
down policies sanctioned globally due to COVID-
19 pandemic.

3 Efficiency Task

The efficiency task complements machine trans-
lation quality evaluation campaigns by also mea-
suring and optimizing the computational cost of
inference. This is the third edition of the task, up-
dating and building upon the second edition of the
task (Hayashi et al., 2019).

We asked participants to build English→German
machine translation systems following the data con-
dition of the 2019 Workshop on Machine Trans-
lation (Barrault et al., 2019) and submit them as
Docker containers. Docker contains enabled consis-
tent measurement of computational cost on several
dimensions: time, memory, and disk space. These
are measured under three hardware conditions: a
GPU, a single CPU core, and multi-core CPU on
all cores. Participants were free to choose what
metrics and hardware platforms to optimize for.

Three teams submitted to the shared task: Niu-
Trans, OpenNMT, and UEdin. All teams submit-
ted to the GPU and multi-core CPU tracks; Open-
NMT and UEdin submitted to the single-CPU track.
Some CPU submissions from UEdin had a memory
leak; their post-deadline fix is shown as “UEdin
Fix.”

Common techniques across teams were varia-
tions on the transformer architecture, model dis-
tillation, 16-bit floating point inference on GPUs
(except OpenNMT), and 8-bit integer inference
on CPUs (except NiuTrans). Curiously, all sub-
missions used autoregressive models despite the
existence of non-autoregressive models motivated
by speed.

3.1 Hardware

The GPU track used a g4dn.xlarge instance
with one NVIDIA T4 GPU, 16 GB GPU RAM,
16 GB host RAM, and 2 physical cores of an In-
tel Xeon Platinum 8259CL CPU. The NVIDIA T4

GPU is relatively small compared to the NVIDIA
V100 GPU, but the newer Turing architecture intro-
duces support for 4-bit and 8-bit integer operations
in Tensor Cores. In practice, however, participants
used floating-point operations on the GPU even
though both OpenNMT and UEdin used 8-bit inte-
gers in their CPU submissions. This was primarily
due to code readiness. Timing was run on a non-
exclusive virtual machine because the instance is
not yet available without virtualization.

The CPU tracks used a c5.metal instance
which has two sockets of the Intel Xeon Platinum
8275CL CPU, 48 physical cores, hyperthreading
enabled, and 192 GB RAM. As a Cascade Lake
processor, it supports the Vector Neural Network
Instructions (VNNI) that OpenNMT and UEdin
used for 8-bit integer matrix multiplication. For
the single core track, we reserved the entire ma-
chine then ran Docker with --cpuset-cpus=0.
For the multi-core track, participants were free to
configure their own CPU sets and affinities. The
c5.metal instance runs directly on the full hard-
ware; it is not a virtual machine.

Teams were offered AWS time to tune their sub-
missions on the test hardware. All participants
experimented on the test hardware using provided
time or their own funds.

3.2 Measurement

Previous editions of the task specified the test set,
but last year’s organizers removed a team for gener-
ating the test outputs even with empty input. More-
over, translation time for some submissions was
approaching one second and often lower than load-
ing time. Hence we updated the task to make it
more robust to adversarial participants while also
increasing reliability of speed measurements. We
told participants the test set would have one million
lines, lines would have at most 100 space-separated
words, source sentences from an unspecified qual-
ity evaluation corpus would be hidden in their input,
and quality would be evaluated with BLEU.

After the submission deadline, we announced
the main quality score is the unweighted average
SacreBLEU1 (Post, 2018) on WMT test sets from
2010–2019, excluding 2012.2 The 2012 test set

1BLEU+case.mixed+lang.en-de+numrefs.1+s
mooth.exp+test.wmt*+tok.13a+version.1.4.8
for various WMT test sets

2Participants are likely to have used these test sets in de-
velopment. The WMT 2020 test set was not yet available and
others were out of the domain the systems were trained for.

2

Corpus Lines Words Characters
EMEA 759876 13152485 86584513
Tatoeba 214943 1398154 7303297
Federal 785 13458 87724
WMT10 2489 54021 328648
WMT11 3003 65829 396884
WMT13 3000 56089 332972
WMT14 2737 54268 329121
WMT15 2169 40771 241016
WMT16 2999 56789 337711
WMT17 3004 56435 336817
WMT18 2998 58628 351779
WMT19 1997 42034 249742
Total 1000000 15048961 96880224

Table 1: Size of corpora in the efficiency task input.

was excluded because it has lines longer than 100
words. We refer to this score as WMT1* while
also reporting the usual WMT19 scores for the
translation task.

Shown in Table 1, the test set consisted of the
aforementioned WMT input sentences and filler.
For filler, we used parallel corpora outside the
WMT data condition to verify that the system was
still translating reasonably. Specifically, we used
a recent crawl of the European Medicines Agency
(EMEA),3 the Tateoba project,4 and a crawl of the
German Federal Foreign Office Berlin5 all gathered
by the European Language Resource Consortium.
We do not consider the filler corpora clean or in-
domain enough to be official evaluations of quality;
results appear in supplementary material. To meet
our promise to participants that lines would not be
longer than 100 words (space-separated tokens),
we excluded WMT12 and removed any English
sentences longer than 100 words from the filler.
We then truncated the German Federal Foreign Of-
fice Berlin corpus to obtain a total of 1 million
lines. The input sentences were randomly shuf-
fled and mixed across corpora, retaining a sepa-
rate file to enable reconstruction. The final cor-
pus and evaluation tools are available at http:

//data.statmt.org/heafield/wngt20/test/.
Time was measured with wall (real) time re-

ported by time and CPU time reported by the
kernel for the process group. We no longer mea-
sure loading time because it is small compared to

3https://edin.ac/2TSPnC7
4https://edin.ac/2ywYp01
5https://edin.ac/3bWrBes

the cost of translating 1 million sentences, is easy
to game with busywork, and some toolkits do lazy
initialization which makes loading time difficult to
measure.

Peak RAM consumption was measured using
memory.max usage in bytes from the ker-
nel for the CPU and by polling nvidia-smi for
the GPU. Swap was disabled.

Participants were told to separate their Docker
images into model and code files so that models
could be measured separately from the relatively
noisy size of code and libraries. A model was de-
fined as “everything derived from data: all model
parameters, vocabulary files, BPE configuration if
applicable, quantization parameters or lookup ta-
bles where applicable, and hyperparameters like
embedding sizes.” Code could include “simple
rule-based tokenizer scripts and hard-coded model
structure that could plausibly be used for another
language pair.” They were also permitted to use
standard compression tools such as xz to compress
models; decompression time was included in re-
sults but small relative to the cost of translation.
We report size of the model directory and Docker
image size, both captured before the model ran.

Each evaluation started from a fresh boot of
a constant Ubuntu 18.04 LTS disk image (one
for CPU and one for GPU). Internet access was
blocked at the cloud provider level except for the
evaluation controller. This also prevented auto-
matic upgrades.

3.3 Results

Measurements are reported in Table 2. The trade-
offs between quality, model size, speed, and RAM
are shown in Figure 1. We compare the cost-
effectiveness of GPU and multi-core CPU hardware
at the prices charged by Amazon Web Services in
Figure 2.

Every team had a Pareto optimal submission for
speed. This is largely due to teams focusing on
different parts of the Pareto curve. OpenNMT fo-
cused on fast, small, and lower-quality systems
plus one higher-quality submission. UEdin fo-
cused on higher-quality systems that were slower.
Two of NiuTrans’s four GPU submissions were
Pareto optimal on speed, lying between OpenNMT
and UEdin; their multi-core CPU submission per-
formed poorly on all metrics.

Regarding model size, OpenNMT and UEdin
made a range of Pareto-optimal submissions,

3

NVIDIA T4 GPU
BLEU Seconds Disk MB RAM MB

Team Variant WMT19 WMT1* Wall CPU Model Docker CPU GPU
UEdin large 42.9 35.3 5441 5462 422 933 5463 4992
UEdin base 42.7 34.5 2385 2406 157 668 3793 3196
OpenNMT base 42.9 34.0 2328 2377 104 308 488 1528
UEdin tiny.untied 41.9 33.3 1971 1994 73 584 3146 2514
UEdin tiny.push.i6 41.1 32.4 1536 1558 64 579 1000 1228
NiuTrans 35 6 40.9 32.2 3166 3450 291 887 2115 7748
NiuTrans 35 1 40.7 32.0 2023 2318 251 847 2115 5700
NiuTrans 18 1 40.2 31.4 1355 1646 149 745 2117 5700
NiuTrans 9 1 40.0 31.1 978 1260 95 691 2117 5444
OpenNMT 4-3-256-2ffn 40.0 30.9 762 812 32 235 388 1256
OpenNMT 6-3-256 39.9 30.7 731 782 30 233 393 892
OpenNMT 4-3-256 38.9 30.0 706 758 28 232 402 1064

Single core Intel Cascade Lake CPU
BLEU Seconds Disk MB RAM MB

Team Variant WMT19 WMT1* Wall CPU Model Docker CPU
UEdin base32 42.6 34.5 18649 18648 160 659 1728
UEdin Fix base8 42.5 34.3 9128 9127 54 751 2001
OpenNMT base 42.2 33.6 15978 15977 104 198 378
UEdin tiny 41.6 32.9 14634 14634 41 737 164686
UEdin Fix tiny 41.6 32.9 4799 4799 34 559 1549
UEdin tiny.steady.i12 40.8 32.0 14553 14553 49 578 163388
UEdin tiny.pushy.i6 40.5 32.0 14399 14399 49 578 164427
UEdin Fix tiny.steady.i12 40.8 32.0 4577 4577 49 587 674
UEdin Fix tiny.pushy.i6 40.5 32.0 4554 4554 49 587 675
OpenNMT 4-3-256-2ffn 39.8 30.8 3922 3922 32 125 238
OpenNMT 6-3-256 39.5 30.5 3717 3717 30 123 233
OpenNMT 4-3-256 38.7 29.8 3348 3348 28 122 220
UEdin micro.voc8k 37.5 29.0 7184 7184 27 723 77158
UEdin Fix micro.voc8k 37.5 29.0 4660 4660 19 716 2540

Multi-core Intel Cascade Lake CPU
BLEU Seconds Disk MB RAM MB

Team Variant WMT19 WMT1* Wall CPU Model Docker CPU
OpenNMT base 42.0 33.5 795 38300 104 198 1552
UEdin tiny 41.5 32.9 215 10014 41 737 108124
UEdin Fix tiny 41.5 32.9 210 9840 34 737 28890
OpenNMT 4-3-256-2ffn 39.7 30.7 181 8735 32 125 1283
OpenNMT 6-3-256 39.4 30.5 155 7471 30 123 904
OpenNMT 4-3-256 38.6 29.7 144 6959 28 122 958
UEdin micro.voc8k 37.4 29.0 188 8711 27 723 77157
UEdin Fix micro.voc8k 37.4 29.0 190 8768 19 723 35051
NiuTrans cpu 33.8 27.0 811 36198 64 432 19732

Table 2: Submissions to the efficiency shared task sorted in decreasing order of WMT1* BLEU. Systems translated
1,000,000 lines with 15,048,961 space-separated words.

4

28

30

32

34

36

0 50 100 150 200 250 300 350 400 450

W
M

T
1*

B
L

E
U

Model size (MB)

NiuTrans
OpenNMT

UEdin

(a) Model size on disk regardless of hardware.

28

30

32

34

36

1 2 4

W
M

T
1*

B
L

E
U

GPU RAM (GB)

NiuTrans
OpenNMT

UEdin

(b) Peak GPU RAM usage.

28

30

32

34

36

0 5 10 15 20 25

W
M

T
1*

B
L

E
U

Thousand words per real second

NiuTrans
OpenNMT

UEdin

28

30

32

34

36

0.5 1 2 4

W
M

T
1*

B
L

E
U

CPU RAM (GB)

NiuTrans
OpenNMT

UEdin

(c) GPU submissions including host CPU memory usage. GPU RAM is shown above.

28

30

32

34

36

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

W
M

T
1*

B
L

E
U

Thousand words per real second

OpenNMT
UEdin

UEdin Fix

28

30

32

34

36

0.25 0.5 1 2 4 8 16 32 64 128

W
M

T
1*

B
L

E
U

CPU RAM (GB)

OpenNMT
UEdin

UEdin Fix

(d) Single core CPU submissions.

28

30

32

34

36

0 20 40 60 80 100 120

W
M

T
1*

B
L

E
U

Thousand words per real second

NiuTrans
OpenNMT

UEdin

28

30

32

34

36

1 2 4 8 16 32 64

W
M

T
1*

B
L

E
U

CPU RAM (GB)

NiuTrans
OpenNMT

UEdin
UEdin Fix

(e) Multi-core CPU submissions; UEdin’s fixed submissions had similar speed.

Figure 1: Performance of Efficiency Task Submissions.

5

28

30

32

34

36

0 20 40 60 80 100 120 140 160

W
M

T
1*

B
L

E
U

Million Words per USD

NiuTrans: GPU
OpenNMT: GPU

UEdin: GPU

CPU
CPU
CPU

Figure 2: Price comparison of GPU and multi-core CPU submissions based on Amazon Web Services pricing of
$4.08/hr for the c5.metal CPU instance and $0.526/hr for a g4dn.xlarge GPU instance. A single CPU core
does not have a well-defined price.

mostly driven by the number of parameters and
8-bit quantization.

OpenNMT’s small lower-quality models have
low CPU RAM and Docker image size; UEdin is
Pareto-optimal for higher-quality models. Open-
NMT was the only team to optimize for these met-
rics in their system description. In their multi-
core CPU submission, OpenNMT shared memory
amongst processes while other participants simply
used multiple processes with copies of the model.

4 Document Generation and Translation
Task

Following the previous workshop, we continued
with the shared task of document-level generation
and translation. This task is motivated as the central
evaluation testbed for document-level generation
systems with different types of inputs by provid-
ing parallel dataset consisting of structured tables
and text in two languages. We host various tracks
within the testbed based on input and output con-
straints and investigate and contrast the system dif-
ferences.

In particular, we conducted the following six
tracks:

• NLG (Data → En, Data → De): Generate
a document summary in the target language
given only structured tables (i.e., data-to-text).

• MT (De↔ En): Translate a document in the
source language to the target language (i.e.,
document-level translation).

• MT+NLG (Data+En → De, Data+De →
En): Generate a document summary given
the structured tables and the summary in an-
other language.

4.1 Evaluation Measures
We employ standard evaluation metrics for the
tasks above along two axes following (Hayashi
et al., 2019):

Textual Accuracy: BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) as measures for
surface-level texutal accuracy compared to ref-
erence summaries.

Content Accuracy: Relation generation (RG),
content selection (CS), and content ordering
(CO) metrics (Wiseman et al., 2017) to assess
the fidelity of the content to the input data.

An information extraction model is employed
for content accuracy measures for each target lan-
guage. We followed (Wiseman et al., 2017) and
ensembled six information extraction models (three
CNN-based, three LSTM-based) with different ran-
dom seeds.

4.2 Data
We re-use Rotowire English-German
dataset (Hayashi et al., 2019), which con-
sists of a subset of the Rotowire dataset (Wiseman
et al., 2017) with professional German translations.
Each instance corresponds to an NBA game and
consists of a box-score table for the match, base

6

information about the teams (e.g. team name,
city), English game summary, and the same game
summary translated to German. Final evaluation
was performed on the test split of the Rotowire
English-German dataset.

We followed the same setting in terms of addi-
tional resources participants could adopt.

Systems conforming to the data requirements
are marked constrained, otherwise unconstrained.
Results are indicated by the initials (C/U).

4.3 Baselines

We prepared two baselines for different tracks:

FairSeq-19 We use FairSeq (Ng et al., 2019)
(WMT’19 single model6) for MT and
MT+NLG tracks.

NCP+CC: We use a two-stage model from
(Puduppully et al., 2019) for NLG tracks. En-
glish model was with the pretrained weights
by the author and German model was trained
only on Rotowire English-German dataset.

4.4 Submitted Systems

One team participated in the task, who focused on
the German-English MT track of the task.

Team FJWU developed a system around
Transformer-based sequence-to-sequence model.
Additionally, the model employed hierarchical at-
tention following (Miculicich et al., 2018) for both
encoder and decoder to account for the document-
level context. The system was trained in a two-
stage process, where a base (sentence-level) NMT
model was trained followed by the training of hier-
archcal attention networks component. To handle
the scarcity of in-domain translation data, they ex-
perimented with upsizing the in-domain data up
to three times to construct training data. Their ab-
lation experiments showed that this upsizing of
in-domain data is effective at increasing the BLEU
score.

4.5 Results

We show the MT track results in Table 3. We con-
firm that the use of both document-level models and
in-domain data helps achieve better BLEU score,
which has also been shown from the last work-
shop (Hayashi et al., 2019).

6Model identifier: transformer.wmt19.en-de,
transformer.wmt19.de-en.

System BLEU Type

FJWU 45.04 C

FairSeq-19 42.91 C

Table 3: DGT results on the MT track (De→ En).

5 STAPLE Task

Machine translation systems are typically trained to
produce a single output, but in certain cases, it is de-
sirable to have many possible translations of a given
input text. At Duolingo, the world’s largest online
language-learning platform,7 we grade translation-
based challenges with sets of human-curated ac-
ceptable translation options. Given the many ways
of expressing a piece of text, these sets are slow to
create, and may be incomplete. This process is ripe
for improvement with the aid of rich multi-output
translation and paraphrase systems. To this end, we
introduce a shared task called STAPLE: Simulta-
neous Translation and Paraphrasing for Language
Education (Mayhew et al., 2020).

5.1 Task Description

In this shared task, participants are given a training
set consisting of 2500 to 4000 English sentences
(or prompts), each of which is paired with a list of
comprehensive translations in the target language,
weighted and ordered by normalized learner re-
sponse frequency. At test time, participants are
given 500 English prompts, and are required to pro-
duce the set of comprehensive translations for each
prompt. We also provide a high-quality automatic
reference translation for each prompt, in the event
that a participant wants to work on paraphrase-only
approaches. The target languages were Hungarian,
Japanese, Korean, Portuguese, and Vietnamese.

5.2 Submitted Systems

There were 20 participants who submitted to the
development phase, 14 participants who submitted
to the test phase, and 11 participants who submit-
ted system description papers. Submission models
largely consisted of high-quality machine transla-
tion systems fine-tuned on in-domain shared task
data from Duolingo, with different tricks for train-
ing, ensembling, and output filtering.

In the test phase, three teams submitted to all
5 language tracks, and one team submitted to two

7www.duolingo.com

7

tracks (Portuguese, and Hungarian). Of the remain-
ing single-language submissions, Portuguese and
Japanese were the most popular. In these single
language submissions, teams did not tend to take
language-specific approaches.

5.3 Results
Submission performance varied widely, but
nearly all submissions improved significantly over
organizer-provided baselines. The top submissions
have comparable scores to taking the top 5 transla-
tions from each gold translation set.

Techniques popular among the more successful
teams included weighting of training data accord-
ing to learner response frequency, and classifier-
based output filtering. Interestingly, techniques
such as diverse beam search and beam reranking
did not appear to improve results, despite their
close relevance to the task. For more details and
analysis, see Mayhew et al. (2020).

6 Conclusion

This paper summarized the results of the Fourth
Workshop on Neural Generation and Translation,
where we saw a number of research advances. Par-
ticularly, this year introduced a more rigorous effi-
ciency task, and a new STAPLE task.

7 Acknowledgements

The efficiency shared task was partly
funded from European Union’s Horizon

2020 research and innovation programme under
grant agreement No 825303 (Bergamot) and by the
Connecting Europe Facility (CEF) - Telecommu-
nications from the project No 2019-EU-IA-0045
(User-focused Marian). This work represents the
authors’ opinions, not necessarily those of the Eu-
ropean Union.

We thank Amazon Web Services for its gift of
credits to support the efficiency shared task evalua-
tion.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,

Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (wmt19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Konstas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and
translation. In Proceedings of the 3rd Workshop
on Neural Generation and Translation, pages 1–14,
Hong Kong. Association for Computational Linguis-
tics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
EMNLP.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). ACL.

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas,
and James Henderson. 2018. Document-level neu-
ral machine translation with hierarchical attention
networks. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2947–2954, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers,
Day 1), pages 314–319, Florence, Italy. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

8

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6908–6915.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in Data-to-Document Generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263.

9

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 10–23
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Learning to Generate Multiple Style Transfer Outputs
for an Input Sentence

Kevin Lin¨, Ming-Yu Liu©, Ming-Ting Sun¨, Jan Kautz©

¨University of Washington ©NVIDIA Research
{kvlin,mts}@uw.edu, {mingyul,jkautz}@nvidia.com

Abstract

Text style transfer refers to the task of rephras-
ing a given text in a different style. While var-
ious methods have been proposed to advance
the state of the art, they often assume the trans-
fer output follows a delta distribution, and thus
their models cannot generate different style
transfer results for a given input text. To ad-
dress the limitation, we propose a one-to-many
text style transfer framework. In contrast to
prior works that learn a one-to-one mapping
that converts an input sentence to one output
sentence, our approach learns a one-to-many
mapping that can convert an input sentence to
multiple different output sentences, while pre-
serving the input content. This is achieved by
applying adversarial training with a latent de-
composition scheme. Specifically, we decom-
pose the latent representation of the input sen-
tence to a style code that captures the language
style variation and a content code that encodes
the language style-independent content. We
then combine the content code with the style
code for generating a style transfer output. By
combining the same content code with a dif-
ferent style code, we generate a different style
transfer output. Extensive experimental results
with comparisons to several text style transfer
approaches on multiple public datasets using
a diverse set of performance metrics validate
effectiveness of the proposed approach.

1 Introduction

Text style transfer aims at changing the language
style of an input sentence to a target style with
the constraint that the style-independent content
should remain the same across the transfer. While
several methods are proposed for the task (John
et al., 2019; Smith et al., 2019; Jhamtani et al.,
2017; Kerpedjiev, 1992; Xu et al., 2012; Shen et al.,
2017; Subramanian et al., 2018; Xu et al., 2018),
they commonly model the distribution of the trans-
fer outputs as a delta distribution, which implies a
one-to-one mapping mechanism that converts an

input sentence in one language style to a single cor-
responding sentence in the target language style.

We argue a multimodal mapping is better suited
for the text style transfer task. For examples, the
following two reviews:
1. “This lightweight vacuum is simply effective.”,
2. “This easy-to-carry vacuum picks up dust and

trash amazingly well.”
would both be considered correct negative-to-
positive transfer results for the input sentence,
“This heavy vacuum sucks”. Furthermore, a one-to-
many mapping allows a user to pick the preferred
text style transfer outputs in the inference time.

In this paper, we propose a one-to-many text
style transfer framework that can be trained using
non-parallel text. That is, we assume the train-
ing data consists of two corpora of different styles,
and no paired input and output sentences are avail-
able. The core of our framework is a latent decom-
position scheme learned via adversarial training.
We decompose the latent representation of a sen-
tence into two parts where one encodes the style
of a sentence, while the other encodes the style-
independent content of the sentence. In the test
time, for changing the style of an input sentence,
we first extract its content code. We then sample
a sentence from the training dataset of the target
style corpus and extract its style code. The two
codes are combined to generate an output sentence,
which would carry the same content but in the tar-
get style. As sampling a different style sentence,
we have a different style code and have a different
style transfer output. We conduct experiments with
comparison to several state-of-the-art approaches
on multiple public datasets, including Yelp (yel)
and Amazon (He and McAuley, 2016). The results,
evaluated using various performance metrics, in-
cluding content preservation, style accuracy, output
diversity, and user preference, show that the model
trained with our framework performs consistently
better than the competing approaches.

10

https://www.aclweb.org/anthology/D19-56%2d

X1 X2

S1

C

S2

I will never go to this
restaurant again.

I will definitely go to
this restaurant again.

I will continue go to
this restaurant again.

I would love to visit
this restaurant again!

X1

S1

C

I will never go to this
restaurant again.

x1 c1

s1

Figure 1: We formulate text style transfer as a one-to-many mapping function. Left: We decompose the sentence
x1 to a content code c1 that controls the sentence meaning, and a style code s1 that captures the stylistic properties
of the input x1. Right: One-to-many style transfer is achieved by fusing the content code c1 and a style code s2
randomly sampled from the target style space S2.

2 Methodology

Let X1 and X2 be two spaces of sentences of two
different language styles. Let Z1 and Z2 be their
corresponding latent spaces. We further assume Z1

and Z2 can be decomposed into two latent spaces
Z1 = S1 × C1 and Z2 = S2 × C2 where S1 and
S2 are the latent spaces that control the style vari-
ations in X1 and X2 and C1 and C2 are the latent
spaces that control the style-independent content in-
formation. Since C1 and C2 are style-independent
content representation, we have C ≡ C1 ≡ C2.
For example, X1 and X2 may denote the spaces
of negative and positive product reviews where the
elements in C encode the product and its features
reviewed in a sentence, the elements in S1 repre-
sent variations in negative styles such as the degree
of preferences and the exact phrasing, and the ele-
ments in S2 represent the corresponding variations
in positive styles. The above modeling implies
1. A sentence x1 ∈ X1 can be decomposed to a

content code c1 ∈ C and a style code s1 ∈ S1.
2. A sentence x1 ∈ X1 can be reconstructed by

fusing its content code c1 and its style code s1.
3. To transfer a sentence in X1 to a corresponding

sentence in X2, one can simply fuse the content
code c1 with a style code s2 where s2 ∈ S2.

Figure 1 provides a visualization of the modeling.
Under this formulation, the text style transfer

mechanism is given by a conditional distribution
p(x1→2|x1), where x1→2 is the sentence generated
by transferring sentence x1 to the target domain
X2. Note that existing works (Fu et al., 2018; Shen
et al., 2017) formulate the text style transfer mech-
anism to be a one-to-one mapping that converts an
input sentence to only a single corresponding out-
put sentence. That is p(x1→2|x1) = δ(x1) where
δ is the Dirac delta function. As a results, they

x1 E1

E2

G2

c

s

c1

s2

F z1 2 y1 2

x2

I will never go to this restaurant again.

I love drinking bubble milk tea.
I would love to visit
this restaurant again.

x1 E1

E2

G2

c

s

c1

s2

F z1 2 y1 2

x2

I will never go to this restaurant again.

This is definitely the best store!
I will definitely go to
this restaurant again!

Figure 2: Overview of the proposed one-to-many style
transfer approach. We show an example of transferring
a negative restaurant review sentence x1 to multiple dif-
ferent positive ones y1→2. To transfer the sentence, we
first randomly sample a sentence x2 from the space of
positive reviews X2 and extract its style code s2 using
Es

2 . We then compute z1→2 by combining c1 with s2
and convert it to the transfer output y1→2 usingG2. We
note that by sampling a different x2 and hence a differ-
ent s2, we have a different style transfer output y1→2.

can not be used to generate multiple style transfer
outputs for an input sentence.
One-to-Many Style Transfer. To model the trans-
fer function, we use a framework consists of a set
of networks as visualized in Figure 2. It has a con-
tent encoder Eci , a style encoder Esi , and a decoder
Gi for each domain Xi. In the following, we will
explain the framework in details using the task of
transferring from X1 to X2. The task of transfer-
ring from X2 to X1 follows the same pattern.

The content encoder Ec1 takes the sequence
x1 = {x11, x21, . . . , x

m1(x1)
1 } of m1(x1) elements

as input and computes a content code c1 ≡
{c11, c21, . . . , c

m1(x1)
1 } = Ec1(x1), which is a se-

11

quence of vectors describing the sentence’s style-
independent content. The style encoder ES2 con-
verts x2 to a style code s2 ≡ (s2,µ, s2,σ) = Es2(x2),
which is a pair of vectors. Note that we will use
s2,µ and s2,σ as the new mean and standard devi-
ation of the feature activation of the input x1 for
the style transfer task of converting a sentence in
X1 to a corresponding sentence in X2. Specif-
ically, we combine the content code c1 and the
style code s2 using a composition function F ,
which will be discussed momentarily, to obtain
z1→2 = {z11→2, z

2
1→2, . . . , z

m1(x1)
1→2 }. Then, we use

the decoder G2 to map the representation z1→2

to the output sequence y1→2. Note that s2 is ex-
tracted from a randomly sampled x2 ∈ X2, and by
sampling a different sentence, say x′2 ∈ X2 where
x′2 6= x2, we have s′2 6= s2 and hence a different
style transfer output. By treating style variations
as sample-able quantities, we achieve one-to-many
style transfer output capability.

The combination function is given by

F (cki , sj) = sj,σ⊗(cki −µ(ci))�σ(ci)+sj,µ, (1)

where ⊗ denotes element-wise product, � denotes
element-wise division, µ(·) and σ(·) indicate the
operation of computing mean and standard deriva-
tion for the content latent code by treating each vec-
tor in ci as an independent realization of a random
variable. In other words, the latent representation
zki→j = F (cki , sj) is constructed by first normal-
izing the content code ci in the latent space and
then applying the non-linear transformation whose
parameters are provided from a sentence of target
style. Since F contains no learnable parameters,
we consider F as part of the decoder. This de-
sign draws inspirations from image style transfer
works (Huang and Belongie, 2017; Dumoulin et al.,
2016), which show that image style transfer can
be achieved by controlling the mean and variance
of the feature activations in the neural networks.
We hypothesize this is the same case for the text
style transfer task and apply it to achieve the one-
to-many style transfer capability.
Network Design. We realize the content encoder
Eci using a convolutional network. To ensure the
length of the output sequence c is equal to the
length of the input sentence, we pad the input by
m − 1 zero vectors on both left and right side,
where m is the length of the input sequence as
discussed in (Gehring et al., 2017). For the con-
volution operation, we do not include any stride

convolution. We also realize the style encoder Esi
using a convolutional network. To extract the style
code, after several convolution layers, we apply
global average pooling and then project the re-
sults to si,µ and si,σ using a two-layer multi-layer
perceptron. We apply the log-exponential nonlin-
earity to compute si,σ to ensure the outputs are
strictly positive, required for modeling the devi-
ations. The decoder Gi is realized using a con-
volutional network with an attention mechanism
followed by a convolutional sequence-to-sequence
network (ConvS2S) (Gehring et al., 2017). We
realized our method based on ConvS2S, but it
can be extended to work with transformer mod-
els (Vaswani et al., 2017; Devlin et al., 2018; Rad-
ford et al., 2019). Further details are given in the
supplementary materials.

2.1 Learning Objective
We train our one-to-many text style transfer model
by minimizing multiple loss terms.

Reconstruction loss. We use reconstruction loss
to regularize the text style transfer learning. Specif-
ically, we assume the pair of content encoder Eci
and style encoder Esi and the decoder Gi form an
auto-encoder. We train them by minimizing the
negative log likelihood of the training corpus:

Lirec = Exi [− logP (yki |xki ; θEc
i
, θEs

i
, θGi)] (2)

where θEc
i
, θEs

i
and θGi denote the parameters of

Eci , Esi , and Gi respectively.
For each training sentence, Gi synthesizes the

output sequence by predicting the most possi-
ble token yt based on the latent representation
zi ≡ {z1i , z2i , ..., zmi } and the previous output pre-
dictions {y1, y2, . . . , yt−1}, so that the probability
of a sentence can be calculated by

P (y|x;θEc
i
, θEs

i
, θGi) =

T∏

t=1

p(yt|zi, y1, y2, . . . , yt−1; θGi), (3)

where t denotes the token index and T is the sen-
tence length. Following (Gehring et al., 2017), the
probability of a token is computed by the linear
projection of the decoder output using softmax.

Back-translation loss. Inspired by recent stud-
ies (Prabhumoye et al., 2018; Sennrich et al., 2015;
Brislin, 1970) that show that back-translation loss,
which is closely related to the cycle-consistency

12

E1

E2

c

s

c1

s2

E1
s s1

G1

G2

E2
c c1 2

z1 2 1 x1 2 1x1

x2

F z1 2

F

Figure 3: Illustration of the back-translation loss. We transfer x1 to the domain of X2 and then transfer it back to
the domain of X1 using its original style code s1. The resultant sentence x1→2→1 should be as similar as possible
to x1 if the content code is preserved across transfer. To tackle the non-differentiable of the sentence decoding
mechanism (beam search), we replace the hard decoding of x1→2 by a learned non-linear projections between the
decoder G2 and the content encoder Ec

2.

loss (Zhu et al., 2017a) used in computer vision,
is helpful for preserving the content of the input,
we adopt a back-translation loss to regularize the
learning. To achieve the goal, as shown in Figure 3,
we transfer the input x1 to the other style domain
X2. We then transfer it back to the original domain
X1 by using its original style code s1. By doing so,
the resulting sentence x1→2→1 should be as sim-
ilar as possible to the original input x1. In other
words, we minimize the discrepancy between x1
and x1→2→1 given by

L1back = Ex1,x2 [− logP (yk1 |xk1→2→1; θ)] (4)

where θ = {θEc
1
, θEs

1
, θG1 , θE2 , θEs

2
, θG2}. We

also define L2back in a similar way.
To avoid the non-differentiability of the beam

search (Och and Ney, 2004; Sutskever et al., 2014),
we substitute the hard decoding of x1→2 by using
a set of differentiable non-linear transformations
between the decoder G2 and the content encoder
Ec1 when minimizing the back-translation loss. The
non-linear transformations project the feature acti-
vation of the second last layer of the decoder G2 to
the second layer of the content encoder Ec1. These
non-linear projections are learned by the multilayer
perceptron (MLP), which are trained jointly with
the text style transfer task. We also apply the same
mechanism to compute x2→1. This way, our model
can be trained purely using back-propagation.

To ensure the MLP correctly project the feature
activation to the second layer of Ec2, we enforce the
output of the MLP to be as similar as possible to the
feature activation of the second layer of Ec1. This is
based on the idea that x1 and x1→2 should have the
same content code across transfer, and their feature
activation in the content encoder should also be the
same. Accordingly, we apply Mean Square Error

(MSE) loss function to achieve this objective:

L1mse = Ex1,x2 [||Ec,h2 (x1→2)− Ec,h1 (x1)||22]
(5)

where Ec,h1 and Ec,h2 denote the function for com-
puting feature activation of the second layer of Ec1
and Ec2, respectively. The loss L2mse for the other
domain is defined in a similar way.

Style classification loss. During learning, we en-
force a style classification loss on the style code
si = Esi (xi) with the standard cross-entropy loss
Licls. This encourages the style code si to capture
the stylistic properties of the input sentences.

Adversarial loss. We use GANs (Goodfellow
et al., 2014) for matching the distribution of the
input latent code to the decoder from the reconstruc-
tion streams to the distribution of the input latent
code to the decoder from the translation stream.
That is (1) we match the distribution of z1→2 to
the distribution of z2, and (2) we match the dis-
tribution of z2→1 to the distribution of z1. This
way we ensure distribution of the transfer outputs
matches distribution of the target style sentences
since they use the same decoder. As we apply ad-
versarial training to the latent representation, we
also avoid dealing with the non-differentiability of
beam search. The adversarial loss for the second
domain is given by

L2adv = Ex1,x2 [log(1−D2(z1→2))]

+ Ex2 [log(D2(z2))] ,
(6)

where D2 is the discriminator which aims at distin-
guishing the latent representation of the sentence
z1→2 from z2 = Cz(c2, s2). The adversarial loss
L1adv is defined in a similar manner.

Overall learning objective. We then learn a one-

13

to-many text style transfer model by solving

min
E1,E2,G1,G2

max
D1,D2

2∑

i=1

(
Lirec + Liback

+Limse + Licls + Liadv
)
.

(7)

3 Experiments

In the following, we first introduce the datasets and
evaluation metrics and then present the experiment
results with comparison to the competing methods.
Datasets. We use the following datasets.
• Amazon product reviews (Amazon) (He and

McAuley, 2016) contains 277, 228 positive and
277, 769 negative review sentences for training,
and 500 positive and 500 negative review sen-
tences for testing. The length of a sentence
ranges from 8 to 25 words. We use this dataset
for converting a negative product review to a pos-
itive one, and vice versa. Our evaluation follows
the protocol described in Li et al. (2018).
• Yelp restaurant reviews (Yelp) (yel) contains

a training set of 267, 314 positive and 176, 787
negative sentences, and a test set of 76, 392 posi-
tive and 50, 278 negative testing sentences. The
length of a sentence ranges from 1 to 15 words.
We use this dataset for converting a negative
restaurant review to a positive one, and vice
versa. We use two evaluation settings: Yelp500
and Yelp25000. Yelp500 is proposed by (Li
et al., 2018), which includes randomly sampled
500 positive and 500 negative sentences from
the test set, while Yelp25000 includes randomly
sampled 25000 positive and 25000 negative sen-
tences from the test set.

Evaluation metrics. We evaluate a text style trans-
fer model on several aspects. Firstly, the transfer
output should carry the target style (style score).
Secondly, the style-independent content should be
preserved (content preservation score). We also
measure the diversity of the style transfer outputs
for an input sentence (diversity score).
• Style score. We use a classifier to evaluate the fi-

delity of the style transfer results(Fu et al., 2018;
Shen et al., 2017). Specifically, we apply the
Byte-mLSTM (Radford et al., 2017) to classify
the output sentence generated by a text style
transfer model. As transferring a negative sen-
tence to a positive one, we expect a good transfer
model should be able to generate a sentence that
is classified positive by the classifier. The over-
all style transfer performance of a model is then

given by the average accuracy on the test set
measured by the classifier.
• Content score. We build a style-independent

distance metric that can quantify content simi-
larity between two sentences, by comparing em-
beddings of the sentences after removing their
style words. Specifically, we compute embed-
ding of each non-style word in the sentence using
the word2vec (Mikolov et al., 2013). Next, we
compute the average embedding, which serves
as the content representation of the sentence.
The content similarity between two sentences
is given by the cosine distance of their average
embeddings. We compute the relative n-gram
frequency to determine which word is a style
word based on the observation that the language
style is largely encoded in the n-gram distribu-
tion (Xu et al., 2012). This is in spirit similar to
the term frequency-inverse document frequency
analysis (Sparck Jones, 1972). Let D1 and D2

be the n-gram frequencies of two corpora of dif-
ferent styles. The style magnitude of an n-gram
u in style domain i is given by

si(u) =
Di(u) + λ∑
j 6=iDj(u) + λ

(8)

where λ is a small constant. We use 1-
gram. A word is considered a style word if
mink∈{i,j} sk(u) is greater than a threshold.
• Diversity score. To quantify the diversity of the

style transfer outputs, we resort to the self-BLEU
score proposed by Zhu et al. (2018). Given an
input sentence, we apply the style transfer model
5 times to obtain 5 outputs. We then compute
self-BLEU scores between any two generated
sentences (10 pairs). We apply this procedure to
all the sentences in the test set and compute the
average self-BLEU score v. After that, we define
the diversity score as 100− v. A model with a
higher diversity score means that the model is
better in generating diverse outputs. In the exper-
iments, we denote Diversity-K as the diversity
score computed by using self-BLEU-K.

Implementation. We use the convolutional
sequence-to-sequence model (Gehring et al., 2017).
Our content and style encoder consist of 3 con-
volution layers, respectively. The decoder has 4
convolution layers. The content and style codes are
256 dimensional. We use the pytorch (Paszke
et al., 2017) and fairseq (Ott et al., 2019) li-
braries and train our model using a single GeForce

14

GTX 1080 Ti GPU. We use the SGD algorithm
with the learning rate set to 0.1. Once the content
and style scores converge, we reduce the learning
rate by an order of magnitude after every epoch
until it reaches 0.0001. Detail model parameters
are given in the appendix.
Baselines. We compare the proposed approach to
the following competing methods.
• CAE (Shen et al., 2017) is based on auto-

encoder and is trained using a GAN framework.
It assumes a shared content latent space between
different domains and computes the content code
by using a content encoder. The output is gener-
ated with a pre-defined binary style code.
• MD (Fu et al., 2018) extends the CAE to work

with multiple style-specific decoders. It learns
style-independent representation by adversarial
training and generates output sentences by using
style-specific decoders.
• BTS (Prabhumoye et al., 2018) learns style-

independent representations by using back-
translation techniques. BTS assumes the la-
tent representation of the sentence preserves the
meaning after machine translation.
• DR (Li et al., 2018) employs retrieval techniques

to find similar sentences with desired style. They
use neural networks to fuse the input and the
retrieved sentences for generating the output.
• CopyPast simply uses the input as the output,

which serves as a reference for evaluation.

3.1 Results on One-to-Many Style Transfer

Our model can generate different text style transfer
outputs for an input sentence. To generate multiple
outputs for an input, we randomly sample a style
code from the target style training dataset during
testing. Since the CAE (Shen et al., 2017) and
BTS (Prabhumoye et al., 2018) are not designed
for the one-to-many style transfer, we extend their
methods to achieve this capability by injecting ran-
dom noise, termed CAE+noise and BTS+noise.
Specifically, we add random Gaussian noise to the
latent code of their models during training, which
is based on the intuition that the randomness would
result in different activations in the networks, lead-
ing to different outputs. Table 1 shows the average
diversity scores achieved by the competing meth-
ods over 5 runs. We find that our method performs
favorably against others.
User Study. We conduct a user study to evaluate
one-to-many style transfer performance using the

Amazon Diversity-4 Diversity-3 Diversity-2

CAE 2.60 2.15 1.64

CAE+noise 33.01 29.33 24.66
BTS+noise 39.22 35.46 30.48

Ours 46.31 41.69 36.01

Yelp Diversity-4 Diversity-3 Diversity-2

CAE 1.03 0.80 0.60

CAE+noise 16.91 14.63 11.73
BTS+noise 48.36 43.69 37.38

Ours 58.29 50.90 42.34

Table 1: One-to-many text style transfer results.

Method Diversity Fluency Overall

CAE+noise 13.13 11.62 12.12
No Pref. 35.35 16.16 36.87
Ours 51.52 72.22 51.01

BTS+noise 13.13 11.11 16.16
No Pref. 42.93 22.22 40.40
Ours 43.94 66.67 43.43

Table 2: User study results on one-to-many text style
transfer. The numbers are the user preference score of
competing methods.

Amazon Mechanical Turk (AMT) platform. We set
up the pairwise comparison following Prabhumoye
et al. (2018). Given an input sentence and two
sets of model-generated sentences (5 sentences per
set), the workers are asked to choose which set has
more diverse sentences with the same meaning, and
which set provides more desirable sentences con-
sidering both content preservation and style trans-
fer. These are denoted as Diversity, and Overall
in Table 2. The workers are also asked to compare
the transfer quality in terms of grammatically and
fluency, which is denoted as Fluency. For each
comparison, a third option No Preference is given
for cases that both are equally good or bad.

We randomly sampled 250 sentences from
Yelp500 test set for the user study. Each compari-
son is evaluated by at least three different workers.
We received more than 3, 600 responses from the
AMT, and the results are summarized in Table 2.
Our method outperforms the competing methods
by a large margin in terms of diversity, fluency, and
overall quality. In the appendix, we present further
details of the comparisons with different variants of
CAE+noise and BTS+noise. Our method achieves
significantly better performance. Table 3 shows the
qualitative results of the proposed method. Our

15

Input: I will never go to this restaurant again.
Output A: I will definitely go to this restaurant again.
Output B: I will continue go to this restaurant again.
Output C: I will definitely go to this place again.

Input: It was just a crappy experience over all.
Output A: It was just a wonderful experience at all.
Output B: Great place just a full experience over all.
Output C: It was such a good experience as all.

Input: This place just keeps getting worse and worse.
Output A: This place just worth everything and good.
Output B: Fantastic place just top notch prices and service.
Output C: This place goes out pretty fast and fresh.

Table 3: One-to-many style transfer results computed
by the proposed algorithm.

proposed method generates multiple different style
transfer outputs for restaurant reviews.

3.2 More Results and Ablation Study

In addition to generating multiple style transfer
outputs, our model can also generate high-quality
style transfer outputs. In Figure 4, we compare
the quality of our style transfer outputs with those
from the competing methods. We show the perfor-
mance of our model using the style–content curve
where each point in the curve is the achieved style
score and the content score at different training iter-
ations. In Figure 4a, given a fixed content preserva-
tion score, our method achieves a better style score
on Amazon dataset. Similarly, given a fixed style
score, our model achieves a better content preserva-
tion score. The results on Yelp500 and Yelp25000
datasets also demonstrate a similar trend as shown
in Figure 4b and Figure 4c, respectively.

The style–content curve also depicts the behavior
of the proposed model during the entire learning
process. As visualized in Figure 5, we find that
our model achieves a high style score but a low
content score in the early training stage. With more
iterations, our model improves the content score
with the expense of a reduced style score. To strike
a balance between the two scores, we decrease
the learning rate when the model reaches a similar
number for the two scores.
User Study. We also conduct a user study on the
transfer output quality. Given an input sentence
with two generated style transferred sentences from
two different models1, workers are asked to com-
pare the transferred quality of the two generated
sentences in terms of content preservation, style

1The sentences generated by other methods have been
made publicly available by (Li et al., 2018).

Method Style Content Fluency Overall

CAE 30.56 36.81 23.26 30.56
No Pref. 31.60 39.93 51.74 37.50
Ours 37.85 23.26 25.00 31.94

MD 29.26 27.56 27.35 28.41
No Pref. 21.88 52.84 47.01 29.83
Ours 48.86 19.60 25.64 41.76

BTS 30.66 40.88 16.79 30.29
No Pref. 31.75 22.99 56.93 32.12
Ours 37.59 36.13 26.28 37.59

DR 26.30 18.09 22.61 24.96
No Pref. 11.89 69.01 57.96 21.61
Ours 61.81 12.90 19.43 53.43

Table 4: User study results. The numbers are the user
preference scores of the competing methods.

Model Style Score Content Score

sharing-decoder 63.75 42.54
sharing-encoders 81.41 81.48
full 82.64 83.11

Table 5: Comparison of different design choices of the
proposed framework.

transfer, fluency, and overall performance, respec-
tively. We received more than 2500 responses from
AMT platform, and the results are summarized in
Table 4. We observe No Preference was chosen
more often than others, which shows exiting meth-
ods may not fully satisfy human expectation. How-
ever, our method achieves comparable or better
performance than the prior works.
Ablation Study. We conduct a study where we
consider three different designs of the proposed
models. (1) full: This is the full version of the pro-
posed model; (2) sharing-encoders: In this case,
we have a content encoder and a style encoder
that are shared by the two domains; (3) sharing-
decoder: In this case, we have a decoder that is
shared by the two domains. Through this study,
we aim for studying if regularization via weight-
sharing is beneficial to our approach.

Table 5 shows the comparison of our method us-
ing different designs. The sharing-encoders base-
line performs much better than the sharing-decoder
baseline, and our full method performs the best.
The results show that the style-specific decoder is
more effective for generating target-style outputs.
On the other hand, the style-specific encoder ex-
tracts more domain-specific style codes from the
inputs. Weight-sharing schemes do not lead to a
better performance.
Impact of the loss terms. In the appendix, we

16

0 20 40 60 80 100
Content Preservation Score

0

20

40

60

80

100
St

yl
e

Sc
or

e CopyPast
CAE
MD
DR
Ours

(a) Amazon

40 60 80 100
Content Preservation Score

0

20

40

60

80

100

St
yl

e
Sc

or
e CopyPast

CAE
MD
DR
Ours

(b) Yelp500

40 60 80 100
Content Preservation Score

0

20

40

60

80

100

St
yl

e
Sc

or
e

CopyPast
CAE
BTS
Ours

(c) Yelp25000

Figure 4: Comparison to different style transfer algorithms on output quality.

8 10 12 14 16 18 20
Training Epoch

70

80

90

Sc
or

e Style
Content

Figure 5: Style–content trade-off curves. The vertical
line indicates the iteration at which the learning rate is
decreased.

present an ablation study on the loss terms, which
shows that all the terms in our objective function
are important.

4 Related Works

Language modeling is a core problem in natu-
ral language processing. It has a wide range of
applications including machine translation (John-
son et al., 2017; Wu et al., 2016), image caption-
ing (Vinyals et al., 2015), and dialogue systems (Li
et al., 2016a,b). Recent studies (Devlin et al.,
2018; Gehring et al., 2017; Graves, 2013; John-
son et al., 2017; Radford et al., 2019; Wu et al.,
2016) proposed to train deep neural networks using
maximum-likelihood estimation (MLE) for com-
puting the lexical translation probabilities in par-
allel corpus. Though effective, acquiring parallel
corpus is difficult for many language tasks.
Text style transfer has a longstanding his-
tory (Kerpedjiev, 1992). Early studies utilize
strongly supervision on parallel corpus (Rao and
Tetreault, 2018; Xu, 2017; Xu et al., 2012). How-
ever, the lack of parallel training data renders ex-
isting methods non-applicable to many text style
transfer tasks. Instead of training with paired sen-
tences, recent studies (Fu et al., 2018; Hu et al.,
2017; Prabhumoye et al., 2018; Shen et al., 2017)
addressed this problem by using adversarial learn-
ing techniques. Recent studies further improve the

performance by leveraging domain adaptation (Li
et al., 2019) or contextual information (Cheng et al.,
2020). In this paper, we argue while the existing
methods address the parallel data acquisition dif-
ficulty, they do not address the diversity problem
in the translated outputs. We address the issue by
formulating text style transfer as a one-to-many
mapping problem and demonstrate one-to-many
style transfer results.
Generative adversarial network (GANs) (Ar-
jovsky et al., 2017; Goodfellow et al., 2014; Sali-
mans et al., 2016; Zhu et al., 2017a) have achieved
great success on image generation (Huang et al.,
2018; Zhu et al., 2017b). Several attempts are made
to applying GAN for the text generation task (Guo
et al., 2018; Lin et al., 2017; Yu et al., 2017; Zhang
et al., 2017). However, these methods are based on
unconditional GANs and tend to generate context-
free sentences. Our method is different in that our
model is conditioned on the content and style codes,
and our method allows a more controllable style
transfer.

5 Conclusion

We have presented a novel framework for gener-
ating different style transfer outputs for an input
sentence. This was achieved by modeling the style
transfer as a one-to-many mapping problem with a
novel latent decomposition scheme. Experimental
results showed that the proposed method achieves
better performance than the baselines in terms of
the diversity and the overall quality.

Acknowledgement

We would like to thank the anonymous review-
ers for their constructive comments. We thank
NVIDIA for the donation of the GPU used for
this research. We thank Dianqi Li for the helpful
discussion.

17

References
Yelp Dataset Challenge. https://www.yelp.
com/dataset/challenge.

Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. 2017. Wasserstein gan. arXiv preprint
arXiv:1701.07875.

Richard W Brislin. 1970. Back-translation for cross-
cultural research. Journal of cross-cultural psychol-
ogy, 1(3):185–216.

Cheng Kuan Chen, Zhu Feng Pan, Min Sun, and Ming-
Yu Liu. 2019. Unsupervised stylish image descrip-
tion generation via domain layer norm. In Proc.
AAAI.

Yu Cheng, Zhe Gan, Yizhe Zhang, Oussama Elachqar,
Dianqi Li, and Jingjing Liu. 2020. Contextual text
style transfer. arXiv preprint arXiv:2005.00136.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Vincent Dumoulin, Jonathon Shlens, and Manjunath
Kudlur. 2016. A learned representation for artistic
style. In Proc. ICLR.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao,
and Rui Yan. 2018. Style transfer in text: Explo-
ration and evaluation. In Proc. AAAI.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proc. ICML.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Proc. NeurIPS.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2018. Long text generation via
adversarial training with leaked information. In Prof.
AAAI.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In Proc. WWW.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward con-
trolled generation of text. In Proc. ICML.

Xun Huang and Serge Belongie. 2017. Arbitrary style
transfer in real-time with adaptive instance normal-
ization. In Proc. ICCV.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan
Kautz. 2018. Multimodal unsupervised image-to-
image translation. In Proc. ECCV.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric
Nyberg. 2017. Shakespearizing modern language
using copy-enriched sequence to sequence models.
In Proc. EMNLP Workshop on Stylistic Variation.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Proc.
ACL.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017. Googles multilingual neural machine
translation system: Enabling zero-shot translation.
TACL.

Stephan M. Kerpedjiev. 1992. Generation of informa-
tive texts with style. In Proc. COLING.

Dianqi Li, Yizhe Zhang, Zhe Gan, Yu Cheng, Chris
Brockett, Bill Dolan, and Ming-Ting Sun. 2019. Do-
main adaptive text style transfer. In Proc. EMNLP-
IJCNLP.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016a. A
persona-based neural conversation model. In Proc.
ACL.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jian-
feng Gao, and Dan Jurafsky. 2016b. Deep rein-
forcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proc. NAACL.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang,
and Ming-Ting Sun. 2017. Adversarial ranking for
language generation. In Proc. NeurIPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proc. NeurIPS.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine trans-
lation. Computational linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proc. NAACL
Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proc. ACL.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In Proc. NeurIPS Autodiff Workshop.

18

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut-
dinov, and Alan W Black. 2018. Style transfer
through back-translation. In Proc. ACL.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Tech Report.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may i introduce the yafc corpus: Corpus,
benchmarks and metrics for formality style transfer.
In Proc. NAACL.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. In Proc.
NeurIPS.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Proc. NeruIPS.

Eric Michael Smith, Diana Gonzalez-Rico, Emily Di-
nan, and Y-Lan Boureau. 2019. Zero-shot fine-
grained style transfer: Leveraging distributed con-
tinuous style representations to transfer to unseen
styles. arXiv preprint arXiv:1911.03914.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation.

Sandeep Subramanian, Guillaume Lample,
Eric Michael Smith, Ludovic Denoyer,
Marc’Aurelio Ranzato, and Y-Lan Boureau.
2018. Multiple-attribute text style transfer. arXiv
preprint arXiv:1811.00552.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. NeurIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. NeurIPS.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proc. CVPR.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Jingjing Xu, SUN Xu, Qi Zeng, Xiaodong Zhang,
Xuancheng Ren, Houfeng Wang, and Wenjie Li.
2018. Unpaired sentiment-to-sentiment translation:
A cycled reinforcement learning approach. In Proc.
ACL.

Wei Xu. 2017. From shakespeare to twitter: What are
language styles all about? In Proc. EMNLP Work-
shop on Stylistic Variation.

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and
Colin Cherry. 2012. Paraphrasing for style. Proc.
COLING.

L Yu, W Zhang, J Wang, and Y Yu. 2017. Seqgan:
sequence generative adversarial nets with policy gra-
dient. In Proc. AAAI.

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo
Henao, Dinghan Shen, and Lawrence Carin. 2017.
Adversarial feature matching for text generation.
arXiv preprint arXiv:1706.03850.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. 2017a. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proc.
ICCV.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor
Darrell, Alexei A Efros, Oliver Wang, and Eli
Shechtman. 2017b. Toward multimodal image-to-
image translation. In Proc. NeurIPS.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy-
gen: A benchmarking platform for text generation
models. Proc. SIGIR.

A User Study Design

To control the quality of human evaluation, we
conduct pilot study to design and improve our eval-
uation questionnaire. We invite 23 participants who
are native or proficient English speakers to evaluate
the sentences generated by different methods. For
each participant, we randomly present 10 sentences
from Yelp500 test set, and the corresponding style
transferred sentences generated by different mod-
els. We ask the participants to vote the transferred
sentence which they think the sentence meaning is
closely related to the original sentence with an op-
posite sentiment. However, we find that it may be
difficult to interpret the evaluation results in terms
of transfer quality in details.

Therefore, instead of asking the participants to
directly vote one sentence, we switch the task to
evaluating the sentences in terms of four different
aspects including style transfer, content preserva-
tion, fluency and grammatically, and overall perfor-
mance. Following the literature (Prabhumoye et al.,

19

Method Style Content Fluency Diversity Overall

Ours 36.36 42.42 51.52 72.22 51.01
No Pref. 28.79 43.43 35.35 16.16 36.87
CAEσ=0.001 34.85 14.14 13.13 11.62 12.12

Ours 30.30 42.93 41.41 72.73 51.01
No Pref. 35.35 43.94 44.95 14.65 33.84
CAEσ=0.01 34.34 13.13 13.64 12.63 15.15

Ours 34.34 43.94 48.48 60.10 47.47
No Pref. 29.29 42.93 42.42 28.79 39.39
CAEσ=0.1 36.36 13.13 9.09 11.11 13.13

Ours 24.24 48.48 41.41 56.57 50.00
No Pref. 36.87 35.86 37.88 28.28 33.33
CAEσ=1 38.89 15.66 20.71 15.15 16.67

Ours 30.81 44.95 37.88 48.99 44.44
No Pref. 35.86 41.41 41.41 39.39 34.34
CAEσ=10 33.33 13.64 20.71 11.62 21.21

Ours 33.84 42.42 46.97 68.18 43.94
No Pref. 29.80 48.80 37.88 17.17 41.92
CAEk={1} 36.36 9.09 15.15 14.65 14.14

Ours 36.87 43.43 45.96 76.77 48.48
No Pref. 26.26 45.96 40.91 11.11 37.88
CAEk={1,5} 36.87 10.61 13.13 12.12 13.64

Ours 32.32 41.92 44.44 71.72 46.46
No Pref. 26.77 46.46 41.41 15.15 38.38
CAEk={1,5,10} 40.91 11.62 14.14 13.13 15.15

Ours 31.31 43.94 50.51 73.74 47.47
No Pref. 33.33 43.43 36.87 12.63 13.64
CAEk={1,5,10,15} 35.35 12.63 12.63 13.64 15.66

Table 6: Human preference comparison with the CAE
on one-to-many style transfer results. The numbers are
the user preference score of competing methods.

2018), for each pairwise comparison, a third op-
tion No Preference is given for cases that both are
equally good or bad. Figure 8 and Figure 9 show
the instructions and the guidelines of our question-
naire for human evaluation on Amazon Mechanical
Turk platform. We refer the reader to Sec 3. in the
submitted manuscript for the details of the human
evaluation results.

To evaluate the performance of one-to-many
style transfer, we extend the pair-wise compari-
son to set-wise comparison. Given an input sen-
tence and two sets of model-generated sentences (5
sentences per set), the workers are asked to choose
which set has more diverse sentences with the same
meaning, and which set provides more desirable
sentences considering both content preservation
and style transfer. We also ask the workers to com-
pare the transfer quality in terms of content preser-
vation, style transfer, grammatically and fluency.

B Diversity Baselines

We report further comparisons with different vari-
ants of CAE and BTS. We added random Gaussian
noise to the style code of CAE and BTS, respec-

Method Style Content Fluency Diversity Overall

Ours 34.34 37.88 43.94 66.67 43.43
No Pref. 30.30 47.47 42.93 22.22 40.40
BTSσ=0.001 35.35 14.65 13.13 11.11 16.16

Ours 37.88 38.38 44.95 54.55 46.46
No Pref. 22.73 45.45 34.85 32.32 34.34
BTSσ=0.01 39.39 16.16 20.20 13.13 19.19

Ours 29.80 42.42 45.96 50.51 50.51
No Pref. 29.29 41.92 36.36 35.86 35.35
BTSσ=0.1 40.91 15.66 17.68 13.64 14.14

Ours 33.33 42.93 46.97 38.89 52.53
No Pref. 31.31 40.40 33.33 46.97 24.24
BTSσ=1 35.35 16.67 19.70 14.14 23.23

Ours 34.34 50.51 55.56 63.64 59.60
No Pref. 30.30 33.84 25.25 25.25 18.69
BTSσ=10 35.35 15.66 19.19 11.11 21.72

Ours 31.31 45.96 41.41 72.22 56.06
No Pref. 28.28 44.44 42.93 15.15 32.83
BTSk={1} 40.40 9.6 15.66 12.63 11.11

Ours 37.88 39.39 48.48 71.72 48.99
No Pref. 19.70 48.99 37.37 14.14 35.86
BTSk={1,5} 42.42 11.62 14.14 14.14 15.15

Ours 37.88 36.87 44.95 71.72 47.47
No Pref. 25.25 47.47 38.89 13.64 35.35
BTSk={1,5,10} 36.87 15.66 16.16 14.65 17.17

Ours 36.36 44.95 41.92 72.73 56.57
No Pref. 27.78 46.46 45.96 11.62 31.31
BTSk={1,5,10,15} 35.86 8.59 12.12 15.66 12.12

Table 7: Human preference comparison with the BTS
on one-to-many style transfer results. The numbers are
the user preference score of competing methods.

tively. Specifically, we randomly sample the noise
from the Gaussian distribution with µ = 0 and
σ ∈ {0.001, 0.01, 0.1, 1, 10}, respectively. We em-
pirically found that the generations will be of poor
quality when σ > 10. Thus, we evaluated the
baselines with σ ≤ 10 in the experiments. On the
other hand, we also explored different extensions
to enhance the diversity of sequence generation
of the baselines. For example, we expanded the
generations by randomly select a beam search size
k ∈ {1, 5, 10, 15} per generation.

C Additional One-to-Many Style
Transfer User Study Results

We report the human evaluation with comparisons
to different variants of the CAE and BTS. Simi-
lar to the human study presented in the submitted
manuscript, we conduct evaluation using Amazon
Mechanical Turk. We randomly sampled 200 sen-
tences from Yelp test set for user study. Each com-
parison is evaluated by at least three experts whose
HIT Approval Rate is greater than 90%. We re-
ceived more than 3600 responses, and the results
are summarized in Table 6 and Table 7. We ob-

20

Recon. Loss Back-Trans. Loss Style Cls. Loss Style Score Content Preservation Score BLEU

7 3 7 31.20 45.89 0.00 (66.2/0.2/0.0/0.0)
7 7 3 75.30 20.65 0.00 (0.0/0.0/0.0/0.0)
7 3 3 100.00 42.46 0.00 (35.8/0.1/0.1/0.0)

3 7 7 57.40 90.10 41.28 (69.7/48.2/34.8/25.2)
3 3 7 61.38 90.14 39.72 (70.6/46.5/32.9/23.3)
3 7 3 90.05 74.84 13.87 (48.0/20.4/9.6/4.1)
3 3 3 82.64 83.11 24.5 (59.0/31.8/18.7/10.7)

Table 8: Empiricial analysis of the impact of each term in the proposed objective function for the proposed one-to-
many style transfer task.

served previous models achieve higher style scores,
but their output sentences are often in a generic
format and may not preserve the content with cor-
rect grammar. In contrast, our method achieves
significantly better performance than the baselines
in terms of diversity, fluency, and overall quality.

D Ablation Study on Objective Function

The proposed objective function consists of five
different learning objectives. We conduct abla-
tion study to understand which loss function con-
tributes to the performance. Since adversarial loss
is essential for domain alignment, we evaluate loss
functions by iterating different combination of the
reconstruction loss, the back-translation loss (to-
gether with the mean square loss), and the style
loss.

We report the style score and the content preser-
vation score in this experiment. We additionally
present the BLEU score (Papineni et al., 2002),
which is a common metric for evaluating the per-
formance of machine translation. A model with a
higher BLEU score means that the model is better
in translating reasonable sentences. As shown in
Table 8, we find that training without reconstruc-
tion loss may not produce reasonable sentences
according to the BLEU score. Training with re-
construction loss works well for content preserva-
tion yet it performs less favorably for style trans-
fer. Back-translation loss is able to improve style
and content preservation scores since it encourage
content and style representations to be disentan-
gle. When training with the style loss, our model
improves the style accuracy, yet performs worse
on content preservation. Overall, we observe that
training with all the objective terms achieves a bal-
anced performance in terms of different evaluation
scores. The results show that the reconstruction
loss, the back-translation loss, and the style loss
are important for style transfer.

E Style Code Sampling Scheme

We design a sampling scheme that can lead to a
more accurate style transfer. During inference, our
network takes the input sentence as a query, and
retrieves a pool of target style sentences whose
content information is similar to the query. We
measure the similarity by estimating the cosine
similarity between the sentence embeddings. Next,
we randomly sample a target style code from the
retrieved pool, and generate the output sentence.
The test-time sampling scheme improves the con-
tent preservation score from 83.11 to 83.41, and
achieves similar style score from 82.64 to 82.66 on
Yelp25000 test set. The results show that it is pos-
sible to improve the content preservation by using
the top ranked target style sentences.

We provide further analysis on the sampling
scheme for the training phase. Specifically, dur-
ing training, we sample the target style code from
the pool of top ranked sentences in the target style
domain. Figure 6 shows the content preservation
scores of our method using different sampling
schemes. The results suggest we can improve
the content preservation by learning with the style
codes extracted from the top ranked sentences in
the target style domain. However, we noticed that
this sampling scheme actually reduces the number
of training data. It becomes more challenging for
the model to learn the style transfer function as
shown in Figure 7. The results suggest that it is
more suitable to apply the sampling scheme in the
inference phase.

F Additional Implementation Details

We use 256 hidden units for the content encoder,
the style encoder, and the decoder. All embeddings
in our model have dimensionality 256. We use the
same dimensionalities for linear layers mapping
between the hidden and embedding sizes. Addi-

21

2.5 5.0 7.5 10.0 12.5 15.0
Training Epoch

40

60

80

100
C

on
te

nt
 P

re
se

rv
at

io
n

Sc
or

e

Any pairs
Random Top1000 pairs
Random Top100 pairs
Random Top10 pairs

Content Preservation with Different Sampling Strategy

Figure 6: Performance comparison of our model using
different sampling schemes.

2.5 5.0 7.5 10.0 12.5 15.0
Training Epoch

40

60

80

100

St
yl

e
Sc

or
e

Any pairs
Random Top1000 pairs
Random Top100 pairs
Random Top10 pairs

Style Transfer with Different Sampling Strategy

Figure 7: Performance comparison of our model using
different sampling schemes.

tionally, we modify the convolution block in the
style encoder Esi to have max pooling layers for
capturing the activation of the style words. On the
other hand, we also modify the convolution block
of the content encoder Eci to have average pool-
ing layers for computing the average activation of
the input. During inference, the decoder generates
the output sentence with the multi-step attention
mechanism (Gehring et al., 2017).

G Application to Other Styles

Our approach is general and can be applied to
other sentences that are different from restaurant
reviews. We have studied this capability by im-
plementing our method on the Stylish descriptions
dataset (Chen et al., 2019), which has the country
song lyrics and romance novel collections. Table 9
shows the example results of the proposed method.

H Failure Cases

Although our approach performs more favorably
against the previous methods, our model still fails
in a couple of situations. Table 10 shows the com-
mon failure example generated by our model. We

Lyrics input: My friends they told me you change like
the weather; From one love to another you would go;
But when I first met you your love was like the summer;
Love I never dreamed of turning cold
Romantic style: My friends they told me you change
like the light; From one love to another you would go;
But when I first met you your love was like the sun;
Love I never dreamed of turning cold
Romantic style: My lips they told me you change like
the light; From one love to find you would go; But
when I am you your love was like the mountain; Love I
never wanted of me before

Table 9: One-to-many style transfer results computed
by the proposed algorithm.

Input: I stayed here but was disappointed as its air
conditioner does not work properly.
Output: I love here but was but as well feel’s me work
too.

Input: I might as well been at a street fest it was so
crowded everywhere.
Output: I well as well a at a reasonable price it was so
pleasant.

Input: Free cheese puff - but had rye in it (I hate rye!).
Output: It’s not gourmet but it definitely satisfies my
taste for good Mexican food.

Table 10: Example failure cases generated by the pro-
posed method.

observe that it is challenging to preserve the con-
tent when the inputs are the lengthy sentences. It is
also challenging to transfer the style if the sentence
contains novel symbols or complicated structure.

22

Figure 8: Instruction of our questionnaire on Amazon Mechanical Turk platform.

Figure 9: Example and guideline of our questionnaire on Amazon Mechanical Turk platform.

23

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 24–34
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Balancing Cost and Benefit with Tied-Multi Transformers

Raj Dabre Raphael Rubino Atsushi Fujita
National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, Japan
firstname.lastname@nict.go.jp

Abstract

We propose a novel procedure for training mul-
tiple Transformers with tied parameters which
compresses multiple models into one enabling
the dynamic choice of the number of encoder
and decoder layers during decoding. In train-
ing an encoder-decoder model, typically, the
output of the last layer of the N -layer encoder
is fed to the M -layer decoder, and the out-
put of the last decoder layer is used to com-
pute loss. Instead, our method computes a sin-
gle loss consisting of N × M losses, where
each loss is computed from the output of one
of the M decoder layers connected to one of
the N encoder layers. Such a model subsumes
N × M models with different number of en-
coder and decoder layers, and can be used for
decoding with fewer than the maximum num-
ber of encoder and decoder layers. Given our
flexible tied model, we also address to a-priori
selection of the number of encoder and de-
coder layers for faster decoding, and explore
recurrent stacking of layers and knowledge dis-
tillation for model compression. We present a
cost-benefit analysis of applying the proposed
approaches for neural machine translation and
show that they reduce decoding costs while
preserving translation quality.

1 Introduction

Neural networks for sequence-to-sequence model-
ing typically consist of an encoder and a decoder
coupled via an attention mechanism. Whereas the
very first deep models used stacked recurrent neural
networks (RNN) (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015) in the encoder and
decoder, the recent Transformer model (Vaswani
et al., 2017) constitutes the current state-of-the-art
approach, owing to its better context modeling via
multi-head self- and cross-attentions.

Given an encoder-decoder architecture and its
hyper-parameters, such as the number of encoder

and decoder layers, vocabulary sizes (in the case
of models for texts), and hidden layers, the pa-
rameters of the model, i.e., matrices and biases
for non-linear transformations, are optimized by
iteratively updating them so that the loss for the
training data is minimized. The hyper-parameters
can also be tuned, for instance, through maximiz-
ing the automatic evaluation score on the devel-
opment data. However, in general, it is highly
unlikely (or impossible) that a single optimized
model suffices diverse cost-benefit demands at the
same time. For instance, in practical low-latency
scenarios, one may accept some performance drop
for speed. However, a model used with a subset of
optimized parameters might perform badly. Also,
a single optimized model cannot guarantee the best
performance for each individual input. An exist-
ing solution for these problems is to train multiple
models and host them simultaneously. However,
this approach is not very practical, because it re-
quires a large number of resources. We also lack a
well-established method for selecting appropriate
models for each individual input prior to decoding.

As a more effective solution, we consider train-
ing a single model that subsumes multiple mod-
els which can be used for decoding with different
hyper-parameter settings depending on the input or
on the latency requirements. In this paper, we fo-
cus on the number of layers as an important hyper-
parameter that impacts both speed and quality of
decoding, and propose a multi-layer softmaxing
method, which uses the outputs of all layers during
training. Conceptually, as illustrated in Figure 1,
this is the same as tying (sharing) the parameters
of multiple models with different number of layers
and is not specific to particular types of multi-layer
neural models.

Despite the generality of our proposed method,
in this paper, we focus on encoder-decoder mod-
els with N encoder and M decoder layers, and

24

https://www.aclweb.org/anthology/D19-56%2d

Layer 1

Input

Output

Layer 1

Layer 2

Input

Output

Layer 1

Layer 2

Input

Layer 1

Layer 2

Input

softmax

softmax

tie�

Layer 3 Layer 3

Layer 4 softmax

Output softmax

Output

tie� tie�

tie� tie�

tie�

(a) Multiple tied-layer vanilla models.

Output

Output

Layer 1

Layer 2

Input

softmax

softmax Layer 3

Layer 4 softmax

Output softmax

Output

(b) Collapsing tied layers into one.

Figure 1: The general concept of multi-layer softmaxing for training multi-layer neural models with an example of
a 4-layer model. Figure 1a is a depiction of our idea in the form of multiple vanilla models whose layers are tied
together. Figure 1b shows the result of collapsing all tied layers into a single layer. The red lines indicate the flow
of gradients and hence the shallowest layer in the stack receives the largest number of updates.

compress N ×M models1 by updating the model
with a total of N ×M losses computed by soft-
maxing the output of each of the M decoder layers,
where it attends to the output of each of the N
encoder layers. The number of parameters of the
resultant encoder-decoder model is equivalent to
that of the most complex subsumed model with N
encoder and M decoder layers. Yet, we can now
perform faster decoding using a fewer number of
layers, given that shallower layers are also directly
trained.

To evaluate our proposed method, we take the
case study of neural machine translation (NMT)
(Cho et al., 2014; Bahdanau et al., 2015), using
the Transformer model (Vaswani et al., 2017), and
demonstrate that a single model with N encoder
and M decoder layers trained by our method can
be used for flexibly decoding with fewer than N
and M layers without appreciable quality loss. We
evaluate our proposed method on WMT18 English-
to-German translation task, and give a cost-benefit
analysis for translation quality vs. decoding speed.

Given a flexible tied model, for saving decod-
ing time, we then design mechanisms to choose,
prior to decoding, the appropriate number of en-
coder and decoder layers depending on the input.
We also focus on compact modeling, where we
leverage other orthogonal types of parameter tying
approaches. Compact models are faster to decode
and will be useful in cases where a-priori layer
prediction might be infeasible.

The rest of the paper is organized as follows.
Section 2 briefly reviews related work for com-
pressing neural models. Section 3 covers our

1Rather than casting the encoder-decoder model into a
single column model with (N +M) layers.

method that ties multiple models by softmaxing
all encoder-decoder layer combinations. Section 4
describes our efforts towards designing and evaluat-
ing a mechanism for dynamically selecting encoder-
decoder layer combinations prior to decoding. Sec-
tion 5 describes two orthogonal extensions to our
model aiming at further model compression and
speeding-up of decoding. The paper ends with
Section 6 containing conclusion and future work.

2 Related Work

There are studies that exploit multiple layers si-
multaneously. Wang et al. (2018) fused hidden
representations of multiple layers in order to im-
prove the translation quality. Belinkov et al. (2017)
and Dou et al. (2018) attempted to identify which
layer can generate useful representations for differ-
ent natural language processing tasks. Unlike them,
we make all layers of the encoder and decoder us-
able for decoding with any encoder-decoder layer
combination. In practical scenarios, we can save
significant amounts of time by choosing shallower
encoder and decoder layers for inference.

Our method ties the parameters of multiple mod-
els, which is orthogonal to the work that ties pa-
rameters between layers (Dabre and Fujita, 2019)
and/or between the encoder and decoder within
a single model (Xia et al., 2019; Dabre and Fu-
jita, 2019). Parameter tying leads to compact mod-
els, but they usually suffer from drops in inference
quality. In this paper, we counter such drops with
knowledge distillation (Hinton et al., 2015; Kim
and Rush, 2016; Freitag et al., 2017). This ap-
proach utilizes smoothed data or smoothed training
signals instead of the actual training data. A model
with a large number of parameters and high per-

25

formance provides smoothed distributions that are
then used as labels for training small models in-
stead of one-hot vectors.

As one of the aims in this work is model size
reduction, it is related to a growing body of work
that addresses the computational requirement re-
duction. Pruning of pre-trained models (See et al.,
2016) makes it possible to discard around 80% of
the smallest weights of a model without deteriora-
tion in inference quality, given it is re-trained with
appropriate hyper-parameters after pruning. Cur-
rently, most deep learning implementations use
32-bit floating point representations, but 16-bit
floating point representations (Gupta et al., 2015;
Ott et al., 2018) or aggressive binarization (Cour-
bariaux et al., 2017) can be alternatives. Compact
models are usually faster to decode; studies on
quantization (Lin et al., 2016) and average attention
networks (Xiong et al., 2018) address this topic.

None of the above work has attempted to com-
bine multi-model parameter tying, knowledge dis-
tillation, and dynamic layer selection for obtaining
and exploiting highly-compressed and flexible deep
neural models.

3 Multi-Layer Softmaxing

3.1 Proposed Method

Consider an N -layer encoder and M -layer decoder
model. Let X be the embedded input to the en-
coder, Y the expected output of the decoder as well
as the input to the decoder (for training), and Ŷ
the output predicted by the decoder. Algorithm 1
shows the pseudo-code for our proposed method.
Line 3 represents the process done by the i-th en-
coder layer, Lenc

i , and line 5 does the same for the
j-th decoder layer, Ldec

j , given the embedded de-
coder input, dec0. In simple words, we compute
a loss using the output of each of the M decoder
layers which in turn is computed using the out-
put of each of the N encoder layers. In line 8,
the N × M losses are aggregated2 before back-
propagation. Henceforth, we will refer to this as
the Tied-Multi model.

For a comparison, the vanilla model is formu-
lated as follows: decj = Ldec

j (decj−1, encN),
Ŷ = softmax (decM), and overall loss =
cross entropy(Ŷ , Y).

2We averaged multiple losses in our experiment, but there
are a number of options, such as weighted averaging.

Algorithm 1: Training a tied-multi model
1 enc0 = X;
2 for i in 1 to N do
3 enci = Lenc

i (enci−1);
4 for j in 1 to M do
5 decj = Ldec

j (decj−1, enci);
6 Ŷ = softmax (decj);
7 lossi,j = cross entropy(Ŷ , Y);

8 overall loss = aggregate(loss1,1, . . . , lossN,M);
9 Back-propagate using overall loss;

3.2 Experimental Setup
We evaluated the utility of our multi-layer soft-
maxing method on a neural machine translation
task. We experimented with the WMT18 English-
to-German (En→De) translation task. We used
all the parallel corpora available for WMT18, ex-
cept ParaCrawl corpus,3 consisting of 5.58M sen-
tence pairs, as the training data and 2,998 sen-
tences in newstest2018 as test data. The English
and German sentences were pre-processed using
the tokenizer.perl and truecase.perl
in Moses.4 The true-case models for English and
German were trained on 10M sentences randomly
extracted from the monolingual data made avail-
able for the WMT18 translation task, using the
train-truecaser.perl in Moses.

We evaluated the following two types of models
on both translation quality and decoding speed.

Vanilla models: 36 vanilla models with 1 to 6 en-
coder and 1 to 6 decoder layers, each trained
referring only to the last layer for computing
loss.

Tied-Multi model: A single tied-multi model
with N = 6 encoder and M = 6 decoder
layers, trained by our multi-layer softmaxing.

Our multi-layer softmaxing method was imple-
mented on top of an open-source toolkit of the
Transformer model (Vaswani et al., 2017) in the ver-
sion 1.6 branch of tensor2tensor.5 For train-
ing, we used the default model settings correspond-
ing to transformer base single gpu in
the implementation, except what follows. We
used a shared sub-word vocabulary of 32k deter-
mined using the internal sub-word segmenter of ten-
sor2tensor. To ensure that each model sees roughly

3http://www.statmt.org/wmt18/translation-task.html
We excluded ParaCrawl following the instruction on the
WMT18 website: “BLEU score dropped by 1.0” for this task.

4https://github.com/moses-smt/mosesdecoder
5https://github.com/tensorflow/tensor2tensor

26

BLEU score
Decoding time (sec)

36 vanilla models Single tied-multi model
n\m 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 26.3 30.3 31.9 32.2 32.4 32.9 23.2 28.6 30.5 30.8 31.2 31.5 94.7 101.9 143.4 174.7 215.5 244.5
2 28.6 32.5 33.1 33.3 33.5 33.2 26.5 31.5 33.0 33.6 33.8 34.0 100.5 110.8 153.7 185.6 227.8 253.6
3 29.2 32.6 33.6 34.4 34.3 34.1 27.8 32.5 33.9 34.6 34.7 34.7 102.5 114.2 168.5 194.8 234.0 259.8
4 29.8 33.6 34.3 34.7 34.4 34.5 28.3 33.0 34.3 34.8 34.9 34.9 104.1 105.6 143.9 197.0 219.1 264.6
5 30.7 33.9 34.6 35.5 34.4 35.0 28.6 33.1 34.5 34.8 35.0 35.1 105.1 111.5 156.4 186.0 236.1 268.8
6 30.8 34.0 34.4 35.7 35.0 35.0 28.7 33.1 34.6 34.7 34.9 35.0 107.4 113.6 168.1 190.1 229.5 257.9

Table 1: BLEU scores of 36 separately trained vanilla models and our single tied-multi model used with n (1 ≤
n ≤ N) encoder and m (1 ≤ m ≤M) decoder layers. One set of decoding times is also shown given the fact that
vanilla and our tied-multi models have identical shapes when n andm for encoder and decoder layers are specified.

the same number of examples during training,6 we
trained the models for 300k iterations, with 1 GPU
for the vanilla models and 2 GPUs with batch size
halved for our tied-multi model. We averaged the
last 10 checkpoints saved every after 1k updates,
decoded the test sentences, fixing a beam size7 of
4 and length penalty of 0.6, and post-processed the
decoded results using the detokenizer.perl
and detruecase.perl in Moses.

We evaluated our models using the BLEU metric
(Papineni et al., 2002) implemented in sacreBLEU
(Post, 2018).8 We also present the time consumed
to translate the test data, which includes times for
the model instantiation, loading the checkpoints,
sub-word splitting and indexing, decoding, and sub-
word de-indexing and merging, whereas times for
detokenization are not taken into account.

Note that we did not use any development data
for two reasons. First, we train all models for the
same number of iterations. Second, we use check-
point averaging before decoding, which does not
require development data unlike early stopping.

3.3 Results
Table 1 summarizes the BLEU scores and the av-
erage decoding times9 over 3 runs of all the mod-
els, exhibiting the cost-benefit property of our tied-
multi model in comparison with the results of the
corresponding 36 vanilla models.

Even though the objective function for the tied-
multi model is substantially more complex than

6This might lead to sub-optimal models, such as immature
or over-fit ones, so we will examine the convergence in future.

7One can realize faster decoding by narrowing down the
beam width. This approach is orthogonal to ours and in this
paper we do not insist which is superior to the other.

8https://github.com/mjpost/sacreBLEU
signature: BLEU+case.mixed+lang.en-de+numrefs.1
+smooth.exp+test.wmt18+tok.13a+version.1.3.7

9These numbers will vary depending on machine, model
architecture, concurrent processes, implementation, hyper-
parameters, etc. For instance, decoding with a larger length
penalty produces longer sentences consuming a longer time.

the one for the vanilla model, when performing de-
coding with the 6 encoder and 6 decoder layers, it
achieved a BLEU score of 35.0, which is approach-
ing to the best BLEU score of 35.7 given by the
vanilla model with 6 encoder and 4 decoder layers.
Note that when using a single encoder layer and/or
a single decoder layer, the vanilla models gave sig-
nificantly higher BLEU score than the tied-multi
model. However, when the number of layers is in-
creased, there is no significant difference between
the two types of models.

Regarding the cost-benefit property of our tied-
multi model, two points must be noted:

• BLEU score and decoding time increase only
slightly, when we use more encoder layers.

• The bulk of the decoding time is consumed
by the decoder, since it works in an auto-
regressive manner. We can substantially cut
down decoding time by using fewer decoder
layers which does lead to sub-optimal transla-
tion quality.

One may argue that training a single vanilla
model with optimal number of encoder and de-
coder layers is enough. However, as discussed in
Section 1, it is impossible to know a priori which
combination is the best for different input sentences.
More importantly, a single vanilla model cannot
suffice diverse cost-benefit demands and cannot
guarantee the best translation for any input (see
Section 3.4). Recall that we aim at a flexible model
and that all the results in Table 1 have been ob-
tained using a single tied-multi model, albeit using
different number of encoder and decoder layers for
decoding.

3.4 Analysis and Discussion
We conducted an analysis from the perspective of
training time, model size, and decoding behavior,
in comparison with vanilla models.

27

6

5

4

3

2

1

 1 2 3 4 5 6

#
L
a
y
e
r

o
f
e
n
c
o
d
e
r

u
s
e
d
 f
o
r

d
e
c
o
d
in

g

#Layer of decoder used for decoding

4.1% 1.7% 2.0% 2.0% 2.0% 2.1%

2.6% 2.5% 2.3% 2.0% 2.5% 2.5%

1.8% 2.2% 2.3% 3.0% 2.4% 2.6%

2.4% 2.2% 3.4% 3.0% 3.5% 3.4%

2.2% 3.2% 3.7% 4.2% 3.0% 3.7%

2.1% 2.9% 2.8% 4.6% 3.4% 3.7%

(a) 36 vanilla models.

6

5

4

3

2

1

 1 2 3 4 5 6

#
L
a
y
e
r

o
f
e
n
c
o
d
e
r

u
s
e
d
 f
o
r

d
e
c
o
d
in

g

#Layer of decoder used for decoding

6.0% 5.0% 5.0% 3.2% 2.3% 2.6%

4.4% 5.4% 4.0% 3.1% 2.8% 2.5%

3.4% 4.5% 4.3% 2.9% 3.3% 2.7%

2.5% 3.1% 3.2% 2.4% 2.7% 2.4%

1.7% 2.5% 2.2% 1.9% 1.6% 2.4%

0.4% 0.7% 0.8% 0.7% 0.8% 0.6%

(b) Single tied-multi model.

Figure 2: Distribution of oracle translations determined by chrF scores between reference and each of the hypothe-
ses derived from the 36 combinations of encoder and decoder layers (newstest2018, 2,998 sentences).

Training Time: Given that all our models were
trained for the same number of iterations, we com-
pared the training times between vanilla and tied-
multi models. As a reference, we use the vanilla
model with 6 encoder and 6 decoder layers. The
total training time for all the 36 vanilla models was
25.5 times10 that of the reference model. In con-
trast, the training time for our tied-multi model was
about 9.5 times that of the same reference model.
This is because training of a tied-multi model can
aggressively leverage GPU parallellism for its vast
number of computations.

Model Size: The number of parameters of our
tied-multi model is exactly the same as the vanilla
model withN encoder andM decoder layers. If we
train a set of vanilla models with different numbers
of encoder and decoder layers, we end up with
significantly more parameters. For instance, in case
of N = M = 6 in our experiment, we have 25.2
times more parameters: a total of 4,607M for the
36 vanilla models against 183M for our tied-multi
model. In Section 5, we discuss the possibility of
further model compression.

Decoding Behavior: To better understand the na-
ture of our proposed method, we analyzed the distri-
bution of oracle translations within 36 translations
generated by each of the vanilla and our tied-multi
models. Let (n,m) be an encoder-decoder layer
combination of a given model with n encoder and
m decoder layers. The oracle layer combination for
an input sentence was determined by measuring the
quality of the translation derived from each layer
combination. We used a reference-based metric,

10We measured the collapsed time for a fair comparison,
assuming that all vanilla models were trained on a single GPU
one after another, even though one may be able to use multiple
GPUs to train the 36 vanilla models in parallel.

chrF (Popović, 2016), since it has been particularity
designed for sentence-level translation evaluation
and was shown to have relatively high correlation
with human judgment of translation quality at sen-
tence level for the English–German pair (Ma et al.,
2018). In cases where multiple combinations have
the highest score, we chose the fastest one follow-
ing the overall trend of decoding time (Table 1).
Formally, we considered a combination (n1,m1)
is faster than another combination (n2,m2) if the
following holds.

(n1,m1) < (n2,m2)

≡ m1 < m2 ∨ (m1 = m2 ∧ n1 < n2).
(1)

Figure 2 compares the distributions of oracle layer
combinations for the vanilla and our tied-multi
models, revealing that the shallower layer com-
binations in our tied-multi model often gener-
ates better translations than deeper ones unlike
the vanilla models, despite the lower corpus-level
BLEU scores. This sharp bias towards shallower
layer combinations suggests the potential reduction
of decoding time by dynamically selecting the layer
combination per input sentence prior to decoding,
ideally without performance drop. We address this
task in Section 4.

4 Dynamic Layer Selection

Motivated by the results shown in Figure 2, we
tackled an advanced problem: dynamic selection
of one layer combination prior to decoding.11

4.1 Method
We formalize the encoder-decoder layer combina-
tion selection with a supervised learning approach

11This is the crucial difference from two post-decoding
processes: translation quality estimation (Specia et al., 2010)
and n-best-list re-ranking (Kumar and Byrne, 2004).

28

where the objective is to minimize the following
loss function (2).

argmin
θ

1

|S|
∑

si∈S
L(f(si; θ), tik), (2)

where si is the i-th input sentence (1 ≤ i ≤ |S|),
tik is the translation for si derived from the k-th
layer combination (1 ≤ k ≤ K) among K pos-
sible combinations, where K = N × M in our
case, f is the model with parameters θ, and L is
a loss function. Assuming that the independence
of target labels (layer combinations) for a given
input sentence allows for ties, the model is able to
predict multiple layer combinations for the same
input sentence.

We implemented the model f with a multi-head
self-attention neural network inspired by Vaswani
et al. (2017). The number of layers and atten-
tion heads are optimized during a hyper-parameter
search, while the feed-forward layer dimensional-
ity is fixed to 2,048. Input sequences of tokens are
mapped to their corresponding embeddings, initial-
ized by the embedding table of the tied-multi NMT
model. Similarly to BERT (Devlin et al., 2019), a
specific token is prepended to input sequence be-
fore being fed to the classifier. This token is finally
fed during the forward pass to the output linear
layer for sentence classification. The output lin-
ear layer has K dimensions, allowing to output as
many logits as the number of layer combinations
in the tied-multi NMT model. Finally, a sigmoid
function outputs probabilities for each layer combi-
nation among the K possible combinations.

The parameters θ of the model f are learned
using mini-batch stochastic gradient descent with
Nesterov momentum (Sutskever et al., 2013) and
the loss function L, implemented as a weighted
binary cross-entropy (BCE) function (3).

LBCEik

= −wik
[
δky

i
k · log ŷik + (1− yik) · log(1− ŷik)

]
,

(3)

where yik is the reference class of the i-th input
sentence si, ŷik is the output of the network after
the sigmoid layer given si, and δk = (1− p(tk))α
is the weight given to the k-th class based on class
distribution prior. During our experiment, we have
found that the classifier tends to favor recall in
detriment to precision. To tackle this issue, we
introduce another loss using an approximation of

the macro Fβ implemented following (4).

LiFβ = 1−
[
(1 + β2) · P ·R

(β2 · P) +R

]
, (4)

where P = µ/
∑

k ŷ
i
k, R = µ/

∑
k y

i
k, and µ =∑

k(ŷ
i
k · yik).

The final loss function is the linear interpolation
of LBCE averaged over the K classes and LFβ with
parameter λ, both averaged over the batch: λ ×
LBCE +(1−λ)×LFβ . We tune α, β, and λ during
the classifier hyper-parameter search based on the
validation loss.

4.2 Experiment

The layer combination classifier was trained on a
subset of the training data for NMT models (Sec-
tion 3.2) containing 5.00M sentences, whereas the
remaining sentences compose a development and a
test sets each containing approximately 200k sen-
tences. The two latter subsets were used for hyper-
parameter search and evaluation of the classifier,
respectively. To allow for comparison and repro-
ducibility, the final evaluation of the proposed ap-
proach in terms of translation quality and decoding
speed were conducted on the official WMT devel-
opment (newstest2017, 3,004 sentences) and test
(newstest2018, 2,998 sentences) sets; the latter is
the one also used in Section 3.2.

The training, development, and test sets were
translated by each layer combination of the tied-
multi NMT model. Each source sentence was thus
aligned with 36 translations whose quality were
measured by the chrF metric. Because several com-
binations can lead to the best score, the obtained
dataset was labeled with multiple classes (36 layer
combinations) and multiple labels (ties with regard
to the metric). During inference, the ties were bro-
ken by selecting the layer combination with the
highest value given by the sigmoid function, or
backing-off to the deepest layer combination (6,
6) if no output value reaches 0.5. This tie break-
ing method differs from the oracle layer selection
presented in Equation (1) and in Figure 2 which
prioritizes shallowest layer combinations. In this
experiment, decoding time was measured by pro-
cessing one sentence at a time instead of batch
decoding, the former being slower compared to the
latter, but leads to precise results. The decoding
times were 954s and 2,773s when using (1,1) and
(6,6) layer combinations, respectively. By select-
ing the fastest encoder-decoder layer combinations

29

Classifier Fine-tuning Time (s) BLEU
Baseline (tied (6,6)) 2,773 35.0
Oracle (tied) 1,812 42.1
(#1) 8 layers, 8 heads X 2,736 35.0
(#2) 2 layers, 4 heads X 2,686 34.8
(#3) 2 layers, 4 heads 2,645 34.7
(#4) 4 layers, 2 heads 2,563 34.3

Table 2: Dynamic layer combination selection results
in decoding time (in seconds, batch size of 1) and
BLEU, including the baseline and oracle for the WMT
newstest2018 using the tied-multi model architecture.

according to an oracle, the decoding times went
down to 1,918s and 1,812s for the individual and
tied-multi models, respectively. However, our ob-
jective is to be faster than default setting, that is,
where one would choose (6,6) combination.

Several classifiers were trained and evaluated on
the WMT test set, with or without fine-tuning on
the WMT development set. Table 2 presents the re-
sults in terms of corpus-level BLEU and decoding
speed.12 Some classifiers maintain the translation
quality (middle rows), whereas others show qual-
ity degradation but further gain in decoding speed
(bottom rows). The classification results show that
gains in decoding speed are possible with an a-
priori decision for which encoder-decoder combi-
nation to select, based on the information contained
in the source sentence only. However, no BLEU
gain has so far been observed, demonstrating a
trade-off between decoding speed and translation
quality. Our best configuration for decoding speed
(#4) reduced 210s but leads to a 0.7 point BLEU
degradation. On the other hand, when preserving
the translation quality compared to the baseline
configuration (#1) we saved only 37s. The oracle
layer combination can achieve substantial gains
both in terms of BLEU (7.1 points) and decoding
speed (961s). These oracle results motivate possi-
ble future work in layer combination prediction for
the tied-multi NMT model.

5 Further Model Compression

We examined the combination of our multi-layer
softmaxing approach with another parameter-tying
method in neural networks, called recurrent stack-
ing (RS) (Dabre and Fujita, 2019), complemented
by sequence-level knowledge distillation (Kim and
Rush, 2016), a specific type of knowledge distil-
lation (Hinton et al., 2015). We demonstrate that

12Decoding time does not include the time spent for layer
selection, which took up to 1.0 second for the entire test set.

these existing techniques help reduce the number
of parameters in our model even further.

5.1 Distillation into a Recurrently Stacked
Model

In Section 2, we have discussed several model com-
pression methods orthogonal to multi-layer soft-
maxing. Having already compressed N ×M mod-
els with our approach, we consider further com-
pressing it using RS. However, models that use RS
layers tend to suffer from performance drops due
to the large reduction in the number of parameters.
As a way of compensating the performance drop,
we apply sequence-level knowledge distillation.

First, we decode all source sentences in the train-
ing data to generate a pseudo-parallel corpus con-
taining distillation target sentences, i.e., soft-targets
for the child model which makes learning easier
and hence is able to mimic the behavior of the par-
ent model. Then, an RS child model is trained with
multi-layer softmaxing on the generated pseudo-
parallel corpus. Among a variety of distillation
techniques, we chose the simplest one to show the
impact that distillation can have in our setting, leav-
ing an extensive exploration of more complex meth-
ods for the future.

5.2 Experiment

We conducted an experiment to show that RS and
sequence distillation can lead to an extremely com-
pressed tied-multi model which no longer suffers
from performance drops. We compared the follow-
ing four variations of our tied-multi model trained
with multi-layer softmaxing.

Tied-multi model: A model that does not share
the parameters across layers, trained on the
original parallel corpus.

Distilled tied-multi model: The same model as
above but trained on the pseudo-parallel cor-
pus.

Tied-multi RS model: A tied-multi model that
uses RS layers, trained on the original parallel
corpus.

Distilled tied-multi RS model: The same model
as above but trained on the pseudo-parallel
corpus.

First, we trained 5 vanilla models with 6 encoder
and 6 decoder layers, because the performance of

30

Tied-multi model Tied-multi RS model
n\m 1 2 3 4 5 6 1 2 3 4 5 6

without
distillation

1 23.2 28.6 30.5 30.8 31.2 31.5 25.7 29.8 30.6 30.8 30.7 30.9
2 26.5 31.5 33.0 33.6 33.8 34.0 28.5 32.3 32.9 33.0 33.1 33.2
3 27.8 32.5 33.9 34.6 34.7 34.7 29.2 32.9 33.6 33.8 33.6 33.5
4 28.3 33.0 34.3 34.8 34.9 34.9 29.3 33.2 33.7 33.9 33.6 33.7
5 28.6 33.1 34.5 34.8 35.0 35.1 29.4 33.2 33.7 33.9 33.9 34.0
6 28.7 33.1 34.6 34.7 34.9 35.0 29.2 33.2 33.7 33.9 34.0 33.8

with
distillation

1 30.1 34.0 35.1 35.3 35.6 35.7 31.2 33.5 34.1 34.2 34.3 34.3
2 33.4 35.8 36.6 36.8 37.1 37.3 33.7 35.5 35.7 35.7 35.8 35.8
3 34.7 36.5 37.0 37.4 37.4 37.5 34.1 35.8 36.1 36.1 36.2 36.2
4 35.2 36.8 37.2 37.4 37.5 37.5 34.3 36.0 36.2 36.2 36.3 36.3
5 35.5 36.9 37.1 37.4 37.5 37.6 34.5 36.1 36.2 36.3 36.3 36.3
6 35.5 37.0 37.2 37.5 37.6 37.6 34.6 36.1 36.2 36.2 36.3 36.2

Table 3: BLEU scores of the tied-multi models with (left block) and without (center and right blocks) RS layers,
each trained with (bottom block) and without (top block) sequence distillation. n and m respectively denote the
number of layers in the encoder and the decoder. The top-left block is identical to the middle block in Table 1.

distilled models is affected by the quality of par-
ent models, and NMT models vary vastly in per-
formance (around 2.0 BLEU points) depending
on parameter initialization. We then decode the
source side (English side) of the entire training
data (5.58M sentences) with the one13 with the
highest BLEU score on the newstest2017 (used in
Section 4.2) in order to generate pseudo-parallel
corpus for sequence distillation.

Table 3 gives the BLEU scores for all models.
Comparing top-left and top-right blocks of the ta-
ble, we can see that the BLEU scores for RS models
are higher than their non-RS counterparts when us-
ing fewer than 3 decoder layers. This shows the
benefit of RS layers despite the large parameter
reduction. However, the reduction in parameters
negatively affects (up to 1.3 BLEU points) when
decoding with more decoder layers, confirming the
limitation of RS as expected.

Comparing the scores of the top and bottom
halves of the table, we can see that distillation dra-
matically boosts the performance of the shallower
encoder and decoder layers. For instance, without
distillation, the tied-multi model gave a BLEU of
23.2 when decoding with 1 encoder and 1 decoder
layers, but the same layer combination reaches
30.1 BLEU through distillation. Given that RS
further improves performance using lower layers,
the BLEU score increases to 31.2. As such, distil-
lation enables decoding using fewer layers without
substantial drops in performance. Furthermore, the
BLEU scores did not vary significantly when the
layers deeper than 3 were used, meaning that we
might as well train shallower models using distil-

13Ensemble of multiple models (Freitag et al., 2017) is
commonly used for distillation, but we used a single model to
save decoding time.

Model(s) Parameters Relative size
36 vanilla models 4,608M 25.16
Single tied-multi model 183M 1.00
36 RS models 2,623M 14.33
Single tied-multi RS model 73M 0.40

Table 4: Total model sizes for covering all 36 encoder-
decoder layer combinations. The relative size is cal-
culated regarding the tied-multi model as a standard.
Similarly to “36 vanilla models,” “36 RS models” rep-
resents the total number of parameters of all models.

lation. The performance of our final model, i.e.,
the distilled tied-multi RS model (bottom-right),
was significantly lower than the non-RS model (up
to 1.5 BLEU points) similarly to its non-distilled
counterpart. However, given that it outperforms
our original tied-multi model (top-left) in all the
encoder-decoder layer combinations, we conclude
that we can obtain a highly compact model with
better performance.

We now analyze the effect of RS and knowledge
distillation on model size and decoding speed.

Model Size: Table 4 gives the sizes of several
models and their ratio with respect to the tied-multi
model. Training vanilla and RS models with 36
different encoder-decoder layer combinations re-
quired 25.2 and 14.3 times the number of parame-
ters of a single tied-multi model, respectively. Al-
though RS led to some parameter reduction, com-
bining RS with our tied-multi model resulted in a
further compressed single model. This model has
63.2 times and 36.0 times fewer parameters than all
the individual vanilla and RS models, respectively.

Decoding Speed: Table 5 compares results ob-
tained by beam and greedy search using our dis-
tilled tied-multi RS model. In general, greedy

31

BLEU score Decoding time (sec)
n\m 1 2 3 4 5 6 1 2 3 4 5 6

Beam
search

1 31.2 33.5 34.1 34.2 34.3 34.3 94.7 101.9 143.4 174.7 215.5 244.5
2 33.7 35.5 35.7 35.7 35.8 35.8 100.5 110.8 153.7 185.6 227.8 253.6
3 34.1 35.8 36.1 36.1 36.2 36.2 102.5 114.2 168.5 194.8 234.0 259.8
4 34.3 36.0 36.2 36.2 36.3 36.3 104.1 105.6 143.9 197.0 219.1 264.6
5 34.5 36.1 36.2 36.3 36.3 36.3 105.1 111.5 156.4 186.0 236.1 268.8
6 34.6 36.1 36.2 36.2 36.3 36.2 107.4 113.6 168.1 190.1 229.5 257.9

Greedy
search

1 30.4 33.1 33.8 34.0 33.8 33.9 58.8 69.1 78.4 94.6 110.7 124.3
2 33.2 35.0 35.3 35.5 35.4 35.5 62.7 68.0 78.8 94.1 112.8 125.8
3 33.8 35.5 35.7 35.7 35.8 35.8 71.8 70.3 79.3 99.9 114.9 128.4
4 34.0 35.8 35.8 35.8 35.8 35.8 72.1 70.7 82.3 98.8 115.2 127.5
5 34.0 35.7 35.8 35.8 35.8 35.9 76.2 68.6 80.9 99.4 120.9 136.7
6 34.1 35.6 35.8 35.8 35.8 35.9 76.6 69.3 81.5 99.2 120.7 131.5

Table 5: BLEU scores and decoding times of our distilled tied-multi RS model by beam and greedy search. The
top-left block is identical to the bottom-right block in Table 3. The top-right block is identical to the right-most
block in Table 1.

decoding is faster than beam decoding, but suf-
fers from reduced performance. By using our dis-
tilled model, however, greedy decoding reduced
the BLEU scores only by 0.5 points compared to
beam decoding. For instance, whereas beam de-
coding with our tied-multi model without RS and
distillation (top-left block in Table 3) achieved the
highest BLEU score of 35.1 with 5 encoder and 6
decoder layers consuming 268.8s, greedy decod-
ing with our distilled tied-multi RS model with 2
encoder and 2 decoder layers resulted in a com-
parable BLEU score of 35.0 in 68.0s, i.e., with a
factor of 4.0 in decoding time thanks to RS and
distillation. This happens because we have used
translations generated by beam decoding as target
sentences for knowledge distillation, which has the
ability to loosely distill beam search behavior into
greedy decoding behavior (Kim and Rush, 2016).

6 Conclusion

In this paper, we have proposed a novel procedure
for training encoder-decoder models, where the
softmax function is applied to the output of each
of the M decoder layers derived using the output
of each of the N encoder layers. This compresses
N×M models into a single model that can be used
for decoding with a variable number of encoder
(1 ≤ n ≤ N) and decoder (1 ≤ m ≤ M) layers.
This model can be used in different latency scenar-
ios and hence is highly versatile. We have made a
cost-benefit analysis of our method, taking NMT
as a case study of encoder-decoder models. We
have proposed and evaluated two orthogonal exten-
sions and show that we can (a) dynamically choose
layer combinations for slightly faster decoding and
(b) further compress models using recurrent stack-

ing with knowledge distillation leading to models
that also enable faster decoding.

For further speed up in decoding as well as
model compression, we plan to combine our ap-
proach with other techniques, such as those men-
tioned in Section 2. Although we have only tested
our idea for NMT, it should be applicable to other
tasks based on deep neural networks.

Acknowledgments

We would like to thank all the reviewers for their
insightful comments and suggestions. A part of this
work was conducted under the program “Research
and Development of Enhanced Multilingual and
Multipurpose Speech Translation System” of the
Ministry of Internal Affairs and Communications
(MIC), Japan. Atsushi Fujita was partly supported
by JSPS KAKENHI Grant Number 19H05660.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations, San Diego, USA.

Yonatan Belinkov, Lluı́s Màrquez, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James Glass. 2017.
Evaluating layers of representation in neural ma-
chine translation on part-of-speech and semantic
tagging tasks. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1–10,
Taipei, Taiwan.

Kyunghyun Cho, Bart van Merriënboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder

32

for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1724–1734, Doha,
Qatar.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2017. Bina-
rized neural networks: Training deep neural net-
works with weights and activations constrained to +1
or -1. CoRR, abs/1602.02830.

Raj Dabre and Atsushi Fujita. 2019. Recurrent stack-
ing of layers for compact neural machine translation
models. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 6292–6299, Honolulu,
USA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional Transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, USA.

Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi,
and Tong Zhang. 2018. Exploiting deep represen-
tations for neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4253–4262,
Brussels, Belgium.

Markus Freitag, Yaser Al-Onaizan, and Baskaran
Sankaran. 2017. Ensemble distillation for neural
machine translation. CoRR, abs/1702.01802.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrish-
nan, and Pritish Narayanan. 2015. Deep learning
with limited numerical precision. In Proceedings
of the 32nd International Conference on Machine
Learning, pages 1737–1746, Lille, France.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
USA.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 169–176, Boston, USA.

Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth An-
napureddy. 2016. Fixed point quantization of deep
convolutional networks. In Proceedings of the 33rd
International Conference on International Confer-
ence on Machine Learning, pages 2849–2858, New
York, USA.

Qingsong Ma, Ondřej Bojar, and Yvette Graham. 2018.
Results of the WMT18 metrics shared task. In Pro-
ceedings of the Third Conference on Machine Trans-
lation, Volume 2: Shared Task Papers, pages 682–
701, Brussels, Belgium.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
USA.

Maja Popović. 2016. chrF deconstructed: β param-
eters and n-gram weights. In Proceedings of the
First Conference on Machine Translation: Volume
2, Shared Task Papers, pages 499–504, Berlin, Ger-
many.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium.

Abigail See, Minh-Thang Luong, and Christopher D.
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings of
the 20th SIGNLL Conference on Computational Nat-
ural Language Learning, pages 291–301, Berlin,
Germany.

Lucia Specia, Dhwaj Raj, and Marco Turchi. 2010. Ma-
chine translation evaluation versus quality estima-
tion. Machine Translation, 24(1):39–50.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Proceed-
ings of the International Conference on Machine
Learning, pages 1139–1147, Atlanta, USA.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the 27th Neural Infor-
mation Processing Systems Conference, pages 3104–
3112, Montréal, Canada.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 30th Neural Infor-
mation Processing Systems Conference, pages 5998–
6008, Long Beach, USA.

Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yin-
qiao Li, and Jingbo Zhu. 2018. Multi-layer repre-
sentation fusion for neural machine translation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3015–3026, Santa
Fe, USA.

33

Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and
Tao Qin. 2019. Tied Transformers: Neural machine
translation with shared encoder and decoder. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, pages 5466–5473, Honolulu, USA.

Deyi Xiong, Biao Zhang, and Jinsong Su. 2018. Accel-
erating neural Transformer via an average attention
network. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
Long Papers, pages 1789–1798, Melbourne, Aus-
tralia.

34

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 35–42
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Compressing Neural Machine Translation Models with 4-bit Precision

Alham Fikri Aji and Kenneth Heafield
School of Informatics, University of Edinburgh

10 Crichton Street
Edinburgh EH8 9AB

Scotland
a.fikri@ed.ac.uk, kheafiel@inf.ed.ac.uk

Abstract

Quantization is one way to compress Neu-
ral Machine Translation (NMT) models, es-
pecially for edge devices. This paper pushes
quantization from 8 bits, seen in current work
on machine translation, to 4 bits. Instead of
fixed-point quantization, we use logarithmic
quantization since parameters are skewed to-
wards zero. We then observe that quantizing
the bias terms in this way damages quality, so
we leave them uncompressed. Bias terms are
a tiny fraction of the model so the impact on
compression rate is minimal. Retraining is nec-
essary to preserve quality, for which we pro-
pose to use an error-feedback mechanism that
treats compression errors like noisy gradients.
We empirically show that NMT models based
on the Transformer or RNN architectures can
be compressed up to 4-bit precision without
any noticeable quality degradation. Models
can be compressed up to binary precision, al-
beit with lower quality. The RNN architec-
ture appears more robust towards compression,
compared to the Transformer.

1 Introduction

Neural Machine Translation (NMT) is resource-
demanding. Current state-of-the-art architectures,
such as the Transformer (Vaswani et al., 2017) or
deep RNN (Barone et al., 2017) are typically hun-
dreds of megabytes in size. In a client-based trans-
lation system, these large models must be deployed
locally, thus consuming network bandwidth for dis-
tributing the model, and disk space for storing the
model.

Model quantisation has been widely studied as
a way to compress model size and increase the in-
ference speed. However, most of this work has
focused on convolution neural networks for com-
puter vision tasks (Miyashita et al., 2016; Lin et al.,
2016; Hubara et al., 2016, 2017; Jacob et al., 2018).

As such, research on model quantisation for NMT
tasks remains limited.

We find that the model can be compressed at
up to 4-bit precision without sacrificing quality.
We first explore the use of logarithmic-based quan-
tisation over fixed-point quantisation (Miyashita
et al., 2016) based on the empirical findings that
parameter distribution is not uniform, but instead
concentrated near zero (Lin et al., 2016; See et al.,
2016). The magnitude of a parameter also varies
across layers; therefore, we propose an improved
method of scaling the quantization centres. We
also notice that biases do not quantise very well.
However, since biases do not consume a noticeable
amount of memory, they can be left unquantised.
Lastly, we explore the significance of re-training in
the model compression scenario. We adopt an error
feedback mechanism (Seide et al., 2014) to pre-
serve the quantisation error rather than discarding
it at every update during re-training.

2 Related Work

A considerable amount of research on model quan-
tisation has been performed in the area of computer
vision with convolutional neural networks; how-
ever, research on model quantisation in the field
of neural machine translation is far more limited.
Therefore, we will also refer to work on neural
models for image processing in this section, where
appropriate.

Hubara et al. (2016) quantised the model and
activation to binary on a CNN network for vari-
ous image classification tasks. The binary network
achieved near state-of-the-art quality on several
easier tasks such as MNIST and CIFAR-10 but
achieved sub-par performance on the more chal-
lenging ImageNet dataset (losing over 20% accu-
racy with quantised GoogleNet). Hubara et al.
(2017) later reported that with 6-bit fixed-point

35

https://www.aclweb.org/anthology/D19-56%2d

quantisation, GoogleNet “only” lost 5% accuracy.
(Lin et al., 2016) used different bit precisions on
various CNN layers, achieving over 20% compres-
sion on the CIFAR-10 task.

Since the model’s parameters are highly con-
centrated near zero, Miyashita et al. (2016) opted
for logarithmic quantisation. They report an im-
provement in preserving model accuracy over lin-
ear quantisation while achieving the same model
compression rate. They also reported negligible
accuracy degradation when compressing VGG16
with 3-bit logarithmic quantisation, whereas 3-bit
fixed-point quantisation suffered a 6% accuracy
drop.

Hubara et al. (2017) compress an LSTM-based
architecture for language modelling to 4-bits with-
out any quality degradation but had to scale the
hidden layer size by 3. See et al. (2016) pruned an
NMT model by removing any weight values lower
than a certain threshold. They achieve 80% model
sparsity without any quality degradation.

A relevant work with respect to our purposes is
the submission of Junczys-Dowmunt et al. (2018)
to the Shared Task on Efficient Neural Machine
Translation in 2018. This submission applied an
8-bit linear quantisation for NMT models without
any noticeable deterioration in translation quality.
Similarly, Quinn and Ballesteros (2018) proposed
the use of 8-bit matrix multiplication to increase
the CPU inference speed of an NMT system.

3 Low-precision Neural Machine
Translation

3.1 Log-based Compression

Parameters in deep learning models are normally
distributed (Lin et al., 2016; See et al., 2016).
Therefore, a uniformly distributed fixed-point quan-
tisation may not fit the parameter distribution. To
improve resolution for small values, we adopt log-
arithmic quantisation following Miyashita et al.
(2016) where parameter density is the highest. Fig-
ure 1 illustrates the weight distribution and our
log-based quantisation.

We use the same quantisation centres for positive
and negative values. When compressing to B bits,
a single bit represents the sign while the remaining
B−1 bits represent the log magnitude. The centres
are tuned based on the absolute value of the data.

For efficient implementation and because the
impact on quality was minimal after re-training,
we use log base 2. Log base 2 means that ex-

0.3 0.2 0.1 0.0 0.1 0.2 0.3

(a) First layer encoder self attention weight histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3

(b) First layer decoder self attention weight histogram

0.3 0.2 0.1 0.0 0.1 0.2 0.3

(c) First layer decoder context attention weight

Figure 1: Histograms of the first layer’s attention key
weights. Parameters follow a normal distribution. Ver-
tical lines illustrate the log-based quantisation centres.

ponentiation amounts to a bit-shift while taking
a rounded log (which will be used to quantise a
value) amounts to addition followed by finding the
leftmost 1 in binary.

We find that tensors might not have the same
parameter magnitude. Therefore we also scale
the quantisation centres to approximate each ten-
sor better. This approach is different from that
of Miyashita et al. (2016), where quantisation cen-
tres are not scaled, thus letting every tensor to have
the same set of centres. Formally, each quantisation
centre takes the form ±S2q where S is a scaling
factor, and q is an integer in the range (−2B−1, 0].
The scaling factor S is selected separately for each
tensor in the model.

To minimise the mean squared encoding error,
values should be quantised to the nearest centre.
Miyashita et al. (2016) find the nearest centre in
logarithmic space by taking the log and then round-
ing to the nearest integer, which is not the same
as finding the nearest centre in normal space. For
example, their approach will quantise 5.8 to 23

instead of 22 because log2(5.8) ≈ 2.536, which
rounds to 3. In normal space, 5.8 is closer to 22

instead of 23.
We can implement rounding to the nearest centre

in normal space efficiently by multiplying by 2
3 ,

36

taking the log and rounding up to the next integer.
Let x ∈ [2q, 2q+1]. Thus:

x rounds up to 2q+1 ⇐⇒ x >
2q + 2q+1

2

⇐⇒ x >
2q(1 + 2)

2

⇐⇒ 2

3
x > 2q

⇐⇒ log2
2

3
x > q

(1)

Therefore, given a positive x, we can find the
quantised magnitude of q with respect to rounding
scheme in normal space by:

q = dlog2(
2

3
t)e (2)

Ultimately, given a value v that will be quantised
a B-bit logarithmic quantisation. We encode v as
(sign, q), where sign represents the sign (1-bit),
and q represents the magnitude (B − 1 bits). Our
quantisation functions as follows:

sign = sign(v)

t = clip(|v|/S, [1, 21−2B−1
])

q = dlog2(
2

3
t)e

(3)

where t is a temporary variable. We first scale the
value to the desired range based on scaling factor S.
We will discuss more on computing S later. Then,
we clip the value into the given range since we have
limited quantisation centres. This then decodes to
v′ ≈ v as v′ = signS2q. In practice, the sign is
stored with q.

3.2 Selecting the Scaling Factor
There are a few heuristics to choose a scaling factor
of S. Junczys-Dowmunt et al. (2018) and Jacob
et al. (2018) scale the model based on its maxi-
mum value, which can be very unstable–especially
during re-training. Alternatively, Lin et al. (2016)
and Hubara et al. (2016) use a pre-defined step size
for fixed-point quantization. Our objective is to
select a scaling factor S such that the quantised
parameters are as close to the original as possible.
Therefore, we optimise S such that it minimises
the squared error between the original and the com-
pressed parameters.

We propose a method to fit S by minimising the
SME. We start with an initial scale S based on the

parameters’ maximum value. For a given S, we
apply our quantisation routine described in Equa-
tion 3 to a tensor v, resulting in an approximation
of v′. For a given assignment v′, we fit a new scale
S such that:

S = arg min
S

∑

i

(v′i − vi)
2 (4)

Substituting v′i within Eq. 4, we have:

S = arg min
S

∑

i

(sign(vi)S2qi − vi)
2 (5)

To simplify the equation, let a temporary vari-
able ai to substitute sign(vi)2

qi . Hence we have:

S = arg min
S

∑

i

(aiS − vi)
2 (6)

To optimise the given objective, we take the first
derivative of Equation 6 such that:

d

dS

∑

i

(aiS − vi)
2 = 0

2
∑

i

(ai(aiS − vi)) = 0

∑

i

(a2iS)−
∑

i

(aivi) = 0

S
∑

i

a2i =
∑

i

(aivi)

S =

∑
i(aivi)∑
i ai

2

S =

∑
i(sign(vi)2

qivi)∑
i(sign(vi)2qi)2

S =

∑
i(2

qi |vi|)∑
i 4qi

(7)

We optimise S for each tensor independently.

3.3 Re-training
We observe later in Section 4.2 that quantisation
damages the model. Therefore, we re-train the
model after initial quantisation to allow it to re-
cover some of the quality loss. In the re-training
phase, we compute the gradients normally with
full precision. We then re-quantise the model after

37

Figure 2: Log-quantization step function.

every update to the parameters, including fitting
scaling factors.

Re-quantising the model after every update intro-
duces quantisation errors. The re-quantisation error
is preserved in a residual variable and added to the
next step’s parameter (Seide et al., 2014) before
quantisation. We find that re-training fails to work
without this mechanism (Section 4.2).

3.4 Handling Biases

We do not quantise bias values in the model. We
find that biases are not as highly concentrated near
zero when compared to other parameters. Empiri-
cally, in our pre-trained Transformer architecture,
bias has a higher standard deviation of 0.17 (com-
pared to 0.07 for other parameters). Attempting to
log-quantise them used only a fraction of the avail-
able quantisation points. In any case, bias values
do not consume a lot of memory relative to other
parameters. In our Transformer architecture, they
account for only ∼0.2% of the parameter values.

3.5 Low-precision Dot Products

To improve the CPU inference speed, we explore
training and computing dot products in low preci-
sion. Activations coming into a matrix multipli-
cation are quantised on the fly, while intermediate
activations (such as tanh) are not quantised.

We use the same log-based quantisation proce-
dure described in Section 3.1 when training the
model. However, we only attempt a fixed pre-
determined scale. Running the slower EM ap-
proach to optimise the scale before every dot prod-
uct would not be fast enough for inference applica-
tions.

Training with Quantised Dot Products
Our log-quantised activation is a step function, as
illustrated in in Figure 2. Therefore, the deriva-

tive of this function is 0 almost everywhere, or
undefined in the quantization centres. Thus, we
cannot back-propagate through this function nor-
mally. Inspired by (Hubara et al., 2017), we utilise
a straight-through estimator (Bengio et al., 2013)
to set the derivative of the the function to 1, thus
enabling training.

Computing Dot Products in Log-space
A dot product operation consists of two sub-
operations: element-wise multiplication and sum.
In our case, we now have two vectors a and b, both
in the form of:

a = Sa ∗ [(signj1 ∗ 2j1), . . . , (signjn ∗ 2jn)]

b = Sb ∗ [(signk1 ∗ 2k1), . . . , (signkn ∗ 2kn)]

Multiplication is performed by adding the powers.
We then add the resulting multiplications together
normally, as follows:

a · b = Sa ∗ Sb

∑

i

(signji ∗ signki ∗ 2ji+ki) (8)

Computing power is obtained by using a bit-shift,
while computing signji ∗ signki can be performed
using bitwise xor, therefore avoiding expensive
multiplication instructions (Miyashita et al., 2016).

4 Experiments

4.1 Experiment Setup
We use systems for the WMT 2017 English-to-
German news translation task for our experiment,
which differs from the WNGT shared task set-
ting previously reported. We use back-translated
monolingual corpora (Sennrich et al., 2016a) and
byte pair encoding (Sennrich et al., 2016b) to pre-
process the corpus. Quality is measured based on
BLEU (Papineni et al., 2002) score using sacre-
BLEU script (Post, 2018).

We first pre-train baseline models with both
Transformer and RNN architectures. Our Trans-
former model consists of six encoder and six de-
coder layers with tied embedding. Our deep RNN
model consists of eight layers of bidirectional
LSTM. Models were trained synchronously with
a dynamic batch size of 40 GB per batch using
the Marian toolkit (Junczys-Dowmunt et al., 2018).
The models are trained until we observe no im-
provement in 10 consecutive validations. Models
are optimised with the Adam optimiser (Kingma
and Ba, 2014). The rest of the hyperparameter

38

settings on both models follow the suggested con-
figurations (Vaswani et al., 2017; Sennrich et al.,
2017). We use wmt2016 as the test set.

4.2 4-bit Transformer Model

In this experiment subsection, we explore different
ways to scale the quantisation centres, the signif-
icance of quantising biases and the significance
of re-training. We use a pre-trained Transformer
model as our baseline and apply our quantisation
algorithm on top of that. This experiment focuses
solely on the compression ratio. Therefore, models
are decompressed back into a 32-bit floating-point
value for inference.

Table 1 summarises the results. Using a sim-
ple (albeit unstable) max-based scaling has shown
to perform better than not using the scale factor.
However, fitting the scaling factor to minimise the
quantisation squared error produces the best qual-
ity. The BLEU score differences between methods
of choosing the scaling factor are diminished after
re-training.

We can also see improvements by not quantis-
ing biases, especially without re-training. Without
any re-training involved, we reached the highest
BLEU score of 35.47 by using an optimised scale
in addition to uncompressed biases. Without bias
quantisation, we obtained a ∼7.9x compression ra-
tio (instead of 8x) with a 4-bit quantisation. Based
on this trade-off, we argue that it is more beneficial
to keep the biases in full precision.

Re-training has shown to generally improve qual-
ity. After re-training, the quality differences be-
tween various scaling and biases quantisation con-
figurations are minimal. These results suggest that
re-training helps the model to fine-tune under a new
quantised parameter space.

Training Routine
We prepare our 4-bit quantisation model by re-
training from a full precision model. We also store
the quantisation errors to be considered for the next
update. In this subsection, we answer the question
of whether it is necessary to perform these steps.
We explore the preparation of the 4-bit model if
trained from scratch. Similarly, we explore 4-bit
model preparation without an error feedback mech-
anism. For this experiment, we use optimised scal-
ing and 32-bit bias when applying 4-bit log quanti-
sation. Based on the previous result, we left biases
unquantised.

The results in Table 2 indicate that fine-tuning

from a pre-trained model and error feedback are
necessary to produce a high-quality 4-bit model.
Removing either of them degrades the quality.
BLEU score is dramatically reduced if we train
the model from scratch. Likewise, the quantised
model is practically unable to learn without the
error feedback mechanism. As shown in Table 1,
the quantised model achieved a 34.31 BLEU score
without re-training. Re-training said model barely
improves the BLEU to 34.45 without the error feed-
back mechanism.

Size Comparison

To demonstrate the improvement of our method,
we compare several compression approaches to
our 4-bit logarithmic quantisation method with re-
training and without bias quantisation. One of the
arguably naive methods used to reduce model size
is the use of smaller unit size. For Transformer,
we set the feed-forward dimension to 512 (from
2048) and the embedding size to 128 (from 512).
For RNN, we set the dimension to 320 (from 1024)
and the embedding size to 160 (from 512). Using
this method, the model size is ∼8x smaller and
similar to 4-bit quantisation in terms of the model
compression rate.

We also introduce the 4-bit fixed-point quanti-
sation approach as a comparison, which is based
on Junczys-Dowmunt et al. (2018). However, we
made a few modifications to the original approach.
Firstly, we apply re-training, which is absent in
their implementation. Moreover, we skip bias quan-
tisation. Finally, we optimise the scaling factor
instead of the suggested max-based scale.

Table 3 summarises the results, which indicate
that reducing the model size by simply reducing the
dimension resulted in the worst performance. Our
result is in line with (Huang et al., 2019), who show
that reducing the model size by using fewer layers
degrades quality. Logarithmic-based quantisation
has been shown to perform better when compared
to fixed-point quantisation using both architectures.

The RNN model seems to be more robust to-
wards the compression. RNN models exhibit re-
duced quality degradation in all compression sce-
narios. We hypothesise that the gradients computed
with a highly compressed model are very noisy,
thus resulting in noisy parameter updates. Our find-
ing is in line with prior research (Chen et al., 2018;
Aji and Heafield, 2019), which state Transformer
is more sensitive towards noisy training conditions.

39

Method Compression Scaling
Unscaled Max Optimized

32-bit FP model (Baseline) - 35.66 - -
4-bit log model 8x 25.20 28.08 33.33
4-bit log model + 32-bit FP bias 7.88x 34.16 34.29 34.31
4-bit log model + re-training 8x 34.92 34.81 35.26
4-bit log model + 32-bit FP bias + re-training 7.88x 35.09 35.25 35.47

Table 1: 4-bit Transformer quantisation performance for English-to-German translation, measured in BLEU score.
We explore different methods of determining the scaling factor as well as skipping bias quantisation and re-training.

Method FT EF Transformer RNN
Baseline - - 35.66 34.28
4-bit 3 3 35.47 (-0.19) 34.22 (-0.06)

4-bit 3 7 34.45 (-1.21) 33.32 (-0.96)

4-bit 7 3 28.54 (-7.12) 28.45 (-5.83)

4-bit 7 7 0.05(-35.61) 0.00(-34.48)

Table 2: The model performance (based on BLEU
score) of various training scenarios using both Trans-
former and RNN architectures. FT = Fine-Tuning, EF
= Error-Feedback.

Method Transformer RNN
Baseline 35.66 34.28
Reduced Dimension 29.03 (-6.63) 30.88 (-3.40)

4-bit fixed point 34.61 (-1.05) 34.05 (-0.23)

4-bit log (Ours) 35.47 (-0.19) 34.22 (-0.06)

Table 3: The model performance (based on BLEU
score) of various quantisation approaches using both
Transformer and RNN architecture.

4.3 Quantised Dot-Product

Quality Benchmark

We now apply logarithmic quantisation for all ma-
trix multiplication inputs. We use the same quanti-
sation procedure as the parameter. However, we do
not fit the scaling factor since it is very inefficient.
Hence, we do not scale the quantization centres
for the activation. For the parameter quantisation,
we use an optimised scale with uncompressed bi-
ases based on the previous experiment. Table 4
presents the quality results of the experiment. Gen-
erally, we observe quality degradation compared to
a full-precision dot product.

Speed Benchmark

Unfortunately, current hardware does not support
a 4-bit instruction, thus our dot-product must be

Method Transformer RNN
Baseline 35.66 34.28
+ 4-bit model 35.47 (-0.19) 34.22 (-0.06)

+ 4-bit dot-product 35.05 (-0.61) 33.12 (-1.16)

Table 4: Model performance (in BLEU) of model quan-
tisation with dot product quantisation using both Trans-
former and RNN architecture.

Dot-Product Method time (ns)
32-bit float 8.45699
8-bit integer 2.08390
4-bit log (16-bit Shift) 3.89595
4-bit log (8-bit Lookup table) 2.51924

Table 5: Time measurement of dot products of 128 el-
ements with different value representations. We use a
Cascade Lake processor.

emulated using instructions with wider bit widths.1

Since there is no 4-bit or 8-bit shift instruction,
we emulate 2q in 16-bit instead. Alternatively, we
can choose a lower base, for example 256

1
14 in-

stead of 2 so that the resulting power fits in 8-bit
precision. In this case, we can use the 8-bit lookup
table instruction vpshufb instead.

We benchmark our result with an 8-bit integer
dot product based on the vpdpbusds instruction
(which was introduced in the Cascade Lake to opti-
mise 8-bit matrix multiplication) and a basic 32-bit
float dot product using fused multiplication and
addition.

Table 5 reports the time required to perform a
dot product under different quantisation schemes.
8-bit lookup table is faster than 16-bit. Unfortu-
nately, our 4-bit dot product is inefficient, resulting
in it being much slower than an 8-bit dot product.
With current hardware, the main advantage over
8-bit quantization is smaller model size, which is

1https://github.com/kpu/intgemm/blob/
log4-unstable/log4/log4.h

40

Bit Transformer RNN
Size (rate) BLEU(∆) Size (rate) BLEU(∆)

32 251 MB 35.66 361 MB 34.28
4 32 MB (7.88x) 35.47 (-0.19) 46 MB (7.90x) 34.22 (-0.06)

3 24 MB (10.45x) 34.95 (-0.71) 34 MB (10.49x) 34.11 (-0.17)

2 16 MB (15.50x) 33.40 (-2.26) 23 MB (15.59x) 32.78 (-1.50)

1 8 MB (30.00x) 29.43 (-6.23) 12 MB (30.35x) 31.71 (-2.51)

Table 6: Compression rate and performance of both Transformer and RNN with various bit widths. The compres-
sion rate between Transformer and RNN is not equal since they have different biases to parameter size ratio.

of interest for local deployment on mobile devices.
Should future hardware also support 4-bit instruc-
tions natively, 4-bit models could also improve de-
coding efficiency.

4.4 Beyond 4-bit precision

With 4-bit quantisation and uncompressed biases,
we obtain a 7.9x compression rate. Bit width can
be set below 4 bit to achieve an even better com-
pression rate, albeit introducing more compression
error. To explore this, we sweep several bit widths.
Moreover, we skip bias quantisation and optimise
the scaling factor.

Training an NMT system below 4-bit precision
remains a challenge. As shown in Table 6, model
performance degrades with fewer bits being used.
While this result might be acceptable, we argue
that the result can be improved. One worthwhile
idea would be to increase the unit size in an ex-
tremely low-precision setting. We have shown that
4-bit precision performs better compared to the full-
precision model with (near) 8x compression rate.
Moreover, Han et al. (2015) demonstrated that 2-bit
precision image classification can be achieved by
scaling the parameter size. An alternative approach
is to have different bit widths for each layer (Hwang
and Sung, 2014; Anwar et al., 2015).

We also observe the robustness of RNN over
Transformer in this experiment since RNN models
degrade less compared to the Transformer counter-
part. The RNN model outperforms Transformer
when compressing at binary precision.

5 Conclusion

We compress the model size in neural machine
translation to approximately 7.9x smaller than 32-
bit floats by using a 4-bit logarithmic quantisation.
Bias terms can be left uncompressed without sig-
nificantly affecting the compression rate. We also
find that re-training after quantisation is necessary

to restore the model’s performance.
Matrix multiplication can further be quantised,

although quality is sacrificed. Unfortunately, 4-
bit dot products found in matrix multiplication are
slow because current hardware does not natively
support the necessary 4-bit instructions.

Acknowledgements

This work was conducted within the scope
of the Horizon 2020 Research and Innova-

tion Action Bergamot, which has received funding
from the European Union’s Horizon 2020 research
and innovation programme under grant agreement
No 825303. Additional support was provided by
Intel Corporation. This work was performed us-
ing resources provided by the Cambridge Service
for Data Driven Discovery (CSD3) operated by
the University of Cambridge Research Comput-
ing Service (http://www.csd3.cam.ac.uk/), pro-
vided by Dell EMC and Intel using Tier-2 funding
from the Engineering and Physical Sciences Re-
search Council (capital grant EP/P020259/1), and
DiRAC funding from the Science and Technology
Facilities Council (http://www.dirac.ac.uk).

References
Alham Fikri Aji and Kenneth Heafield. 2019. Making

asynchronous stochastic gradient descent work for
transformers. EMNLP-IJCNLP 2019, page 80.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
2015. Fixed point optimization of deep convolu-
tional neural networks for object recognition. In
2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
1131–1135. IEEE.

Antonio Valerio Miceli Barone, Jindřich Helcl, Rico
Sennrich, Barry Haddow, and Alexandra Birch.
2017. Deep architectures for neural machine trans-
lation. In Proceedings of the Second Conference on
Machine Translation, pages 99–107.

41

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
et al. 2018. The best of both worlds: Combining
recent advances in neural machine translation. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 76–86.

Song Han, Huizi Mao, and William J Dally. 2015.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In Advances in Neural
Information Processing Systems, pages 103–112.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized
neural networks. In Advances in neural information
processing systems, pages 4107–4115.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized
neural networks: Training neural networks with low
precision weights and activations. The Journal of
Machine Learning Research, 18(1):6869–6898.

Kyuyeon Hwang and Wonyong Sung. 2014. Fixed-
point feedforward deep neural network design using
weights+ 1, 0, and- 1. In 2014 IEEE Workshop on
Signal Processing Systems (SiPS), pages 1–6. IEEE.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2704–2713.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in c++. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 129–135.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Darryl Lin, Sachin Talathi, and Sreekanth Anna-
pureddy. 2016. Fixed point quantization of deep
convolutional networks. In International Confer-
ence on Machine Learning, pages 2849–2858.

Daisuke Miyashita, Edward H Lee, and Boris Mur-
mann. 2016. Convolutional neural networks us-
ing logarithmic data representation. arXiv preprint
arXiv:1603.01025.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191.

Jerry Quinn and Miguel Ballesteros. 2018. Pieces of
eight: 8-bit neural machine translation. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 3
(Industry Papers), pages 114–120.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. arXiv preprint
arXiv:1606.09274.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and
Dong Yu. 2014. 1-bit stochastic gradient descent
and application to data-parallel distributed training
of speech DNNs. In Interspeech.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The University of Edinburgh’s neural mt
systems for WMT17. In Proceedings of the Sec-
ond Conference on Machine Translation, pages 389–
399.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, pages 1715–1725.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

42

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 43–53
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Meta-Learning for Few-Shot NMT Adaptation

Amr Sharaf
University of Maryland
amr@cs.umd.edu

Hany Hassan
Microsoft

hanyh@microsoft.com

Hal Daumé III
Microsoft Research &

University of Maryland
me@hal3.name

Abstract

We present META-MT, a meta-learning ap-
proach to adapt Neural Machine Translation
(NMT) systems in a few-shot setting. META-
MT provides a new approach to make NMT
models easily adaptable to many target do-
mains with the minimal amount of in-domain
data. We frame the adaptation of NMT sys-
tems as a meta-learning problem, where we
learn to adapt to new unseen domains based on
simulated offline meta-training domain adap-
tation tasks. We evaluate the proposed meta-
learning strategy on ten domains with gen-
eral large scale NMT systems. We show
that META-MT significantly outperforms clas-
sical domain adaptation when very few in-
domain examples are available. Our experi-
ments shows that META-MT can outperform
classical fine-tuning by up to 2.5 BLEU points
after seeing only 4, 000 translated words (300
parallel sentences).

1 Introduction

Neural Machine Translation (NMT) systems (Bah-
danau et al., 2016; Sutskever et al., 2014) are usu-
ally trained on large general-domain parallel cor-
pora to achieve state-of-the-art results (Barrault
et al., 2019). Unfortunately, these generic cor-
pora are often qualitatively different from the tar-
get domain of the translation system. Moreover,
NMT models trained on one domain tend to per-
form poorly when translating sentences in a sig-
nificantly different domain (Koehn and Knowles,
2017; Chu and Wang, 2018). A widely used ap-
proach for adapting NMT is domain adaptation by
fine-tuning (Luong and Manning, 2015; Freitag and
Al-Onaizan, 2016; Sennrich et al., 2016), where a
model is first trained on general-domain data and
then adapted by continuing the training on a smaller
amount of in-domain data. This approach often
leads to empirical improvements in the targeted

domain; however, it falls short when the amount
of in-domain training data is insufficient, leading
to model over-fitting and catastrophic forgetting,
where adapting to a new domain leads to degra-
dation on the general-domain (Thompson et al.,
2019). Ideally, we would like to have a model that
is easily adaptable to many target domains with
minimal amount of in-domain data.

We present a meta-learning approach that learns
to adapt neural machine translation systems to new
domains given only a small amount of training data
in that domain. To achieve this, we simulate many
domain adaptation tasks, on which we use a meta-
learning strategy to learn how to adapt. Specif-
ically, based on these simulations, our proposed
approach, META-MT (Meta-learning for Machine
Translation), learns model parameters that should
generalize to future (real) adaptation tasks (§3.1).

At training time (§ 3.2), META-MT simulates
many small-data domain adaptation tasks from a
large pool of data. Using these tasks, META-MT
simulates what would happen after fine-tuning the
model parameters to each such task. It then uses
this information to compute parameter updates that
will lead to efficient adaptation during deployment.
We optimize this using the Model Agnostic Meta-
Learning algorithm (MAML) (Finn et al., 2017).

The contribution of this paper is as follows: first,
we propose a new approach that enables NMT sys-
tems to effectively adapt to a new domain using
few-shots learning. Second, we show what models
and conditions enable meta-learning to be useful
for NMT adaptation. Finally, We evaluate META-
MT on ten different domains, showing the efficacy
of our approach. To the best of our knowledge,
this is the first work on adapting large scale NMT
systems in a few-shot learning setup 1.

1Code Release: We make the code publicly avail-
able online: https://www.dropbox.com/s/
jguxb75utg1dmxl/meta-mt.zip?dl=0

43

https://www.aclweb.org/anthology/D19-56%2d

2 Related Work

Our goal for few-shot NMT adaptation is to adapt a
pre-trained NMT model (e.g. trained on general do-
main data) to new domains (e.g. medical domain)
with a small amount of training examples. Chu et al.
(2018) surveyed several recent approaches that ad-
dress the shortcomings of traditional fine-tuning
when applied to domain adaptation. Our work dis-
tinguishes itself from prior work by learning to
fine-tune with tiny amounts of training examples.

Most recently, Bapna et al. (2019) proposed a
simple approach for adaptation in NMT. The ap-
proach consists of injecting task specific adapter
layers into a pre-trained model. These adapters en-
able the model to adapt to new tasks as it introduces
a bottleneck in the architecture that makes it easier
to adapt. Our approach uses a similar model archi-
tecture, however, instead of injecting a new adapter
for each task separately, META-MT uses a single
adapter layer, and meta-learns a better initialization
for this layer that can easily be fine-tuned to new
domains with very few training examples.

Similar to our goal, Michel and Neubig (2018)
proposed a space efficient approach to adaptation
that learns domain specific biases to the output vo-
cabulary. This enables large-scale personalization
for NMT models when small amounts of data are
available for a lot of different domains. However,
this approach assumes that these domains are static
and known at training time, while META-MT can
dynamically generalize to totally new domains, pre-
viously unseen at meta-training time.

Several approaches have been proposed for
lightweight adaptation of NMT systems. Vilar
(2018) introduced domain specific gates to control
the contribution of hidden units feeding into the
next layer. However, Bapna et al. (2019) showed
that this introduced a limited amount of per-domain
capacity; in addition, the learned gates are not
guaranteed to be easily adaptable to unseen do-
mains. Khayrallah et al. (2017) proposed a lattice
search algorithm for NMT adaptation, however,
this algorithm assumes access to lattices generated
from a phrase based machine translation system.

Our meta-learning strategy mirrors that of Gu
et al. (2018) in the low resource translation setting,
as well as Wu et al. (2019) for cross-lingual named
entity recognition with minimal resources, Mi et al.
(2019) for low-resource natural language genera-
tion in task-oriented dialogue systems, and Dou
et al. (2019) for low-resource natural language un-

derstanding tasks. To the best of our knowledge,
this is the first work using meta-learning for few-
shot NMT adaptation.

3 Approach: Meta-Learning for
Few-Shot NMT Adaptation

Neural Machine Translation systems are not ro-
bust to domain shifts (Chu and Wang, 2018). It is
a highly desirable characteristic of the system to
be adaptive to any domain shift using weak super-
vision without degrading the performance on the
general domain. This dynamic adaptation task can
be viewed naturally as a learning-to-learn (meta-
learning) problem: how can we train a global model
that is capable of using its previous experience in
adaptation to learn to adapt faster to unseen do-
mains? A particularly simple and effective strategy
for adaptation is fine-tuning: the global model is
adapted by training on in-domain data. One would
hope to improve on such a strategy by decreasing
the amount of required in-domain data. META-
MT takes into account information from previous
adaptation tasks, and aims at learning how to up-
date the global model parameters, so that the re-
sulting learned parameters after meta-learning can
be adapted faster and better to previously unseen
domains via a weakly supervised fine-tuning ap-
proach on a tiny amount of data.

Our goal in this paper is to learn how to adapt
a neural machine translation system from expe-
rience. The training procedure for META-MT
uses offline simulated adaptation problems to learn
model parameters θ which can adapt faster to previ-
ously unseen domains. In this section, we describe
META-MT, first by describing how it operates at
test time when applied to a new domain adaptation
task (§3.1), and then by describing how to train it
using offline simulated adaptation tasks (§3.2).

3.1 Test Time Behavior of META-MT

At test time, META-MT adapts a pre-trained NMT
model to a new given domain. The adaptation is
done using a small in-domain data that we call
the support set and then tested on the new do-
main using a query set. More formally, the model
parametrized by θ takes as input a new adaptation
task T. This is illustrated in Figure 1: the adap-
tation task T consists of a standard domain adap-
tation problem: T includes a support set Tsupport
used for training the fine-tuned model, and a query
set Tquery used for evaluation. We’re particularly

44

En: Swirl gently
De: Schwenken Sie behutsam

Meta-training

Meta-testing

Support Set Query Set

Domain: Books

Domain: TED Talks

Domain: Medical

Domain: News

En: Chapter I
De: Erstes Kapitel

En: Conclusion
De: Schluß

En: A garden in my apartment
De: Ein Garten in meiner Wohnung

En: Following the mercury trail
De: Der Spur des Quecksilbers folgen

En: Remove the filter needle
De: Die Filternadel entfernen

En: European Inflation
De: Europäischer Inflation

En: Red Tide Update
De: Neues zu den Algenblüten.

Figure 1: Example meta-learning set-up for few-shot
NMT adaptation. The top represents the meta-training
set Dmeta-train, where inside each box is a separate
dataset T that consists of the support set Tsupport (left
side of dashed line) and the query set Tquery (right side
of dashed line). In this illustration, we are consider-
ing the books and TED talks domains for meta-training.
The meta-test set Dmeta-test is defined in the same way,
but with a different set of domains not present in any of
the datasets in Dmeta-train: Medical and News.

Step 1:
Sample a domain

(e.g. Books)

Step 2:
Fine-tune on Support Set

Step 3:
Compute Meta-Loss

on Query Set

✓
<latexit sha1_base64="JJ2SCzxcw3WL7WfoDbA0NQrMRVg=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKez6QI9BLx4jmAckS5id9CZjZneWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVHBpcSaXbATMgRQwNFCihnWhgUSChFYxup37rCbQRKn7AcQJ+xAaxCAVnaKVmF4eArFeuuFV3BrpMvJxUSI56r/zV7SueRhAjl8yYjucm6GdMo+ASJqVuaiBhfMQG0LE0ZhEYP5tdO6EnVunTUGlbMdKZ+nsiY5Ex4yiwnRHDoVn0puJ/XifF8NrPRJykCDGfLwpTSVHR6eu0LzRwlGNLGNfC3kr5kGnG0QZUsiF4iy8vk+ZZ1TuvXt5fVGo3eRxFckSOySnxyBWpkTtSJw3CySN5Jq/kzVHOi/PufMxbC04+c0j+wPn8AaY7jy8=</latexit>

En: Chapter I
De: Erstes Kapitel

✓0
<latexit sha1_base64="V4b3TSS+3bgtmEEWJrVbChX2094=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPoKez6QI9BLx4jmAckS5idzCZDZmeXmV4hLPkILx4U8er3ePNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWM7qZ+64lrI2L1iOOE+xEdKBEKRtFKrS4OOdLTXrniVt0ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NzJ+TEKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QY3viZUEmKXLH5ojCVBGMy/Z30heYM5dgSyrSwtxI2pJoytAmVbAje4svLpHle9S6qVw+XldptHkcRjuAYzsCDa6jBPdShAQxG8Ayv8OYkzovz7nzMWwtOPnMIf+B8/gAIxo9g</latexit>

En: Conclusion
De: Schluß

Domain: Books

Domain: TED Talks Domain: Medical

Domain: News

Meta-Loss
Backpropagation

Cross-Entropy Loss

✓
<latexit sha1_base64="JJ2SCzxcw3WL7WfoDbA0NQrMRVg=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKez6QI9BLx4jmAckS5id9CZjZneWmV4hLPkHLx4U8er/ePNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVHBpcSaXbATMgRQwNFCihnWhgUSChFYxup37rCbQRKn7AcQJ+xAaxCAVnaKVmF4eArFeuuFV3BrpMvJxUSI56r/zV7SueRhAjl8yYjucm6GdMo+ASJqVuaiBhfMQG0LE0ZhEYP5tdO6EnVunTUGlbMdKZ+nsiY5Ex4yiwnRHDoVn0puJ/XifF8NrPRJykCDGfLwpTSVHR6eu0LzRwlGNLGNfC3kr5kGnG0QZUsiF4iy8vk+ZZ1TuvXt5fVGo3eRxFckSOySnxyBWpkTtSJw3CySN5Jq/kzVHOi/PufMxbC04+c0j+wPn8AaY7jy8=</latexit>

Domain: Medical

Domain: NewsDomain: Books

Domain: TED Talks

(A) Meta-Learning:

(B) Traditional Fine-Tuning:

Figure 2: [Top-A] a training step of META-MT.
[Bottom-B] Differences between meta-learning and
Traditional fine-tuning. Wide lines represent high re-
source domains (Medical, News), while thin lines rep-
resent low-resource domains (TED, Books). Tradi-
tional fine-tuning may favor high-resource domains
over low-resource ones while meta-learning aims at
learning a good initialization that can be adapted to any
domain with minimal training samples. 2

interested in the distribution of tasks P(T) where
the support and query sets are very small. In our
experiments, we restrict the size of these sets to
only few hundred parallel training sentences. We
consider support sets of sizes: 4k to 64k source
words (i.e. ∼ 200 to 3200 sentences). At test time,
the meta-learned model θ interacts with the world
as follows (Figure 2):

1. Step 1: The world draws an adaptation task
T from a distribution P, T ∼ P(T);

2. Step 2: The model adapts from θ to θ′ by
fine-tuning on the task’s support set Tsupport;

3. Step 3: The fine-tuned model θ′ is evaluated
on the query set Tquery.

Intuitively, meta-training should optimize for a
representation θ that can quickly adapt to new tasks,
rather than a single individual task.

3.2 Training META-MT via Meta-learning

The meta-learning challenge is: how do we learn a
good representation θ? We initialize θ by training
an NMT model on global-domain data. In addi-
tion, we assume access to meta-training tasks on
which we can train θ; these tasks must include sup-
port/query pairs, where we can simulate a domain
adaptation setting by fine-tuning on the support set
and then evaluating on the query. This is a weak as-
sumption: in practice, we use purely simulated data
as this meta-training data. We construct this data as
follows: given a parallel corpus for the desired lan-
guage pair, we randomly sample training example
to form a few-shot adaptation task. We build tasks
of 4k, 8k, 16k, 32k, and 64k training words. Under
this formulation, it’s natural to think of θ’s learning
process as a process to learn a good parameter ini-
tialization for fast adaptation, for which a class of
learning algorithms to consider are Model-agnostic
Meta-Learning (MAML) and it’s first order approx-
imations like First-order MAML (FoMAML) (Finn
et al., 2017) and Reptile (Nichol et al., 2018).

Informally, at training time, META-MT will treat
one of these simulated domains T as if it were a
domain adaptation dataset. At each time step, it
will update the current model representation from θ
to θ′ by fine-tuning on Tsupport and then ask: what
is the meta-learning loss estimate given θ, θ′, and
Tquery? The model representation θ is then up-
dated to minimize this meta-learning loss. More
formally, in meta-learning, we assume access to a

2colorblind friendly palette was selected from Neuwirth
and Brewer (2014).

45

Algorithm 1 META-MT (trained model fθ, meta-
training dataset Dmeta-train, learning rates α, β)

1: while not done do
2: Sample a batch of domain adaptation tasks

T ∼ Dmeta-train
3: for all Ti ∈ T do
4: Evaluate ∇θLTi(fθ) on the support set

Ti,support
5: Compute adapted parameters with gradi-

ent descent: θ′i = θ − α∇θLTi(fθ)
6: end for
7: Update θ ← θ−β∇θΣTi∈TLTi(fθ′i) on the

query set Ti,query∀Ti ∈ T
8: end while

distribution P over different tasks T . From this,
we can sample a meta-training dataset Dmeta-train.
The meta-learning problem is then to estimate θ to
minimize the meta-learning loss on Dmeta-train.

The meta-learning algorithm we use is MAML
by Finn et al. (2017), and is instantiated for the
meta-learning to adapt NMT systems in Alg 1.
MAML considers a model represented by a
parametrized function fθ with parameters θ. When
adapting to a new task T, the model’s parameters
θ become θ′. The updated vector θ′ is computed
using one or more gradient descent updates on the
task T. For example, when using one gradient
update:

θ′ = θ − α∇θLT(fθ) (1)

where α is the learning rate and L is the task loss
function. The model parameters are trained by opti-
mizing for the performance of fθ′ with respect to θ
across tasks sampled from P(T). More concretely,
the meta-learning objective is:

min
θ

ΣT∼P(T)LT(fθ′),

LT(fθ′) = LT(fθ−α∇θLT(fθ)) (2)

Following the MAML template, META-MT op-
erates in an iterative fashion, starting with a trained
NMT model fθ and improving it through optimiz-
ing the meta-learning loss from Eq 2 on the meta-
training dataset Dmeta-train. Over learning rounds,
META-MT selects a random batch of training tasks
from the meta-training dataset and simulates the
test-time behavior on these tasks (Line 2). The
core functionality is to observe how the current

model representation θ is adapted for each task in
the batch, and to use this information to improve
θ by optimizing the meta-learning loss (Line 7).
META-MT achieves this by simulating a domain
adaptation setting by fine-tuning on the task spe-
cific support set (Line 4). This yields, for each task
Ti, a new adapted set of parameters θ′i (Line 5).
These parameters are evaluated on the query sets
for each task Ti,query, and a meta-gradient w.r.t the
original model representation θ is used to improve
θ (Line 7).

Our pre-trained baseline NMT model fθ is a se-
quence to sequence model that parametrizes the
conditional probability of the source and target se-
quences as an encoder-decoder architecture using
self-attention Transformer models (Vaswani et al.,
2017)).

4 Experimental Setup and Results

We seek to answer the following questions experi-
mentally:

1. How does META-MT compare empirically to
alternative adaptation strategies? (§4.4)

2. What is the impact of the support and the
query sizes used for meta-learning? (§4.5)

3. What is the effect of the NMT model architec-
ture on performance? (§4.6)

In our experiments, we train META-MT only on
simulated data, where we simulate a few-shot do-
main adaptation setting as described in §3.2. This
is possible because META-MT learns model pa-
rameters θ that can generalize to future adaptation
tasks by optimizing the meta-objective function
in Eq 2.

We train and evaluate META-MT on a col-
lection of ten different datasets. All of these
datasets are collected from the Open Parallel Cor-
pus (OPUS) (Tiedemann, 2012), and are publicly
available online. The datasets cover a variety of
diverse domains that should enable us to evaluate
our proposed approach. The datasets we consider
are:

1. Bible: a parallel corpus created from transla-
tions of the Bible (Christodouloupoulos and
Steedman, 2015).

2. European Central Bank: website and docu-
mentations from the European Central Bank.

3. KDE: a corpus of KDE4 localization files.
4. Quran: a collection of Quran translations com-

piled by the Tanzil project.
5. WMT news test sets: a parallel corpus of

46

News Test Sets provided by WMT.
6. Books: a collection of copyright free books.
7. European Medicines Agency (EMEA): a par-

allel corpus made out of PDF documents from
the European Medicines Agency.

8. Global Voices: parallel news stories from the
Global Voices web site.

9. Medical (ufal-Med): the UFAL medical do-
main dataset from Yepes et al. (2017).

10. TED talks: talk subtitles from Duh (2018).
We simulate the few-shot NMT adaptation sce-

narios by randomly sub-sampling these datasets
with different sizes. We sample different data sets
with sizes ranging from 4k to 64k training words
(i.e. ∼ 200 to 3200 sentences). This data is the
only data used for any given domain across all
adaptation setups. It is worth noting that different
datasets have a wide range of sentence lengths. We
opted to sample using number of words instead
of number of sentences to avoid introducing any
advantages for domains with longer sentences.

4.1 Domain Adaptation Approaches

Our experiments aim to determine how META-MT
compares to standard domain adaptation strategies.
In particular, we compare to:
(A) No fine-tuning: The non-adaptive baseline.

Here, the pre-trained model is evaluated on
the meta-test and meta-validation datasets (see
Figure 1) without any kind of adaptation.

(B) Fine-tuning on a single task: The domain
adaptation by fine-tuning baseline. For a
single adaptation task T, this approach per-
forms domain adaptation by fine-tuning only
on the support set Tsupport. For instance, if
|Tsupport| = K words, we fine tune the pre-
trained model fθonly on K training words
to show how classical fine-tuning behaves in
few-shot settings.

(C) Fine-tuning on meta-train: Similar to (B),
however, this approach fine-tunes on much
more data. This approach fine-tunes on
all the support sets used for meta-training:
{Tsupport,∀T ∈ Dmeta-train}. The goal of this
baseline is to ensure that META-MT doesn’t
get an additional advantage by training on
more data during the meta-training phase. For
instance, if we are using N adaptation tasks
each with a support set of size K, this will be
using N ∗K words for classical fine-tuning.
This establishes a fair baseline to evaluate how

classical fine-tuning would perform using the
same data albeit in a different configuration.

(D) META-MT: Our proposed approach
from Alg 1. In this setup, we use N
adaptation tasks T in Dmeta-train, each with
a support set of size K words to perform
Meta-Learning. Second order meta-gradients
are ignored to decrease the computational
complexity.

4.2 Model Architecture and Implementation
Details

We use the Transformer Model (Vaswani et al.,
2017) implemented in fairseq (Ott et al., 2019). In
this work, we use a transformer model with a modi-
fied architecture that can facilitate better adaptation.
We use “Adapter Modules” (Houlsby et al., 2019;
Bapna et al., 2019) which introduce an extra layer
after each transformer block that can enable more
efficient tuning of the models. Following Bapna
et al. (2019), we augment the Transformer model
with feed-forward adapters: simple single hidden-
layer feed-forward networks, with a nonlinear ac-
tivation function between the two projection lay-
ers. These adapter modules are introduced after
the Layer Norm and before the residual connection
layers. It is composed of a down projection layer,
followed by a ReLU, followed by an up projection
layer. This bottle-necked module with fewer pa-
rameters is very attractive for domain adaptation as
we will discuss in §4.6. These modules are intro-
duced after every layer in both the encoder and the
decoder. All experiments are based on the “base”
transformer model with six blocks in the encoder
and decoder networks. Each encoder block con-
tains a self-attention layer, followed by two fully
connected feed-forward layers with a ReLU non-
linearity between them. Each decoder block con-
tains self-attention, followed by encoder-decoder
attention, followed by two fully connected feed-
forward layers with a ReLU non-linearity between
them.

We use word representations of size 512, feed-
forward layers with inner dimensions 2, 048,
multi-head attention with 8 attention heads, and
adapter modules with 32 hidden units. We apply
dropout (Srivastava et al., 2014) with probability
0.1. The model is optimized with Adam (Kingma
and Ba, 2014) using β1 = 0.9, β2 = 0.98, and a
learning rate α = 7e−4. We use the same learning
rate schedule as Vaswani et al. (2017) where the

47

learning rate increases linearly for 4, 000 steps to
7e− 4, after which it is decayed proportionally to
the inverse square root of the number of steps. For
meta-learning, we used a meta-batch size of 1. We
optimized the meta-learning loss function using
Adam with a learning rate of 1e − 5 and default
parameters for β1, β2.

All data is pre-processed with joint sentence-
pieces (Kudo and Richardson, 2018) of size 40k.
In all cases, the baseline machine translation sys-
tem is a neural English to German (En-De) trans-
former model (Vaswani et al., 2017), initially
trained on 5.2M sentences filtered from the the stan-
dard parallel data (Europarl-v9, CommonCrawl,
NewsCommentary-v14, wikititles-v1 and Rapid-
2019) from the WMT-19 shared task (Barrault et al.,
2019). We use WMT14 and WMT19 newtests as
validation and test sets respectively. The baseline
system scores 37.99 BLEU on the full WMT19
newstest which compares favorably with strong
single system baselines at WMT19 shared task (Ng
et al., 2019; Junczys-Dowmunt, 2019).

For meta-learning, we use the MAML algorithm
as described in Alg 1. To minimize memory con-
sumption, we ignored the second order gradient
terms from Eq 2. We implement the First-Order
MAML approximation (FoMAML) as described
in Finn et al. (2017). We also experimented with the
first-order meta-learning algorithm Reptile (Nichol
et al., 2018). We found that since Reptile doesn’t
directly account for the performance on the task
query set, along with the large model capacity of
the Transformer architecture, it can easily over-fit
to the support set, thus achieving almost perfect
performance on the support, while the performance
on the query degrades significantly. Even after per-
forming early stopping on the query set, Reptile
didn’t account correctly for learning rate schedul-
ing, and finding suitable learning rates for optimiz-
ing the meta-learner and the task adaptation was
difficult. In our experiments, we found it essential
to match the behavior of the dropout layers when
computing the meta-objective function in Eq 2 with
the test-time behavior described in §3.1. In par-
ticular, the model has to run in “evaluation mode”
when computing the loss on the task query set to
match the test-time behavior during evaluation.

4.3 Evaluation Tasks and Metrics

Our experimental setup operates as follows: us-
ing a collection of simulated machine translation

adaptation tasks, we train an NMT model fθ using
META-MT (Alg 1). This model learns to adapt
faster to new domains, by fine-tuning on a tiny
support set. Once fθ is learned and fixed, we fol-
low the test-time behavior described in §3.1. We
evaluate META-MT on the collection of ten dif-
ferent domains described in §4. We simulate do-
main adaptation problems by sub-sampling tasks
with 4k English tokens for the support set, and
32k tokens for the query set. We study the ef-
fect of varying the size of the query and the sup-
port sets in §4.5. We use N = 160 tasks for the
meta-training dataset Dmeta-train, where we sample
16 tasks from each of the ten different domains.
We use a meta-validation Dmeta-test and meta-test
Dmeta-test sets of size 10, where we sample a single
task from each domain. We report the mean and
standard-deviation over three different meta-test
sets. For evaluation, we use BLEU (Papineni et al.,
2002). We measure case-sensitive de-tokenized
BLEU with SacreBLEU (Post, 2018). All results
use beam search with a beam of size five.

4.4 Experimental Results

Here, we describe our experimental results compar-
ing the several algorithms from §4.1. The overall
results are shown in Table 1 and Figure 3. Table 1
shows the BLEU scores on the meta-test dataset
for all the different approaches across the ten do-
mains. From these results we draw the following
conclusions:

1. The pre-trained En-De NMT model performs
well on general domains. For instance, BLEU
for WMT-News 3, GlobalVoices, and ECB is
at least 26 points. However, performance de-
grades on closed domains like Books, Quran,
and Bible. [Column A].

2. Domain adaptation by fine-tuning on a single
task doesn’t improve the BLEU score. This is
expected, since we’re only fine-tuning on 4k
tokens (i.e. ∼ 200− 300 sentences) [A vs B].

3. Significant leverage is gained by increasing
the amount of fine-tuning data. Fine-tuning on
all the available data used for meta-learning
improves the BLEU score significantly across
all domains. [B vs C]. To put this into perspec-
tive, this setup is tuned on all data aggregated
from all tasks: 160 ∗ 4k words which is ap-
proximately 40K sentences.

3This is subset of the full test set to match the sizes of
query sets from other domains

48

Domain A. No fine-tuning B. Fine-tuning on task C. Fine-tuning on meta-train D. META-MT

Books 11.338± 0.25 11.34± 0.24 12.49± 0.15 12.92± 0.94
Tanzil 11.25± 0.04 11.33± 0.04 13.62± 0.05 15.16± 0.94
Bible 12.93± 0.93 12.95± 0.94 17.19± 0.54 24.70± 0.61
KDE4 20.53± 0.34 20.54± 0.32 26.61± 0.16 27.26± 0.36
Med 19.30± 0.24 19.53± 0.28 28.31± 0.04 29.59± 0.05

GlobalVoices 25.10± 0.11 25.17± 0.23 25.83± 0.25 26.03± 0.13
WMT-News 26.93± 0.36 26.92± 0.48 27.26± 0.55 27.23± 0.12

TED 27.69± 0.05 27.85± 0.06 28.78± 0.03 29.37± 0.03
EMEA 27.81± 0.01 27.79± 0.05 29.77± 0.59 32.38± 0.01
ECB 29.18± 0.03 29.21± 0.04 31.18± 0.01 33.23± 0.40

Table 1: BLEU scores on meta-test split for different approaches evaluated across ten domains. Best results are
highlighted in bold, results with-in two standard-deviations of the best value are underlined.

11.3 11.3

12.9

20.5
19.3

25.1

26.9
27.7 27.8

29.2

11.3 11.3

12.9

20.5
19.5

25.2

26.9
27.9 27.8

29.2

12.5
13.6

17.2

26.6

28.3

25.8
27.3

28.8
29.8

31.2

12.9

15.2

24.7

27.3

29.6

26.0
27.2

29.4

32.4
33.2

11

16

21

26

31

36

Books Tanzil bible-uedin KDE4 med GlobalVoices WMT-News ted EMEA ECB

BL
EU

Domain

Meta-Learning Gain Across Different Domains
Architecture: Adapter, Split: Meta-Test, Support Size: 4k, Query Size: 32k

No Tuning Fine Tuning on Task Classical Fine-Tune Baseline Meta-MT

Figure 3: BLEU scores on meta-test split for different approaches evaluated across ten domains.

4. META-MT outperforms alternative domain
adaptation approaches on all domains with
negligible degradation on the baseline domain.
META-MT is better than the non-adaptive
baseline [A vs D], and succeeds in learning to
adapt faster given the same amount of fine-
tuning data [B vs D, C vs D]. Both Fine-
tuning on meta-train [C] and META-MT
[D] have access to exactly the same amount
of training data, and both use the same model
architecture. The difference however is in the
learning algorithm. META-MT uses MAML
(Alg 1) to optimize the meta-objective func-
tion in Eq 2. This ensures that the learned
model initialization can easily be fine-tuned
to new domains with very few examples.

4.5 Impact of Adaptation Task Size

To evaluate the effectiveness of META-MT when
adapting with small in-domain corpora, we fur-
ther compare the performance of META-MT with
classical fine-tuning on varying amounts of train-
ing data per adaptation task. In Figure 4 we plot
the overall adaptation performance on the ten do-
mains when using different data sizes for the sup-
port set. In this experiment, the only parameter that

23.48

24.09

23.68

24.27

24.75

24.18 24.23

23.23

22.60
22.88

4000 8000 16000 32000 64000

BL
EU

Size of Support Set (En Tokens)

BLEU vs Size of Support Set
Architecture: Adapter

Classical Fine-Tune Baseline Meta-MT

Figure 4: META-MT and fine-tuning adaptation perfor-
mance on the meta-test setDmeta-test vs different support
set sizes per adaptation task.

varies is the size of the task support set Tsupport.
We fix the size of the query set per task to 16k
tokens, and we vary the size of the support set
from 4k to 64k. To ensure that the total amount of
meta-training data Dmeta-train is the same, we use
N = 160 tasks for meta-training when the support
size Tsupport is 4k, N = 80 tasks when the sup-
port size is 8k, N = 40 tasks for support size of
16k, N = 20 tasks when the support size is 32k,
and finally N = 10 meta-training tasks when the
support size is 64k. This controlled setup ensures
that no setting has any advantage by getting access
to additional amounts of training data. We notice

49

25.17

24.36 24.42

26.12

25.68

26.35

16000 32000 64000

BL
EU

Size of Support Set (En Tokens)

BLEU vs Size of Query Set
Architecture: Adapter

Classical Fine-Tune Baseline Meta-MT

Figure 5: META-MT and fine-tuning adaptation perfor-
mance on the meta-test set Dmeta-test vs different query
set sizes per adaptation task.

that for reasonably small size of the support set
(4k and 8k), META-MT outperforms the classical
fine-tuning baseline. However, when the data size
increase (16k to 64), META-MT is outperformed
by the fine-tuning baseline. This happens because
for a larger support size, e.g. 64k, we only have
access to 10 meta-training tasks in Dmeta-train, this
is not enough to generalize to new unseen adapta-
tion tasks, and META-MT over-fits to the training
tasks from Dmeta-train, however, the performance
degrades and doesn’t generalize to Dmeta-test.

To understand more directly the impact of the
query set on META-MT’s performance, in Figure 5
we show META-MT and fine-tuning adaptation per-
formance on the meta-test set Dmeta-test on varying
sizes for the query set. We fix the support size to
4k and vary the query set size from 16k to 64k. We
observe that the edge of improvement of META-
MT over fine-tuning adaptation increases as we in-
crease the size of the query set. For instance, when
we use a query set of size 64k, META-MT outper-
forms fine-tuning by 1.93 BLEU points, while the
improvement is only 0.95 points when the query
set is 16k.

4.6 Impact of Model Architecture

In our experiments, we used the Adapter Trans-
former architecture (Bapna et al., 2019). This archi-
tecture fixes the parameters of the pre-trained Trans-
former model, and only adapts the feed-forward
adapter module. Our model included ∼ 66M pa-
rameters, out of which we adapt only 405K (only
0.6%). We found this adaptation strategy to be
more robust to meta-learning. To better understand
this, Figure 6 shows the BLEU scores for the two
different model architectures. We find that while
the meta-learned Transformer architecture (Right)
slightly outperforms the Adapter model (Left), it

21.21

0.00

20.95
20.33

23.48

20.83

24.18 24.70

Adapter Transformer

BL
EU

Architecture

BLEU vs Model Architecture and Learning Approach
Support Size: 4k, Query Size: 16k

Meta-MT-0 Fine Tuning on Task Classical Fine-Tune Baseline Meta-MT

Figure 6: BLEU scores reported for two different
model architectures: Adapter Transformer (Bapna
et al., 2019) (Left), and the Transformer base architec-
ture (Vaswani et al., 2012) (Right).

suffers from catastrophic forgetting: META-MT-0
shows the zero-shot BLEU score before fine-tuning
the task on the support set. For the Transformer
model, the score drops to zero and then quickly
improves once the parameters are tuned on the sup-
port set. This is undesirable, since it hurts the
performance of the pre-trained model, even on the
general domain data. We notice that the Adapter
model doesn’t suffer from this problem.

5 Conclusion

We presented META-MT, a meta-learning ap-
proach for few shot NMT adaptation. We formu-
lated few shot NMT adaptation as a meta-learning
problem, and presented a strategy that learns bet-
ter parameters for NMT systems that can be easily
adapted to new domains. We validated the superior-
ity of META-MT to alternative domain adaptation
approaches. META-MT outperforms alternative
strategies in most domains using only a small frac-
tion of fine-tuning data.

Acknowledgements

The authors would like to thank members of the
Microsoft Machine Translation Team as well as
members of the Computational Linguistics and In-
formation Processing (CLIP) lab for reviewing ear-
lier versions of this work. Part of this work was
conducted when the first author was on a summer
internship with Microsoft Research. This material
is based upon work supported by the National Sci-
ence Foundation under Grant No. 1618193. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
author(s) and do not necessarily reflect the views
of the National Science Foundation.

50

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2016. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.
2019. Simple, scalable adaptation for neural ma-
chine translation. arXiv preprint arXiv:1909.08478.

Loïc Barrault, Ondřej Bojar, Marta R Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, et al. 2019. Findings of the 2019
conference on machine translation (wmt19). In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day 1),
pages 1–61.

Christos Christodouloupoulos and Mark Steedman.
2015. A massively parallel corpus: the bible in
100 languages. Language resources and evaluation,
49(2):375–395.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2018.
A comprehensive empirical comparison of domain
adaptation methods for neural machine translation.
Journal of Information Processing, 26:529–538.

Chenhui Chu and Rui Wang. 2018. A survey of do-
main adaptation for neural machine translation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 1304–1319, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.
2019. Investigating meta-learning algorithms for
low-resource natural language understanding tasks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1192–
1197, Hong Kong, China. Association for Computa-
tional Linguistics.

Kevin Duh. 2018. The multitarget ted talks
task. http://www.cs.jhu.edu/~kevinduh/a/
multitarget-tedtalks/.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 1126–1135, International Convention
Centre, Sydney, Australia. PMLR.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
domain adaptation for neural machine translation.
ArXiv, abs/1612.06897.

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li,
and Kyunghyun Cho. 2018. Meta-learning for low-
resource neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 3622–3631,
Brussels, Belgium. Association for Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzkeb-
ski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
CoRR, abs/1902.00751.

Marcin Junczys-Dowmunt. 2019. Microsoft translator
at wmt 2019: Towards large-scale document-level
neural machine translation. In WMT.

Huda Khayrallah, Gaurav Kumar, Kevin Duh, Matt
Post, and Philipp Koehn. 2017. Neural lattice search
for domain adaptation in machine translation. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 2:
Short Papers), pages 20–25, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domain. In International Workshop on
Spoken Language Translation.

Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings.
2019. Meta-learning for low-resource natural lan-
guage generation in task-oriented dialogue systems.
In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, IJCAI’19, pages
3151–3157. AAAI Press.

Paul Michel and Graham Neubig. 2018. Extreme adap-
tation for personalized neural machine translation.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 312–318, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Erich Neuwirth and R Color Brewer. 2014. Color-
brewer palettes. R package version, pages 1–1.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.

51

In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers,
Day 1), pages 314–319, Florence, Italy. Association
for Computational Linguistics.

Alex Nichol, Joshua Achiam, and John Schulman.
2018. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah,
Kevin Duh, and Philipp Koehn. 2019. Overcoming
catastrophic forgetting during domain adaptation of
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2062–2068, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Ashish Vaswani, Liang Huang, and David Chiang.
2012. Smaller alignment models for better trans-
lations: Unsupervised word alignment with the l0-
norm. In Proceedings of the 50th Annual Meeting of

the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 311–319, Jeju Island,
Korea. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

David Vilar. 2018. Learning hidden unit contribu-
tion for adapting neural machine translation mod-
els. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 500–505, New
Orleans, Louisiana. Association for Computational
Linguistics.

Qianhui Wu, Zijia Lin, Guoxin Wang, Hui Chen,
Börje F Karlsson, Biqing Huang, and Chin-Yew Lin.
2019. Enhanced meta-learning for cross-lingual
named entity recognition with minimal resources.
arXiv preprint arXiv:1911.06161.

Antonio Jimeno Yepes, Aurélie Névéol, Mariana
Neves, Karin Verspoor, Ondrej Bojar, Arthur Boyer,
Cristian Grozea, Barry Haddow, Madeleine Kittner,
Yvonne Lichtblau, et al. 2017. Findings of the wmt
2017 biomedical translation shared task. In Proceed-
ings of the Second Conference on Machine Transla-
tion, pages 234–247.

52

Supplementary Material For:
Meta-Learning for Few-Shot NMT

Adaptation

A Background

A.1 Neural Machine Translation
Neural Machine Translation (NMT) is a sequence
to sequence model that parametrizes the condi-
tional probability of the source and target se-
quences as a neural network following encoder-
decoder architecture (Bahdanau et al., 2016;
Sutskever et al., 2014). Initially, the encode-
decoder architecture was represented by recurrent
networks. Currently, this has been replaced by self-
attention models aka Transformer models (Vaswani
et al., 2017)). Currently, Transformer models
achieves state-of-the-art performance in NMT as
well as many other language modeling tasks. While
transformers models are performing quite well on
large scale NMT tasks, the models have huge num-
ber of parameters and require large amount of train-
ing data which is really prohibitive for adaptation
tasks especially in few-shot setup like ours.

A.2 Few Shots Domain Adaptation
Traditional domain adaptation for NMT models as-
sumes the availability of relatively large amount of
in domain data. For instances most of the related
work utilizing traditional fine-tuning experiment
with hundred-thousand sentences in-domain. This
setup in quite prohibitive, since practically the do-
main can be defined by few examples. In this work
we focus on few-shot adaptation scenario where we
can adapt to a new domain not seen during training
time using just couple of hundreds of in-domain
sentences. This introduces a new challenge where
the models have to be quickly responsive to adap-
tation as well as robust to domain shift. Since we
focus on the setting in which very few in-domain
data is available, this renders many traditional do-
main adaptation approaches inappropriate.

A.3 Meta-Learning
Meta-learning or Learn-to-Learn is widely used
for few-shot learning in many applications where a
model trained for a particular task can learn another
task with a few examples. A number of approaches
are used in Meta-learning, namely: Model-agnostic
Meta-Learning (MAML) and its first order approxi-
mations like First-order MAML (FoMAML) (Finn
et al., 2017) and Reptile (Nichol et al., 2018). In

Domain # sentences # En Tokens

bible-uedin 62195 1550431
ECB 113174 3061513
KDE4 224035 1746216
Tanzil 537128 9489824
WMT-News 912212 5462820
Books 51467 1054718
EMEA 1108752 12322425
GlobalVoices 66650 1239921
ufal-Med 140600 5527010
TED 51368 1060765

Table 2: Dataset statistics for different domains.

this work, we focus on using MAML to enable
few-shots adaptation of NMT transformer models.

B Statistics of in-domain data sets

Table 2 lists the sizes of various in-domain datasets
from which we sample our in-domain data to simu-
late the few-shot adaptation setup.

53

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 54–59
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Automatically Ranked Russian Paraphrase Corpus for Text Generation

Vadim Gudkov1, Olga Mitrofanova2, Elizaveta Filippskikh3

Saint Petersburg State University1,2

st071220@student.spbu.ru1 , o.mitrofanova@spbu.ru2

CraftTalk3

efilippskikh@crafttalk.ru3

Abstract
The article is focused on automatic develop-
ment and ranking of a large corpus for Rus-
sian paraphrase generation which proves to be
the first corpus of such type in Russian com-
putational linguistics. Existing manually an-
notated paraphrase datasets for Russian are
limited to small-sized ParaPhraser corpus and
ParaPlag which are suitable for a set of NLP
tasks, such as paraphrase and plagiarism de-
tection, sentence similarity and relatedness es-
timation, etc. Due to size restrictions, these
datasets can hardly be applied in end-to-end
text generation solutions. Meanwhile, para-
phrase generation requires a large amount of
training data. In our study we propose a solu-
tion to the problem: we collect, rank and eval-
uate a new publicly available headline para-
phrase corpus (ParaPhraser Plus), and then per-
form text generation experiments with manual
evaluation on automatically ranked corpora us-
ing the Universal Transformer architecture.

1 Introduction

A large amount of work is dedicated for a clear
understanding of the nature of a paraphrase. On
the one hand, traditional theories of language al-
low to trace the notion of paraphrase back to the
ancient rhetorical tradition (cf. Greek παράφρα-
σις ‘retelling’) and treat it quite broadly in case of
different types of prose, verse, musical pieces, etc.
On the other hand, the generative trend in linguis-
tic research encouraged description of transforma-
tions involved in the transition from deep to sur-
face structures and at the same time responsible for
the emergence of a wide range of paraphrases, cf.
Chomskian generative grammar giving account of
various lexical transformations, Melchuk’s Sense-
Text theory postulating the process of paraphrasing
as synonymic conversion, etc. In recent works
paraphrases are treated as “alternative expressions
of the same (or similar) meaning” (Agirre et al.,

2015). Ranking paraphrases as regards their sim-
ilarity in form and meaning is reflected in a set
of paraphrase classifications, where precise para-
phrases are distinguished from quasi-paraphrases
and non-paraphrases (Andrew and Gao, 2007). At
the same time, paraphrase corpora development re-
quired deep analysis of paraphrase transformations
types (e.g. morphosyntactic, lexical and semantic
shifts).

Paraphrasing plays an important role in a broad
range of NLP tasks, including but not limited to
question answering, summarization, information
retrieval, sentence simplification, machine transla-
tion and dialogue systems. However, in order to be
able to train a good paraphrasing system, large par-
allel corpora are required, which can be a problem
in underdeveloped languages from a data resources
standpoint. In order to bridge this gap, we propose
a methodology to collect enough data for proper
deep learning.

2 Motivation and Related Work

Paraphrase identification inspired a set of NLP
competitions within SemEval conferences in 2012,
2013, 2015 and 2016, so that baseline decisions
and their improvements were worked out for En-
glish. There also exist several well-known man-
ually annotated paraphrase datasets for English:
Microsoft Paraphrase (Dolan and Brockett, 2005),
Quora Question Pairs and MS COCO (Lin et al.,
2014).

However, Russian is less represented in para-
phrase research both in case of resource develop-
ment and algorithm evaluation, a few exceptions
being AINL Paraphrase detection competition in
2016 based on Paraphraser corpus and Dialogue
Paraphrased plagiarism detection competition in
2017 based on ParaPlag corpus. Alongside with
Paraphraser and ParaPlag, there are some para-

54

https://www.aclweb.org/anthology/D19-56%2d

phrase resources which include Russian language,
for instance by Opusparcus (Creutz, 2018) and
PPDB (Ganitkevitch et al., 2013).

In our study we mainly focus on the collection,
evaluation and generation of the, so called, senten-
tial paraphrases. This approach is different from
the collection of PPDB, where sub-sentential para-
phrases, such as individual word-pairs, were also
included and ParaPlag with main focus on text-
level rephrasing.

Recent work (Gupta et al., 2018; Fu et al., 2019;
Egonmwan and Chali, 2019) provides solid evi-
dence in favour of paraphrase generation by means
of seq-2-seq architectures. The main problem, how-
ever, is that such systems require significant expan-
sion of existing datasets for proper machine learn-
ing (Roy and Grangier, 2019). The lack of data
still remains the greatest obstacle to the develop-
ment of a stable generation system which could be
lexically rich and insensitive to rare words. E.g.,
the largest datasets supplied with proper annotation
seldom exceed 100K samples in size. The authors
of the aforementioned articles claim that any user
generated content is valuable even though noisy
to a certain extent. We propose a solution which
overcomes the given problem, and it is based on the
denoising procedure which has recently attracted
growing attention. We argue that automatically
matched and ranked datasets can be used for para-
phrase generation task, especially in low-resource
languages, by providing experimental results ob-
tained on the Russian Opusparcus subcorpus and
on the novel ParaPhraser Plus corpus.

3 Source Data

The ParaPhraser Plus corpus 1 is distilled from a
database of news headlines, that was kindly pro-
vided by the Russian Internet monitoring service,
"Webground". Although, the contents of the re-
sources are pretty similar, the data itself in the orig-
inal ParaPhraser corpus and the ParaPhraser Plus
corpus as well as the methodology used to collect
the headlines are not the same by any means. It
is important to note, however, that ranking model
which will be described in the corresponding sec-
tion was based on the original corpus. The head-
lines in "Webground" were initially clustered by
events over a ten year span, beginning from the year
2009. Following the hypothesis that within such

1Available at:
http://paraphraser.ru/download/

theme-based user-generated clusters the chance of
seeing a paraphrase is particularly high, we formed
sets of pairs of all possible combinations within
each of them. After weeding out pairs, consisting
of the same tokens, we were left with just over 56
million pairs of potential paraphrases. We have
also discarded over 200 thousand headlines where
it was not possible to verify the authorship.

4 Ranking methodology

There are several known approaches to paraphrase
ranking, including heuristic scoring (Pavlick et al.,
2015) and supervised modelling (Creutz, 2018).
Heuristic scoring can be effectively conducted in
resources with cross-linguistic support, such as
PPDB and Opuspracus. However, ParaPhraser, as
well as our addition, is monolingual, therefore this
approach was not possible. On the other hand,
supervised modelling techniques can be adopted:
there is a significant amount of labeled data in the
original ParaPhraser corpus and several approaches
to paraphrase identification in Russian headlines
have been thoroughly researched and summarized
in (Pivovarova et al., 2017). The methods included
shallow neural networks, linguistic features based
classifier and a combination of machine translation
with semantic similarity.

However, recent research conducted in (Kuratov
and Arkhipov, 2019) shows that deep bidirectional
pretrained monolingual transformers improve para-
phrase detection in Russian by a large margin. It
was shown that finetuning a monolingual BERT
based model (RuBERT) on the ParaPhraser corpus
yields results far better than all of the aforemen-
tioned approaches (see Table 1).

The training set in ParaPhraser includes 7,227
pairs of sentences, which are classified by humans
into three classes: 2,582 non-paraphrases, 2,957
near-paraphrases,and 1,688 precise-paraphrases.
The aforementioned RuBERT model was fine-
tuned to a binary classification task: both near-
paraphrases and paraphrases were considered to be
a single class. Such approach helps in automatic
ranking: it is possible to sort the items in accor-
dance to the probability of the paraphrase class in
descending order. The fine-tuned RuBERT model
is available as part of the DeepPavlov library (Burt-
sev et al., 2018), which enabled us to adopt this
approach in our corpus construction study.

55

Model F1 Accuracy
Shallow Neural Networks (Pivovarova et al., 2017) 79.82 76.65
Linguistic Features Classifier (Pivovarova et al.,
2017)

81.10 77.39

Machine Translation Based Semantic Similarity
(Kravchenko, 2018)

78.51 81.41

RuBERT (Kuratov and Arkhipov, 2019) 87.73 84.99

Table 1: Paraphrase detection algorithms evaluation.

5 Ranking evaluation

In order to evaluate our supervised automatic rank-
ing approach we randomly select a subsample of
500 pairs for manual annotation. To provide a more
thorough comparison analysis we step aside from
the original 3-way annotation scheme utilized in
ParaPhraser and adopt the approach provided in
(Creutz, 2018) with more similarity degrees.

The annotation scheme from the original paper
is provided in Table 2.

To measure The inter-annotator agreement we
use Fleiss Kappa, which is a Cohen’s Kappa gener-
alization to more than two annotators (in our case -
5); expected agreement is calculated on the basis
of the assumption that random assignment of cat-
egories to items, by any annotator, is governed by
the distribution of items among categories in the
actual world. The annotators reach a fair agreement
(Kappa 0.267, p-value < 0.05).

The cosine similarity baseline solution of
Word2Vec embeddings achieves a manual anno-
tation Pearson’s correlation coefficient of 0.535.
Our supervised model rankings for ParaPhraser
Plus dramatically improve correlation with human
judgments (p = 0.734).

6 Paraphrase generation

To test our initial hypothesis we conduct a para-
phrase generation experiment on two datasets:
Opusparcus and our ParaPhraser Plus.

There exist several methods to generate para-
phrases. The following techniques are known: rule-
based (McKeown, 1983), Seq-2-Seq (Gupta et al.,
2018; Fu et al., 2019; Egonmwan and Chali, 2019;
Roy and Grangier, 2019), reinforcement learning
(Li et al., 2017), deep generative models (Iyyer
et al., 2018) and a varied combination (Gupta et al.,
2018; Mallinson et al., 2017) of the later three.

We show the results that can be achieved on large
automatically ranked corpora using a Sequence-

to-Sequence model based on the Universal Trans-
former architecture as it has demonstrated superior
performance over the past year in multiple gen-
erative tasks, such as abstractive summarization,
machine translation and, of course, paraphrase gen-
eration. (Gupta et al., 2018; Mallinson et al., 2017;
Gupta et al., 2018; Fu et al., 2019; Egonmwan and
Chali, 2019; Roy and Grangier, 2019).

As pointed out in (Vaswani et al., 2017), the
attention heads in the transformer model can be
found very useful in learning grammatical, syntac-
tical, morphological and semantical behavior in the
language, which is essential in paraphrase genera-
tion. Such results are being achieved thanks to the
fact that input vectors are connected to every other
via the attention mechanism, thus allowing the net-
work to learn complex rephrasing dependencies.
Moreover, contrary to recurrent neural networks, a
transformer can be trained in parallel.

For both datasets, Opusparcus and ParaPhraser
Plus, we used the same set of model hyper-
parameters: 4 layers in the encoder and decoder
with 8 heads of attention. In addition, we added
a Dropout of p = 0.3. The models were trained
until convergence with the Adam optimizer using a
scaled learning rate, as proposed by the authors of
the original Transformer

We also adopt byte-pair encoding (BPE), a data
compression technique where often occuring pairs
of bytes are replaced by additional extra-alphabet
symbols. Thanks to this approach, the most fre-
quent parts of words are kept in the vocabulary,
while rarely occuring words are replaced by a se-
quence of several tokens. Languages with rich mor-
phology benefit the most as the word endings could
be separated since each word form is definitely less
frequent than its stem. BPE encoding allows us
to represent all words, including the ones unseen
during training (e.g. first and last names, which are
common in headlines), with a fixed vocabular.

56

Category Description Examples

Good (4)
The two sentences can be used in the
same situation and essentially “mean
the same thing”

It was a last minute thing <-> This
wasn’t planned;
I have goose flesh <-> The hair’s stand-
ing upon my arms

Mostly Good (3)

It is acceptable to think that the two sen-
tences refer to the same thing, although
one sentence might be more specific
than the other one, or there are differ-
ences in style.

Go to your bedroom <-> Just go to
sleep;
Next man, move it <-> Next, please;
Calvin, now what? <-> What are we
doing?

Mostly Bad (2)

There is some connection between the
sentences that explains why they occur
together, but one would not really con-
sider them to mean the same thing.

Did you ask him <-> Have you asked
her?;
Hello, operator? <-> Yes, operator, I’m
trying to get to the police

Bad (1)
There is no obvious connection.
The sentences mean different things.

She’s over there <-> Take me to him;
All the cons <-> Nice and comfy

Table 2: Paraphrase annotation scheme as provided in (Creutz, 2018). A pair can also be ranked "in-between"
categories (e.g. 2.5 or 3.5).

Metric 250k 500k 1m 2m

Opusparcus BLEU 5.04 6.54 6.58 6.46
METEOR 28.36 30.02 31.25 33.19

ParaPhraser Plus BLEU 7.54 7.76 8.73 9.81
METEOR 34.35 35.58 37.46 38.09

Table 3: Generation scores on the test set of each dataset for different train sizes.

7 Results

We perform experiments on the above mentioned
datasets, and report, both qualitative and quanti-
tative results of our approach. As can be seen in
Table 3 which demonstrates the quantitative re-
sults, there is a strong correlation between the size
of the training set, selected from top N samples,
and the final score of the model. We also perform
a qualitative analysis by sampling 100 examples of
the original phrase, reference and our 2m model
generated phrase for human evaluation. We asked
3 annotators to choose their paraphrase preference
over three possible options: original paraphrase
(Human), generated paraphrase (Machine), no pref-
erence (Tie). The results can be seen in Table 4.

Human Tie Machine
Opusparcus 52.3 26.2 21.5
ParaPhraser Plus 60.6 23.9 14.5

Table 4: Human evaluation of generated paraphrases.

For the both corpora, we could see that our
model is not reaching human parity yet, having
47.7 and 38.4 of (Machine + Tie) user preference
for Opusparcus and ParaPhraser datasets respec-
tively. Some examples of the produced paraphrases
can be seen below (translated into English):

• Original: "State Duma may prohibit doctors
and teachers from accepting gifts other than
flowers"

57

Reference: "Teachers and doctors in Russia
may be prohibited from accepting gifts"
Generated: "The State Duma proposed to
ban doctors and teachers from accepting
gifts"

• Original: "The Bank of Russia revoked its li-
cense from the Yekaterinburg Plateau Bank"
Reference: "Yekaterinburg Plateau Bank is
left without its license"
Generated: "Central Bank revoked the li-
cense from "plateau-bank""

• Original: "Stocks are ready to rise in the
stock market."
Reference: "Stocks are going to rise on the
market"
Generated: "Stock market ready to go up"

Despite the fact that both of the training sets are
noisy to a certain extent, the model is able to gen-
eralize and generate paraphrases of decent quality
(from semantic and grammatical standpoint) for
types of content it has never seen during the train-
ing phase.

8 Conclusion

This study confirms our initial hypothesis that data
size restrictions can be effectively resolved with
automatically ranked corpora, especially in low-
resource languages where large manually anno-
tated datasets are not available. We also present a
newly gathered ParaPhraser Plus corpus and results
achieved by a transformer model applied to it.

9 Future work

In the future we would like to extend our work
to other generative tasks and create more diverse
and large ranked corpora utilizing different ap-
proaches for supervised ranking. In addition to that,
we are interested in investigating how a combina-
tion of ranking techniques could be used for better
data sampling in generation oriented tasks. Also
we would like to investigate what is the minimal
amount of manually annotated data that is suffi-
cient for successful automatic ranking in parallel
corpora.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada

Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. pages 252–263.

Galen Andrew and Jianfeng Gao. 2007. Scalable train-
ing of L1-regularized log-linear models. pages 33–
40.

Mikhail Burtsev, Alexander Seliverstov, Rafael
Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-
ina, Nickolay Bushkov, Olga Gureenkova, Taras
Khakhulin, Yurii Kuratov, Denis Kuznetsov, et al.
2018. Deeppavlov: Open-source library for
dialogue systems. pages 122–127.

Mathias Creutz. 2018. Open subtitles paraphrase
corpus for six languages. arXiv preprint
arXiv:1809.06142.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.

Elozino Egonmwan and Yllias Chali. 2019. Trans-
former and seq2seq model for paraphrase generation.
pages 249–255.

Yao Fu, Yansong Feng, and John P Cunningham. 2019.
Paraphrase generation with latent bag of words.
pages 13623–13634.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. pages 758–764.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
arXiv preprint arXiv:1804.06059.

Dmitry Kravchenko. 2018. Paraphrase detection us-
ing machine translation and textual similarity algo-
rithms. pages 277–292.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation
of deep bidirectional multilingual transformers for
russian language. arXiv preprint arXiv:1905.07213.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2017. Paraphrase generation with deep reinforce-
ment learning. arXiv preprint arXiv:1711.00279.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. pages 740–755.

Jonathan Mallinson, Rico Sennrich, and Mirella Lapata.
2017. Paraphrasing revisited with neural machine
translation. pages 881–893.

Kathleen McKeown. 1983. Focus constraints on lan-
guage generation.

58

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. pages 425–430.

Lidia Pivovarova, Ekaterina Pronoza, Elena Yagunova,
and Anton Pronoza. 2017. Paraphraser: Russian
paraphrase corpus and shared task. pages 211–225.

Aurko Roy and David Grangier. 2019. Unsupervised
paraphrasing without translation. pages 6033–6039.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. pages 5998–6008.

59

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 60–68
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization
with Bilingual Semantic Similarity Rewards

Zi-Yi Dou Sachin Kumar Yulia Tsvetkov
Language Technologies Institute

Carnegie Mellon University
{zdou, sachink, ytsvetko}@cs.cmu.edu

Abstract

Cross-lingual text summarization aims at gen-
erating a document summary in one language
given input in another language. It is a prac-
tically important but under-explored task, pri-
marily due to the dearth of available data. Ex-
isting methods resort to machine translation to
synthesize training data, but such pipeline ap-
proaches suffer from error propagation. In this
work, we propose an end-to-end cross-lingual
text summarization model. The model uses
reinforcement learning to directly optimize a
bilingual semantic similarity metric between
the summaries generated in a target language
and gold summaries in a source language.
We also introduce techniques to pre-train the
model leveraging monolingual summarization
and machine translation objectives. Experi-
mental results in both English–Chinese and
English–German cross-lingual summarization
settings demonstrate the effectiveness of our
methods. In addition, we find that reinforce-
ment learning models with bilingual semantic
similarity as rewards generate more fluent sen-
tences than strong baselines.1

1 Introduction

Cross-lingual text summarization (XLS) is the task
of compressing a long article in one language into a
summary in a different language. Due to the dearth
of training corpora, standard sequence-to-sequence
approaches to summarization cannot be applied
to this task. Traditional approaches to XLS thus
follow a pipeline, for example, summarizing the
article in the source language followed by translat-
ing the summary into the target language or vice-
versa (Wan et al., 2010; Wan, 2011). Both of these
approaches require separately trained summariza-
tion and translation models, and suffer from error
propagation (Zhu et al., 2019).

1https://github.com/zdou0830/
crosslingual_summarization_semantic.

 Article-EN
Model Summary-ZH

Gold
Reference-EN

Generated
Reference-ZH

Lcls
Lrl

Figure 1: Along with minimizing the XLS cross-
entropy loss Lxls, we also apply reinforcement learn-
ing to optimize the model by directly comparing the
outputs with gold references in the source language.

Prior studies have attempted to train XLS models
in an end-to-end fashion, through knowledge distil-
lation from pre-trained machine translation (MT) or
monolingual summarization models (Ayana et al.,
2018; Duan et al., 2019), but these approaches have
been only shown to work for short outputs. Alterna-
tively, Zhu et al. (2019) proposed to automatically
translate source-language summaries in the training
set thereby generating pseudo-reference summaries
in the target language. With this parallel dataset
of source documents and target summaries , an
end-to-end model is trained to simultaneously sum-
marize and translate using a multi-task objective.
Although the XLS model is trained end-to-end, it
is trained on MT-generated reference translations
and is still prone to compounding of translation and
summarization errors.

In this work, we propose to train an end-to-end
XLS model to directly generate target language
summaries given the source articles by matching
the semantics of the predictions with the semantics
of the source language summaries. To achieve this,
we use reinforcement learning (RL) with a bilin-
gual semantic similarity metric as a reward (Wi-
eting et al., 2019b). This metric is computed be-
tween the machine-generated summary in the target
language and the gold summary in the source lan-
guage. Additionally, to better initialize our XLS

60

https://www.aclweb.org/anthology/D19-56%2d

Figure 2: Illustration of the supervised pre-training
stage. The model is trained with cross-lingual summa-
rization, machine translation and distillation objectives.
The parameters of bottom layers of the decoders are
shared across tasks.

model for RL, we propose a new multi-task pre-
training objective based on machine translation and
monolingual summarization to encode common
information available from the two tasks. To en-
able the model to still differentiate between the two
tasks, we add task specific tags to the input (Wu
et al., 2016).

We evaluate our proposed method on English–
Chinese and English–German XLS test sets. These
test corpora are constructed by first using an MT-
system to translate source summaries to the tar-
get language, and then being post-edited by hu-
man annotators. Experimental results demonstrate
that just using our proposed pre-training method
without fine-tuning with RL improves the best-
performing baseline by up to 0.8 ROUGE-L points.
Applying reinforcement learning yields further im-
provements in performance by up to 0.5 ROUGE-L
points. Through extensive analyses and human
evaluation, we show that when the bilingual seman-
tic similarity reward is used, our model generates
summaries that are more accurate, longer, more flu-
ent, and more relevant than summaries generated
by baselines.

2 Model

In this section, we describe the details of the task
and our proposed approach.

2.1 Problem Description

We first formalize our task setup. We are given N
articles and their summaries in the source language
{(x(1)src , y

(1)
src), . . . , (x

(N)
src , y

(N)
src)} as a training set.

Our goal is to train a summarization model f(·; θ)

which takes an article in the source language xsrc as
input and generates its summary in a pre-specified
target language ŷtgt = f(xsrc; θ). Here, θ are the
learnable parameters of f . During training, no gold
summary y(i)tgt is available.

Our model consists of one encoder, denoted as
E, which takes xsrc as input and generates its vec-
tor representation h. h is fed as input to two de-
coders. The first decoder D1 predicts the summary
in the target language (ŷtgt) one token at a time.
The second decoder D2 predicts the translation of
the input text (v̂tgt). While both D1 and D2 are
used during training, only D1 is used for XLS at
test time. Intuitively, we want the model to select
parts of the input article which might be important
for the summary and also translate them into the
target language. To bias our model to encode this
behavior, we propose the following algorithm for
pre-training:

• Use a machine translation (MT) model to gen-
erate pseudo reference summaries (ỹtgt) by
translating ysrc to the target language. Then,
translate ỹtgt back to the source language us-
ing a target-to-source MT model and discard
the examples with high reconstruction errors,
which are measured with ROUGE (Lin, 2004)
scores. The details of this step can be found
in Zhu et al. (2019).

• Pre-train the model parameters θ using a multi-
task objective based on MT and monolingual
summarization objectives with some simple
yet effective techniques as described in §2.2.

• Further fine-tune the model using reinforce-
ment learning with bilingual semantic similar-
ity metric (Wieting et al., 2019b) as reward,
which is described in §2.3.

2.2 Supervised Pre-Training Stage
Here, we describe the second step of our algo-
rithm (Figure 2). The pre-training loss we use is
a weighted combination of three objectives. Sim-
ilarly to Zhu et al. (2019), we use an XLS pre-
training objective and an MT pre-training objective
as described below with some simple but effective
improvements. We also introduce an additional ob-
jective based on distilling knowledge from a mono-
lingual summarization model.

XLS Pre-training Objective (Lxls) This objec-
tive computes the cross-entropy loss of the predic-
tions from D1, considering the machine-generated

61

summaries in the target language, ỹ(i)tgt as refer-

ences, given x(i)src as inputs. Per sample, this loss
can be formally written as:

Lxls =

M∑

j=1

log p(ỹ
(i)
tgt,j |ỹ

(i)
tgt,<j , x

(i)
src)

where M is the number of tokens in the summary i.

Joint Training with Machine Translation Zhu
et al. (2019) argue that machine translation can be
considered a special case of XLS with a compres-
sion ratio of 1:1. In line with Zhu et al. (2019),
we train E and D2 as the encoder and decoder of
a translation model using an MT parallel corpus
{(u(i)src, v

(i)
tgt)}. The goal of this step is to make the

encoder have an inductive bias towards encoding
information specific to translation. Similar to Lxls,
the machine translation objective per training sam-
ple Lmt is:

Lmt =

K∑

j=1

log p(v
(i)
tgt,j |v

(i)
tgt,<j , u

(i)
src)

where K is the number of tokens in v(i)tgt. The Lxls

andLmt objectives are inspired by Zhu et al. (2019).
We propose the following two enhancements to the
model to leverage better the two objectives:

1. We share the parameters of bottom layers of
the two decoders, namelyD1 andD2, to share
common high-level representations while the
parameters of the top layers more specialized
to decoding are separately trained.

2. We append an artificial task tag 〈SUM〉 (dur-
ing XLS training) and 〈TRANS〉 (during MT
training) at the beginning of the input docu-
ment to make the model aware of which kind
of input it is dealing with.

We show in §4.1 that such simple modifications
result in noticeable performance improvements.

Knowledge Distillation from Monolingual Sum-
marization To bias the encoder to identify sen-
tences which can be most relevant to the summary,
first, we use an extractive monolingual summariza-
tion method to predict the probability qi of each
sentence or keyword in the input article being rel-
evant to the summary. We then distill knowledge
from this model into the encoder E by making it
predict these probabilities. Concretely, we append

an additional output layer to the encoder of our
model and it predicts the probability pi of includ-
ing the i-th sentence or word in the summary. The
objective is to minimize the difference between pi
and qi. We use the following loss (for each sample)
for the model encoder:2

Ldis =
1

L

L∑

j=1

(log qj − log pj)
2, (1)

where L is the number of sentences or keywords in
each article.

Our final pre-training objective during the super-
vised pre-training stage is:

Lsup = Lxls + Lmt + λLdis (2)

where λ is a hyper-parameter and is set to 10 in our
experiments. Training with Lmt requires an MT
parallel corpus whereas the other two objectives uti-
lize the cross-lingual summarization dataset. Pre-
training algorithm alternates between the two parts
of the objective using mini-batches from the two
datasets as follows until convergence:

1. Sample a minibatch from the MT corpus
{(u(i)src, v

(i)
tgt)} and train the parameters of E

and D2 with Lmt.

2. Sample a minibatch from the XLS corpus,
{(x(i)src, ỹ

(i)
tgt)} and train the parameters of E

and D1 with Lxls + λLdis.

2.3 Reinforcement Learning Stage
For XLS, the target language reference summaries
(ỹtgt) used during pre-training are automatically
generated with MT models and thus they may
contain errors. In this section, we describe how
we further fine-tune the model using only human-
generated source language summaries (ysrc) with
reinforcement learning (RL). Specifically, we first
feed the article xsrc as an input to the encoder E,
and generate the target language summary ŷtgt us-
ing D1. We then compute a cross-lingual similarity
metric between ŷtgt and ysrc and use it as a reward
to fine-tune E and D1.

Following Paulus et al. (2018), we adopt two
different strategies to generate ŷtgt at each training
iteration, (a) ŷstgt obtained by sampling from the
softmax layer at each decoding step, and (b) ŷgtgt

2We also experimented with a common distillation objec-
tive based on minimizing KL divergence, 1

n

∑n
i=1 qi log pi,

but it did not perform as well.

62

obtained by greedy decoding. The RL objective
per sample is given by:

Lrl =
(
r(ŷgtgt)− r(ŷstgt)

) M∑

j=1

log p(ŷstgt,i|ŷstgt,<j, x),

(3)
where r(·) is the reward function. To fine-tune
the model, we use the following hybrid training
objective: γLrl + (1− γ)Lxls, where γ is a scaling
factor.

We train a cross-lingual similarity model (XSIM)
with the best performing model in Wieting et al.
(2019b). This model is trained using an MT paral-
lel corpus. Using XSIM, we obtain sentence repre-
sentations for both ŷtgt and ysrc and treat the cosine
similarity between the two representations as the
reward r(·).

3 Experimental Setup

3.1 Datasets

We evaluate our models on English–Chinese and
English–German article-summary datasets. The
English–Chinese dataset is created by Zhu et al.
(2019), constructed using the CNN/DailyMail
monolingual summarization corpus (Hermann
et al., 2015). The training, validation and test sets
consist of about 364K, 3K and 3K samples, respec-
tively. The English–German dataset is our contribu-
tion, constructed from the Gigaword dataset (Rush
et al., 2015). We sample 2.48M training, 2K valida-
tion and 2K test samples from the dataset. Pseudo-
parallel corpora for both language pairs are con-
structed by translating the summaries to the target
language (and filtered after back-translation; see
§2). This is done for training, validation as well
as test sets. These two pseudo-parallel training
sets are used for pre-training with Lxls. Trans-
lated Chinese and German summaries of the test
articles are then post-edited by human annotators
to construct the test set for evaluating XLS. We
refer the readers to (Zhu et al., 2019) for more
details. For the English–Chinese dataset, we use
word-based segmentation for the source (articles
in English) and character-based segmentation for
the target (summaries in Chinese) as in (Zhu et al.,
2019). For the English–German dataset, byte-pair
encoding is used (Sennrich et al., 2016) with 60K
merge operations. For machine translation and
training the XSIM model, we sub-sample 5M sen-
tences from the WMT2017 Chinese–English and

WMT2014 German–English training dataset (Bojar
et al., 2014, 2017).

3.2 Implementation Details

We use the Transformer-BASE model (Vaswani
et al., 2017) as the underlying architecture for
our model (E, D1, D2, extractive summarization
model for distillation and baselines). We refer the
reader to Vaswani et al. (2017) for hyperparam-
eter details. In the input article, a special token
〈SEP〉 is added at the beginning of each sentence to
mark sentence boundaries. For the CNN/DailyMail
corpus, the monolingual extractive summarization
used in the distillation objective has the same ar-
chitecture as the encoder E and is trained the
CNN/DailyMail corpus constructed by (Liu and
Lapata, 2019). To train the encoder with Ldis, we
take the final hidden representation of each 〈SEP〉
token and apply a 2-layer feed-forward network
with ReLU activation in the middle layer and sig-
moid at the final layer to get qi for each sentence i
(see §2.2).

For the Gigaword dataset, because the inputs and
outputs are typically short, we choose keywords
rather than sentences as the prediction unit. Specif-
ically, we first use TextRank (Mihalcea and Tarau,
2004) to extract all the keywords from the source
document. Then, for each keyword i that appears
in the target summary, the gold label qi in equa-
tion 1 is assigned to 1, and qi is assigned to 0 for
keywords that do not appear in the target side.

We share the parameters of the bottom four lay-
ers of the decoder in the multi-task setting. We use
the TRIGRAM model in (Wieting et al., 2019b,a) to
measure the cross-lingual sentence semantic simi-
larities. As pointed out in §2, after the pre-training
stage, we only useD1 for XLS. The final results are
obtained using only E and D1. We use two metrics
for evaluating the performance of models: ROUGE
(1, 2 and L) (Lin, 2004) and XSIM (Wieting et al.,
2019b).

Following Paulus et al. (2018), we select γ in
equation 3 to 0.998 for the Gigaword Corpus and
γ = 0.9984 for the CNN/DailyMail dataset.

3.3 Baselines

We compare our proposed method with the follow-
ing baselines:

Pipeline Approaches We report results of
summarize-then-translate (SUM-TRAN) and

63

Method English–Chinese English–German
ROUGE-1 ROUGE-2 ROUGE-L XSIM ROUGE-1 ROUGE-2 ROUGE-L XSIM

Pipeline-Based Methods
TRAN-SUM (Zhu et al., 2019) 28.19 11.40 25.77 - - - - -
SUM-TRAN (Zhu et al., 2019) 32.17 13.85 29.43 - - - - -
End-to-End Training Methods
MLE-XLS 37.38 17.96 33.85 45.17 23.06 8.40 21.28 43.41
MLE-XLS+MT (Zhu et al., 2019) 40.23 22.32 36.59 - - - - -
MLE-XLS+MT (Reimplemented) 41.25 22.40 37.93 48.77 36.83 17.62 35.54 49.21
MLE-XLS+MT+DIS 42.19* 22.91* 38.74* 49.20* 37.74* 18.40* 36.34* 49.53*
RL-ROUGE 42.51* 22.96 38.98* 49.65 38.32* 18.46 36.86* 49.66
RL-XSIM 42.83* 23.30* 39.29* 50.85* 38.69* 18.76* 37.20* 50.17*
RL-ROUGE+XSIM 42.49 23.29* 38.95 49.88* 38.19* 18.17 36.72* 49.64

Table 1: Performance of different models. The highest scores are in bold and statistical significance compared
with the best baseline is indicated with * (p <0.05, computed using compare-mt (Neubig et al., 2019)). XSIM is
computed between the target language system outputs and the source language reference summaries.

translate-then-summarize (TRAN-SUM) pipelines.
These results are taken from Zhu et al. (2019).

MLE-XLS We pre-train E and D1 with only
Lxls without any fine-tuning.

MLE-XLS+MT We pre-train E, D1 and D2

with Lxls + Lmt without using Ldis. This is the
best performing model in (Zhu et al., 2019). We
show their reported results as well as results from
our re-implementation.

MLE-XLS+MT+DIS We pre-train the model us-
ing (2) without fine-tuning with RL. We also share
the decoder layers and add task specific tags to the
input as described in §2.2.

RL-ROUGE Using ROUGE score as a reward
function has been shown to improve summariza-
tion quality for monolingual summarization mod-
els (Paulus et al., 2018). In this baseline, we fine-
tune the pre-trained model in the above baseline
using ROUGE-L as a reward instead of the pro-
posed XSIM. The ROUGE-L score is computed be-
tween the output of D1 and the machine-generated
summary ỹtgt.

RL-ROUGE+XSIM Here, we use the average
of ROUGE score and XSIM score as a reward
function to fine-tune the pre-trained model (MLE-
XLS+MT+DIS).

4 Results

The main results of our experiments are summa-
rized in Table 1. Pipeline approaches, as expected,
show the weakest performance, lagging behind
even the weakest end-to-end approach by more
than 5 ROUGE-L points. TRAN-SUM performs
even worse than SUM-TRAN, likely because the

Method ROUGE-1 ROUGE-2 ROUGE-L
MLE-XLS 37.38 17.96 33.85
+EXTRACT 39.19 19.58 35.68
+DIS 40.46 20.47 36.93
MLE-XLS+MT 41.25 22.40 37.93
+EXTRACT 40.04 21.58 36.74
+DIS 41.68 22.48 38.29

Table 2: Effect of using hard (EXTRACT) vs soft (DIS)
extraction of summary sentences from the input article

translation model is trained on sentences and not
long articles. First translating the article with many
sentences introduces way more errors than translat-
ing a short summary with fewer sentences would.
Using just our pre-training method as described in
2.2 (MLE-XLS+MT+DIS), our proposed model out-
performs the strongest baseline (MLE-XLS+MT)
in both ROUGE-L (by 0.8) and XSIM (by 0.5).
Applying reinforcement learning to fine-tune the
model with both ROUGE (RL-ROUGE), XSIM (RL-
XSIM) or their mean (RL-ROUGE+XSIM) as re-
wards results in further improvements. Our pro-
posed method, RL-XSIM performs the best overall,
indicating the importance of using cross-lingual
similarity as a reward function. RL-ROUGE uses
a machine-generated reference to compute the re-
wards since target language summaries are unavail-
able, which might be a reason for its worse perfor-
mance.

4.1 Analysis

In this section, we conduct experiments on the
CNN/DailyMail dataset to establish the importance
of every part of the proposed method and gain fur-
ther insights into our model.

Soft Distillation vs. Hard Extraction The re-
sults in table 1 already show that adding the knowl-

64

Figure 3: Reinforcement learning can make the model better at generating long summaries. We use the compare-mt
tool (Neubig et al., 2019) to get these statistics.

Method ROUGE-1 ROUGE-2 ROUGE-L
MLE+XLS+MT 41.25 22.40 37.93
+SHARE 41.36 22.43 37.95
+TAG 41.45 22.47 38.04

Table 3: Effect of sharing decoder layers and adding
task-specific tags

edge distillation objective Ldis to the pre-training
leads to an improvement in performance. The in-
tuition behind using Ldis is to bias the model to
(softly) select sentences in the input article that
might be important for the summary. Here, we re-
place this soft selection with a hard selection. That
is, using the monolingual extractive summariza-
tion model (as described in §3.2), we extract top
5 sentences from the input article and use them as
the input to the encoder instead. We compare this
method with Ldis as shown in Table 2. With just
MLE-XLS as the pre-training objective, EXTRACT

shows improvement (albeit with lower overall num-
bers) in performance but leads to a decrease in per-
formance of MLE-XLS+MT. On the other hand,
using the distillation objective helps in both cases.

Effect of the Sharing and Tagging Techniques
In Table 3, we demonstrate that introducing simple
enhancements like sharing the lower-layers of the
decoder (share) and adding task-specific tags (tags)
during multi-task pre-training also helps in improv-
ing the performance while at the same using fewer
parameters and hence a smaller memory footprint.

Effect of Summary Lengths Next, we study
how different baselines and our model performs
with respect to generating summaries (in Chinese)
of different lengths, in terms of number of char-
acters. As shown in Figure 3, after fine-tuning
the model with RL, our proposed model becomes

better at generating longer summaries than the
one with only pre-training (referred to as MLE-
XLS+MT+DIS in the figure) with RL-XSIM per-
forming the best in most cases. We posit that this
improvement is due to RL based fine-tuning reduc-
ing the problem of exposure bias introduced during
teacher-forced pre-training, which especially helps
longer generations.

Human Evaluation In addition to automatic
evaluation, which can sometimes be misleading,
we perform human evaluation of summaries gen-
erated by our models. We randomly sample 50
pairs of the model outputs from the test set and ask
three human evaluators to compare the pre-trained
supervised learning model and reinforcement learn-
ing models in terms of relevance and fluency. For
each pair, the evaluators are asked to pick one out
of: first model (MLE-XLS+MT+DIS; lose) , second
model(RL models; win) or say that they prefer both
or neither (tie). The results are summarized in ta-
ble 4. We observe that the outputs of model trained
with ROUGE-L rewards are more favored than the
ones generated by only pre-trained model in terms
of relevance but not fluency. This is likely because
the RL-ROUGE model is trained using machine-
generated summaries as references which might
lack fluency. Figure 4 displays one such example.
On the other hand, cross-lingual semantic similarity
as a reward results in generations which are more
favored both in terms of relevance and fluency.

5 Related Work

Most previous work on cross-lingual text summa-
rization utilize either the summarize-then-translate
or translate-then-summarize pipeline (Wan et al.,
2010; Wan, 2011; Yao et al., 2015; Ouyang et al.,

65

Output

Ref

૱ ᦓ տ ޮ ӣ ಭ ᐥ ᭗ ᬦ ԧ Ӟ ᶱ ṛ ᨻ ԣ ḕ ᅶ ဩ ਧ ଙ Ἳ ጱ ဩ ໜ ̶ ᕘ ᕅ ฎ ᗦ ࢵ ๋ य़ ጱ ਖ਼ ᨻ ԣ ଙ Ἳ ṛ 18 ک զ Ӥ ጱ उ
૱ ̶ ᬯ ᶱ ဩ ᶼ ᦇ ก ଙ ڡ ኞ ප ̶

A bill to raise the legal age to buy cigarettes was voted into law Wednesday by the City Council. New York is the largest US city to raise the
purchase age above the federal limit of 18-years-old. The law is expected to go into effect early next year.

Sup
ᕘ ᕅ ౮ ԅ ᗦ ࢵ ๋ य़ ጱ ᨻ ԣ ଙ Ἳ ̶ ᕘ ᕅ ӧ ฎ ᒫ Ӟ ӻ ṛ ဩ ਧ ᷴ ᯌ ଙ Ἳ ጱ उ ૱ ̶

New York has become the largest purchase age in the United States. New York is not the first city to raise the legal drinking age.

RL-
ROUGE

ᕘ ᕅ ౮ ԅ ᗦ ࢵ ๋ य़ ጱ ᨻ ԣ ଙ Ἳ ҅ ဩ ଙ Ἳ 18 ṛ 21 ک ̶ ૱ ᦓ տ ޮ ӣ ಢ ٵ ԧ Ӟ ᶱ ဩ ໜ ҅ ਖ਼ ᅶ ក ᨻ ԣ ଙ Ἳ
18 ṛ 21 ک ̶ ᕘ ᕅ ӧ ฎ ᒫ Ӟ ӻ ṛ ဩ ਧ ᷴ ᯌ ଙ Ἳ ጱ उ ૱ ̶

New York has become the largest purchase age in the United States, and the legal age has increased from 18 to 21. The City Council
approved a law on Wednesday to increase the age of tobacco purchases from 18 to 21. New York is not the first city to raise the legal
drinking age.

RL-
XSIM

ᕘ ᕅ ౮ ԅ ᗦ ࢵ ๋ य़ ጱ ᨻ ԣ ḕ ᅶ ጱ उ ૱ ̶ ૱ ᦓ տ ޮ ӣ ಢ ٵ ԧ Ӟ ᶱ ဩ ໜ ҅ ਖ਼ ᅶ ក ᨻ ԣ ଙ Ἳ 18 ṛ 21 ک ̶ ᕘ ᕅ
ӧ ฎ ᒫ Ӟ ӻ ṛ ဩ ਧ ᷴ ᯌ ଙ Ἳ ጱ उ ૱ ̶

New York has become the largest city in the United States for buying cigarettes. The City Council approved a law on Wednesday to
increase the age of tobacco purchases from 18 to 21. New York is not the first city to raise the legal drinking age.

Figure 4: Example outputs. The bilingual semantic similarity rewards can make the output more fluent than using
ROUGE-L as rewards. “Sup” refers to the MLE-XLS+MT+DIS baseline.

Metric Model v. MLE Win (%) Lose (%) Tie (%)

Relevance
RL-ROUGE 25.3 15.3 59.3
RL-XSIM 36.0 31.3 32.7

Fluency
RL-ROUGE 13.3 17.3 69.3
RL-XSIM 37.3 28.7 34.0

Table 4: Results showing preferences of human evalua-
tors towards the summaries generated by the mentioned
RL methods vs ones from the pre-trained model (MLE-
XLS+MT+DIS referred in short as MLE)

2019). These methods suffer from error propaga-
tion and we have demonstrated their sub-optimal
performance in our experiments. Recently, there
has been some work on training models for this
task in an end-to-end fashion (Ayana et al., 2018;
Duan et al., 2019; Zhu et al., 2019), but these mod-
els are trained with cross-entropy using machine-
generated summaries as references which have al-
ready lost some information in the translation step.

Prior work in monolingual summarization have
explored hybrid extractive and abstractive summa-
rization objectives which inspires our distillation
objective (Gehrmann et al., 2018; Hsu et al., 2018;
Chen and Bansal, 2018). This line of research
mainly focus on either compressing sentences ex-
tracted by a pre-trained model or biasing the pre-
diction towards certain words.

Language generation models trained with cross-
entropy using teacher-forcing suffer from expo-
sure bias and a mismatch between training and
evaluation objective. To solve these issues, using
reinforcement learning to fine-tune such models

have been explored for monolingual summarization
where ROUGE rewards is typically used (Paulus
et al., 2018; Liu et al., 2018; Pasunuru and Bansal,
2018). Other rewards such as BERT score (Zhang
et al., 2019) have also been explored (Li et al.,
2019). Computing such rewards requires access to
the gold summaries which are typically unavailable
for cross-lingual summarization. This work is the
first to explore using cross-lingual similarity as a
reward to work around this issue.

6 Conclusion

In this work, we propose to use reinforcement learn-
ing with a bilingual semantic similarity metric as
rewards for cross-lingual document summarization.
We demonstrate the effectiveness of the proposed
approach in a resource-deficient setting, where tar-
get language gold summaries are not available. We
also propose simple strategies to better initialize
the model towards reinforcement learning by lever-
aging machine translation and monolingual sum-
marization. In future work, we plan to explore
methods for stabilizing reinforcement learning as
well to extend our methods to other datasets and
tasks, such as using the bilingual similarity met-
ric as a reward to improve the quality of machine
translation.

Acknowledgements

We are grateful to anonymous reviewers for their
helpful suggestions and Chunting Zhou, Shuyan

66

Zhou for proofreading the paper. We also thank
Ruihan Zhai, Zhi-Hao Zhou for the help with hu-
man evaluation and Anurag Katakkar for post-
editing the dataset. This material is based upon
work supported by NSF grants IIS1812327 and by
Amazon MLRA award. We also thank Amazon for
providing GPU credits.

References
Ayana, Shi-qi Shen, Yun Chen, Cheng Yang, Zhi-yuan

Liu, and Mao-song Sun. 2018. Zero-shot cross-
lingual neural headline generation. IEEE/ACM
Transactions on Audio, Speech and Language Pro-
cessing.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, et al. 2014. Findings of the 2014
workshop on statistical machine translation. In Proc.
WMT.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, et al. 2017. Findings of the 2017 con-
ference on machine translation. In Proc. WMT.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proc. ACL.

Xiangyu Duan, Mingming Yin, Min Zhang, Boxing
Chen, and Weihua Luo. 2019. Zero-shot cross-
lingual abstractive sentence summarization through
teaching generation and attention. In Proc. ACL.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proc. EMNLP.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Proc. NeurIPS.

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proc. ACL.

Siyao Li, Deren Lei, Pengda Qin, and William Yang
Wang. 2019. Deep reinforcement learning with dis-
tributional semantic rewards for abstractive summa-
rization. In Proc. EMNLP.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out.

Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu,
and Hongyan Li. 2018. Generative adversarial net-
work for abstractive text summarization. In Proc.
AAAI.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proc. EMNLP.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proc. EMNLP.

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, and Xinyi Wang. 2019. compare-mt:
A tool for holistic comparison of language genera-
tion systems. In Proc. NAACL Demo.

Jessica Ouyang, Boya Song, and Kathleen McKeown.
2019. A robust abstractive system for cross-lingual
summarization. In Proc. NAACL.

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-
reward reinforced summarization with saliency and
entailment. In Proc. NAACL.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In Proc. ICLR.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proc. EMNLP.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. NeurIPS.

Xiaojun Wan. 2011. Using bilingual information for
cross-language document summarization. In Proc.
ACL.

Xiaojun Wan, Huiying Li, and Jianguo Xiao. 2010.
Cross-language document summarization based on
machine translation quality prediction. In Proc.
ACL.

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019a. Beyond bleu: Training
neural machine translation with semantic similarity.
In Proc. ACL.

John Wieting, Kevin Gimpel, Graham Neubig, and Tay-
lor Berg-Kirkpatrick. 2019b. Simple and effective
paraphrastic similarity from parallel translations. In
Proc. ACL.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Jin-ge Yao, Xiaojun Wan, and Jianguo Xiao. 2015.
Phrase-based compressive cross-language summa-
rization. In Proc. EMNLP.

67

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Jia-
jun Zhang, Shaonan Wang1, and Chengqing Zong.
2019. NCLS: Neural cross-lingual summarization.
In Proc. EMNLP.

68

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 69–78
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

A Question Type Driven and Copy Loss Enhanced Framework
for Answer-Agnostic Neural Question Generation

Xiuyu Wu1, Nan Jiang2, Yunfang Wu2∗

1School of Foreign Language, Peking University
2MOE Key Lab of Computational Linguistics, School of EECS, Peking University

textttxiuyu wu@pku.edu.cn,jnhsyxxy@126.com,wuyf@pku.edu.cn

Abstract
The answer-agnostic question generation is a
significant and challenging task, which aims
to automatically generate questions for a given
sentence but without an answer. In this paper,
we propose two new strategies to deal with
this task: question type prediction and copy
loss mechanism. The question type module
is to predict the types of questions that should
be asked, which allows our model to generate
multiple types of questions for the same source
sentence. The new copy loss enhances the
original copy mechanism to make sure that ev-
ery important word in the source sentence has
been copied when generating questions. Our
integrated model outperforms the state-of-the-
art approach in answer-agnostic question gen-
eration, achieving a BLEU-4 score of 13.9 on
SQuAD. Human evaluation further validates
the high quality of our generated questions.
We will make our code public available for fur-
ther research.

1 Introduction

Question Generation (QG) has been investigated
for many years because of its huge potential ben-
efits to various fields, especially for education
(Mitkov et al., 2006; Rus and Arthur, 2009; Heil-
man and Smith, 2010). QG can also act as an essen-
tial component of other comprehensive task, such
as dialogue systems (Piwek et al., 2007; Shum et al.,
2018). Besides, it can supplement question an-
swering task by automatically constructing a large
question set (Duan et al., 2017; Tang et al., 2017).

Traditional methods for automatic question gen-
eration are mostly rule-based, which need a set of
complex empirical rules (Beulen and Ney, 1998;
Brown et al., 2005; Heilman and Smith, 2010;
Mazidi and Nielsen, 2014). Recently, with the flour-
ish of deep learning, especially the sequence-to-
sequence (seq2seq) frame (Sutskever et al., 2014)

∗ Corresponding author.

Source sentence: the notion of style in the arts was not
developed until the 16th century , with the writing of
vasari : by the 18th century, his lives of the most excellent
painters , sculptors, and architects had been translated into
italian , french , spanish and english .
Groud-truth:
Q1: when were the styles of arts created ?
Q2: who wrote lives of the most excellent painters , sculp-
tors , and architects ?
Q3: by the 18th century which languages was vasaris
book translated in ?
Q4: in what century did “ style ” as an artistic concept
arise ?

Table 1: Different types of questions with respect to
the same source sentence, where the italics words are
keywords occurring both in the source sentence and ref-
erence questions.

with attention mechanism (Bahdanau et al., 2015),
many neural models have been proposed to solve
the QG task and achieve rapid progress (Du et al.,
2017; Zhou et al., 2017; Tang et al., 2017; Tong
et al., 2017; Zhao et al., 2018; Dong et al., 2019;
Nema et al., 2019; Zhou et al., 2019).

However, most of the previous works are de-
voted to deal with answer-aware question genera-
tion. That is, given a text and also an answer span,
the system is required to generate questions. But in
a real application for educational purpose, people
or machines are often required to generate ques-
tions for natural sentences without explicitly anno-
tated answer. Comparing with the answer-aware
QG, the answer-agnostic QG (AG-QG) task is more
challenging and attractive. Unfortunately, AG-QG
has been much less studied. Du’s work (Du et al.,
2017) is the first one to tackle this problem, and
(Scialom et al., 2019) achieve the state-of-the-art
by employing an extended transformer network.

For the AG-QG task, where the input is only a
sentence but without any answer, multiple ques-
tions might be asked from various perspectives.
According to our statistics on SQuAD (Rajpurkar

69

https://www.aclweb.org/anthology/D19-56%2d

et al., 2016), nearly 34% of the source sentences
are offered multiple gold reference questions, and
nearly 20% of the source sentences are offered dif-
ferent types of questions. Table 1 gives an example,
where one source sentence corresponds with four
different types of questions. However, most exist-
ing approaches can only generate one question for
one input sentence.

To enable the model to ask different types of
questions given the same input sentence, we pro-
pose a question type driven framework for AG-QG
task. Specially, our model firstly predicts the proba-
bility of different question types distribution on the
input sentence, which allows us to choose the best
K question types with higher possibility. Then
these different question types will be embedded
into different vectors, which will guide the decoder
to pay attention to informative parts with respect to
different questions.

Meanwhile, according to the statistics on
SQuAD, on average there are 3.09 non-stop words
copying from the source sentence for each refer-
ence question. Those non-stop words appearing in
both questions and sentences are regarded as key-
words, since they act as the connection of these two
parts. To increase the probability of copying key-
words from source sentences, we design a new copy
loss to enhance the traditional copy mechanism. In
our model, by minimizing the new copy loss, the
model will be forced to copy these keywords at
least once during decoding.

We conduct experiments on SQuAD. Both the
question type module and the new copy loss im-
prove performance over the baseline model, and
our full model combining two modules obtains a
new state-of-the-art performance with a BLEU-4
of 13.9. Moreover, our model can ask different
types of questions for a given sentence.

We conclude the contributions as follows:

• We propose a question type driven framework
for AG-QG, which enables the model to gen-
erate diverse questions with high quality.

• We design a new copy loss function to en-
hance the standard copy mechanism, which
increases the probability of copying keywords
from source sentences.

• Our model achieves a new state-of-the-art per-
formance for the challenging AG-QG. The hu-
man evaluation further validates a high quality

of our generated questions in fluency, rele-
vance and answer-ability.

2 Related Work

Answer-Aware Question Generation. Most
previous works on question generation focus on
answer-aware QG task. Yuan (Yuan et al., 2017)
proposes three parts of loss to enhance the perfor-
mance of sequence-to-sequence attention model.
Zhou (Zhou et al., 2017) leverage lexical features
(part-of-speech and named entity tags) to help the
model get better encoder representation. Zhao
(Zhao et al., 2018) uses paragraph information to do
answer-aware QG task. And to use answer informa-
tion more efficiently, Song (Song et al., 2018) uses
multi-perspective matching and Sun (Sun et al.,
2018) proposes position-aware model to pay more
attention to the surrounding context of answer span.
(Nema et al., 2019) uses a answer encoder to en-
code answer and fusion it with paragraph represen-
tation. (Chen et al., 2019) applies reinforcement
learning to increase the performance.

Answer-Agnostic Question Generation. AG-
QG is more challenging than answer-aware QG.
Du’s work (Du et al., 2017) is the first one to
tackle this problem, and they achieve better perfor-
mance than rule-based approaches by employing
a sequence-to-sequence attention model. (Du and
Cardie, 2017) aim to automatically find question-
worthy sentences from a paragraph and then gen-
erate questions. (Subramanian et al., 2017) treat
QG as a two-stage task: answer phrase extrac-
tion and answer-aware question generation. (Wang
et al., 2019) propose a multi-agent communication
framework, using a local extraction agent to ex-
tract question-worthy phrases, and then taking ex-
tracted phrases as assistance to generate questions.
(Scialom et al., 2019) employ the transformer net-
work (Vaswani et al., 2017) and extend it with the
placeholder strategy, copy mechanism and contex-
tualized embedding.

Question Word Prediction. Question word is
one of the most important components of a ques-
tion. (Fan et al., 2018) study multi-types visual
question generation, by feeding the encoded repre-
sentation to a multi-layer perception to calculate the
question words distribution. (Sun et al., 2018) pro-
pose an answer-focused and position-aware model
to generate the first question word. (Kim et al.,
2019) propose an answer-separated sequence-to-
sequence model to identify the proper question

70

word. They replace the answer span in the source
sentence with a special token to make better use of
the context information.

Multi-Types Question Generation. The multi-
types QG has been much less researched. In Ma’s
work (Ma et al., 2018), in order to generate dif-
ferent types of questions, they use question type
embedding at the first step of decoding. However,
because of the difficulty in automatically predicting
question types, their model fails to outperform the
previous works. The question type driven frame-
work has also been tried for visual question genera-
tion (Fan et al., 2018), where they concatenate the
question type embedding with the encoded repre-
sentation of input.

3 Proposed Framework

3.1 Framework Overview

For each sample in our dataset, we have a source
sentence S = (x1, x2, . . . , xl), which is a word
sequence and l denotes the number of words. Let
Q = (y1, y2, . . . , ym) to represent the question,
which is another word sequence and m is the length.
The answer-agnostic QG task can be defined as
finding the best Q that:

Q = argmax
Q

logP (Q | S)

= argmax
Q

m∑

i=1

logP (yi | S, y<i)

Figure 1 shows the framework of our full ques-
tion type driven QG model. With the development
of pointer network (Vinyals et al., 2015), the copy
mechanism (Gu et al., 2016) has been increasingly
more applied to natural language generation task.
Thus, our model is based on the general sequence-
to-sequence attention model with copy mechanism,
which we regard as our baseline. In the next sec-
tions, we firstly describe the baseline model and
then separately show our question type module and
enhanced copy mechanism.

3.2 Baseline Model

Our baseline method is a sequence-to-sequence
attention model with copy mechanism. Let xt rep-
resent the t− th word in the source sentence and
e(xt) is its corresponding embedded vector. A bi-
directional LSTM layer (Hochreiter et al., 1997) is

used to encode the embedded vector sequence:

−→ut =
−−−−→
LSTM(−−→ut−1, e(xt))

←−ut =
←−−−−
LSTM(←−−ut+1, e(xt))

ut = [−→ut ;←−ut]
(1)

The hidden state at time step t is the concatena-
tion of the forward −→ut and backward←−ut , which can
be represented as U = [−→ut ;←−ut]lt=1, where l is the
number of words in the source sequence.

The decoder is another LSTM network, which
generates a new hidden state ht, conditioned on
the previous state ht−1 and previously embedded
generated word e(yt−1). At the first decoding step,
it takes the last encoding hidden state ul and a
special token [SOS], which stands for the start of
sequence, as input:

ht = LSTM(ht−1, e(yt−1))

h0 = LSTM(ul, e([SOS]))
(2)

Given the encoded state U and decoder state
ht, the baseline model calculates a generating dis-
tribution of words at each time step t, which is
calculated as follow:

gt = softmax(Wotanh(Wt[ht; vt]))

vt =

l∑

i=1

aitui

ait =
exp(h>t W

bui)∑
j exp(h

>
t W

buj)

(3)

where vt is the weighted sum of the encoded rep-
resentation U, and the attention weight at is calcu-
lated by a bi-linear scoring function and a softmax
normalization. Wt and Wo are both trainable
parameters, which can be regarded as applying a
multi-layer perceptron to the concatenation of hid-
den state ht and global attention representation vt.
Wb is also trainable parameter that is applied to
calculate attention weights.

Our baseline model also utilizes the copy mech-
anism. We use the attention score at obtained from
the decoder attention as the copy distribution. The
probability of generating a word, p gen, is calcu-
lated as p gen = sigmoid(Wg[ht; vt]). The final
distribution is the weighted sum of generating dis-
tribution and copy distribution:

ĝt = p gen · gt
ct = (1− p gen) · at

(4)

71

Figure 1: Our copy loss enhanced and question types driven framework

where ĝt, ct are the weighted generate distribution
and copy distribution, respectively. We use ft to
represent the final distribution and fti is the proba-
bility of decoding the i− th word in the vocabulary.
Let wi represent the i− th word in the vocabulary.
The final distribution is calculated as follow:

fti =

{
ĝti +

∑
k,where xk=wi

ctk wi ∈ X

ĝti otherwise

Given the training corpus D, in which each sam-
ple contains a source sentence S and a target ques-
tion Q, the training objective is to minimize the
negative log-likelihood of the target questions L:

L = −
∑

<S,Q>∈D
logP (Q|S; θ) (5)

where θ represents all the parameters of our model.

3.3 Question Type Prediction

We propose the question type module for two goals.
One is to enable our model to generate multiple
types of questions for one source sentence, and
the other is to improve the generating performance.
Our question type module firstly predicts the most
proper type and then uses the embedding of it to
help the decoding process.

As for question types, we count the distribution
of question types in SQuAD and finally category all
the questions into 7 types: what, who, how, where,
when, yes/no and others.

The question type prediction is a multi-layer per-
ceptron, which takes the last hidden state of en-
coder as input to predict the probability distribution
of question types, denoted by T:

T = softmax(MLP (ul)) (6)

Please note that our model can generate multi-
ple questions for one source sentence. When the
number of questions need to be generated is set to
K, our model will select K question types with the
highest probability as output. Consequently, our
decoder will decode K times.

ty1, ty2, . . . , tyK = TopK(T) (7)

At every decoding time, for one of the best K
question types, ty, we embed it into a question type
vector qt:

qt = Embedding(ty)

ty ∈ ty1, ty2, . . . , tyK
(8)

The embedded question type vector will be used
in decoding, and in this way, the question type
vector would guide the model to generate ques-
tions that follow the pattern of a specific question
type. Specially, we use the question type vector
qt instead of the embedding of [SOS] token as the
input of the decoder at the first decoding step:

h0 = LSTM(ul, qt) (9)

Besides, when calculating the generating distri-
bution p gen, we concatenate qt with the global

72

attention representation and the decoder hidden
state:

gt = softmax(Wotanh(Wt[ht; vt; qt]))

p gen = sigmoid(Wg[ht; vt; qt])
(10)

Finally, we train the question type prediction and
question generating simultaneously in multi-task
learning framework. For each sample < S,Q >,
we calculate the ground-truth question type distri-
bution TY and we add an additional factor to the
loss function, which is the negative log-likelihood
of the target questions’ types:

L = −
∑

<S,Q,TY >∈D
[logP (Q|S; θ)+

λ1 logP (TY |S; θ)]
(11)

where λ1 is a hyper-parameter to balance two parts.

3.4 Enhanced Copy Mechanism
According to our observation on SQuAD, when
creating questions people often (may have to) copy
some keywords from the source sentence. So we
consider non stop words appearing in both ques-
tions and source sentences as keywords, and we
assume that these keywords should also occur in
the generated sequence. In order to push the model
to copy keywords from source sentences, we pro-
pose a copy loss to enhance the traditional copy
mechanism. For a word xl in the source sentence,
we first define a function cl(copylabel) as follow:

cl(xi) =

{
1 xi ∈ Q and xi /∈ stopword
0 otherwise

(12)
We believe that at one decoding step, the copy prob-
ability of keywords (cl(xi) = 1) should be close to
1. So we define the copy loss as:

ĉi = max(c1i, c2i, . . . , cmi)

Lcopy =
l∑

i=1

cl(xi)(ĉi − 1)2
(13)

where cti is the copy probability of the i− th word
in the source sentence at the t− th decoding step,
computed by Equation 4. Thus, ĉi is the highest
copy probability of the i − th word in the source
sentence among all the m decoding step. l denotes
the number of words in the source sentence.

Finally, we add the copy loss into the total loss:

L =−
∑

<S,Q,TY >∈D
[logP (Q|S; θ)

+ λ1 logP (TY |S; θ)

+
λ2
l

l∑

i=1

cl(xi)(ĉi − 1)2]

(14)

where λ2 is another hyper-parameter to control the
impact of penalty loss.

4 Experimental Settings

4.1 Dataset and Pre-processing
We conduct experiments on the SQuAD dataset
(Rajpurkar et al., 2016), which contains more than
70k training samples, 10k development samples
and 11k test samples. In either training, develop-
ment or test dataset, multiple samples might share
the same source sentence but with different target
questions. But a same source sentence will not
appear in different datasets, which ensures the con-
fidentiality of test data.

We adopt subword representations (Sennrich
et al., 2015) rather than raw words, which can
not only reduce the size of vocabulary, increase
the training speed, address the problem of out of
vocabulary words, but also improve the model per-
formance. By using byte-pair encoding, our vo-
cabulary size is reduced to less than 6k. Due to
the vanishing gradient problem in recurrent neural
networks (Pascanu et al., 2013; ?), we choose 256
for the maximum length of inputs and 50 for the
maximum length of target questions.

4.2 Implementation Details
We adopt a 2-layers bi-directional LSTM for en-
coding and a 1-layer LSTM for decoding. The
number of hidden units is 600, and the dimension
of both word embedding and question type em-
bedding is 300. We do not use pre-trained word
embedding since we use subword representations
rather than word-level representations. The drop
rate (Krizhevsky et al., 2012) between each layer is
0.3. We firstly use Adam (Kingma and Ba, 2014)
with learning rate of 0.001 for fast training, and
after training 5 epochs, the stochastic gradient de-
scent(SGD) with learning rate of 0.01 is used for
fine-tuning. We train our model for 15 epochs
with mini-batch size of 64. During training, hyper-
parameter K is set to 1 and when decoding, we

73

do beam search with a beam size of 4. For hyper-
parameters λ1 and λ2, we try different settings and
choose the best one by observing the descending
trend of total loss and ascending trend of BLEU-4
score on the valid set. Finally, both λ1 and λ2 are
set to 0.1.

4.3 Evaluation Metrics
We adopt BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014) and ROUGE-
L (Flick, 2004) for evaluation, and use the evalua-
tion package released by Chen (Chen et al., 2015).
BLEU measures the precision of n-grams on a set
of references, with a penalty for over short gen-
eration. METEOR calculates the similarity be-
tween generations and references by considering
synonyms, stemming and paraphrases. ROUGE
measures the recall of n-grams on the set of refer-
ences.

5 Results and Analysis

In this section, we report the automatic evaluation
results of our proposed model and do ablation study
to prove the effectiveness of different parts of the
model. Then we conduct human evaluation and
case study to test the quality of generated ques-
tions. Furthermore, we give a detailed analysis on
multiple questions generation.

5.1 Main Results
We compare our model with the following previous
works:

• Seq2Seq Attention: It is a traditional
sequence-to-sequence attention model.

• Seq2SeqAtt (Du): This is the first work in
AG-QG task, which is a sequence-to-sequence
attention model (Du et al., 2017).

• Transformer (Scialom): This is the state-
of-the-art result for the AG-QG task, which
adopts a transformer network with some ex-
tension. (Scialom et al., 2019).

We do not take (Wang et al., 2019) into comparison
because their evaluation is done on a different test
set and is not accessible.

The experimental results are shown in Table 2.
The full version of our model which uses both the
question type module and copy loss mechanism
obtains the best results on all of metrics, achiev-
ing a new state-of-the-art result of BLEU-4 13.90

for the challenging AG-QG task. It outperforms
the baseline model with 0.73 points and beats the
previous best result by 0.67 points.

5.2 Ablation Study

We conduct extensive experiments with different
model modules, where k is set to 1 in decoding.
The results are reported in Table 3.

• Baseline: Our baseline model is a gen-
eral sequence-to-sequence attention model en-
hanced with copy mechanism.

• Baseline+Type: It adds the question type
module to the baseline model.

• Baseline+CopyLoss: Based on the baseline
model, it calculates and minimizes the addi-
tional copy loss.

• Baseline+CopyLoss+Type: This is the full
version of our proposed model. That is, the
question type module is applied to the baseline
model and the extra copy loss is also calcu-
lated.

• Upper Bound: Since our full model incor-
porates the question type prediction part, the
accuracy of question type prediction will un-
doubtedly affect the final quality of generation.
If the right question type is given for every test
sample, we get the upper bound of our model.

Effect of Question Type Module. Comparing
with the baseline model, the question type module
brings a slight performance gain. The upper bound
shows if the right type is given for each test sample,
the model will yield a much better performance
with a BLEU-4 score of 15.27, which demonstrates
the huge potential of our model. It proves that
our model has successfully learned the patterns of
different types of questions.

However, our question type predict module can-
not achieve a 100% accuracy, and once a wrong
question type is offered to the decoder, it will have
negative influence on the generating quality. Ac-
tually, our question type predict part achieves an
overall 69% accuracy, and the prediction results of
different question types are shown in Table 4. It
shows that without the answer as input, to predict
the types of questions that should be asked for a
given sentence is non-trivia.

74

model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Seq2SeqAtt 42.90 25.97 17.68 12.49 16.85 39.59
Seq2SeqAtt (Du) 43.09 25.96 17.50 12.28 16.62 39.75
Transformer (Scialom) 43.33 26.27 18.32 13.23 - 40.22
Our model 45.08 27.98 19.38 13.90 18.12 40.77

Table 2: Experimental results comparing with previous works.

model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Baseline 43.39 26.75 18.48 13.17 17.40 40.57
Baseline+Type 44.59 27.25 18.76 13.41 17.54 40.41
Baseline+CopyLoss 44.45 27.62 19.08 13.65 17.90 40.16
Baseline+CopyLoss+Type 45.08 27.98 19.38 13.90 18.12 40.77
Upper Bound 48.42 30.28 21.12 15.27 19.43 43.82

Table 3: Ablation study of our model.

Type Total Predict Precision Recall Fscore
what 6707 8542 0.63 0.80 0.71
who 1421 1298 0.35 0.32 0.34
how 1476 1258 0.59 0.50 0.54
where 455 350 0.19 0.15 0.17
when 647 346 0.27 0.15 0.19
yes/no 868 65 0.09 0.01 0.01
others 303 18 < 0.01 < 0.01 < 0.01

Table 4: Prediction results of different question types.

Key Words Percentage
Baseline+Type 1.26 40.78%
Our model 1.40 45.31%
Golden 3.09 100%

Table 5: Performance of copying key words between
two models with and without the enhanced copy mech-
anism.

Effect of Enhanced Copy Mechanism Our de-
signed copy loss aims to enhance the copy mech-
anism. Since it tries to make the model ensure
that every key word is copied, it directly leads to
a higher BLEU-1. To our delight, the experiment
shows the copy loss mechanism also contributes to
a stable 0.48 increment of BLEU-4.

To make an in-depth analysis on the new copy
mechanism, we also conduct experiments with and
without the copy loss, counting the average number
of keywords in questions generated by different
models. The results are shown in Table 5. Our
copy loss brings an absolute 4.53% increment on
copying words from source sentences, which helps
the model generate higher quality questions.

5.3 Human Evaluation

We also conduct human evaluation to judge the
quality of questions generated by our model and
the baseline model, respectively. We take three

Fluency Relevance Answer-
ability

Baseline 3.78 3.73 3.54
Our model 4.23 4.23 4.20
Golden 4.69 4.44 4.48
Spearman 0.59 0.67 0.65

Table 6: Human evaluation results of different models.

metrics into consideration: 1) Fluency: it mea-
sures whether the question is grammatical; 2) Rel-
evance: it measures whether the question is asked
for and highly related to the source sentence; and
3) Answer-ability: it measures whether the gener-
ated question can be answered by the information
of the source sentence. We randomly selected 100
sentence-question pairs generated by different mod-
els, and asked three annotators to score the ques-
tions on a 1−5 scale (5 for the best). We also exploit
the Spearman correlation coefficient to measure the
inter-annotator agreement. The results are shown
in Table 6. It shows that the consistency among
three annotators is satisfying, and our generated
questions are better from different perspectives.

Besides, a further two-tailed t-test proves that
our generated questions are better than that of the
baseline model significantly, with p < 0.001 for
every metric.

5.4 Case Study

In order to show the effectiveness of our model, we
offer two real samples in the test set, as shown in
Table 7. In both samples, the baseline model gener-
ates a wrong type of question while our model pre-
dicts the right type of question. At the same time,
our model successfully copies more key words
from the source sentence, which are shown in ital-
ics, while baseline model fails. In both samples,

75

Sample 1
Source sentence: the ex-president of def jam l.a. reid has
described beyonc as the greatest entertainer alive .
Ground-truth: who has said that beyonc is the best enter-
tainer alive ?
Baseline: what is the greatest entertainer alive ?
Our model(K=1): who described beyonc as the greatest
entertainer alive ?

Sample 2
Source sentence: tibetan sources say deshin shekpa also
persuaded the yongle emperor not to impose his military
might on tibet as the mongols had previously done .
Ground-truth: who convinced the yongle emperor not to
send military forces into tibet ?
Baseline: what did tibetan sources say deshin ?
Our model(K=1): who persuaded the yongle emperor not
to impose his military might on tibet ?

Table 7: Examples of generated questions by different
models.

Sample 1
Source sentence: by 1790 , new york had surpassed
philadelphia as the largest city in the united states .
Groud-truth:
by which year , did new york city become the largest city
in the united states ?
what was the second largest city in the united states in 1790
?
Our Model (K=2):
1st: in what year did new york city surpassed philadelphia
?
2nd: which city had surpassed philadelphia in the us ?

Sample 2
Source sentence: buddhist architecture , in particular ,
showed great regional diversity .
Groud-truth:
which cultures architecture showed a lot of diversity ?
what type of architectural is especially known for its re-
gional differences ?
Our Model (K=2):
1st: which buddhist architecture has showed great regional
diversity?
2nd: what is buddhist architecture ?

Table 8: Different types of questions generated from
the same input sentence.

our generated questions are more fluent and coher-
ent.

5.5 Asking Different Types of Questions

For a given sentence, our question type driven
framework offers the model the ability to gener-
ate different types of questions. In this case, the
parameter K is set to more than 1, and the ques-
tion type predictor will give K question types with
the highest possibility. Then the model automati-
cally decodes K times to generate the best K types
of questions. We list a sample in Table 8 with
K = 2 to show the generating diversity of our
model, where two types of questions (what and

Figure 2: Heat map of attention for different types of
generated questions.

which) are generated from the same input sentence.
Besides, to identify the effect of our model, we

visualize the decoder attention, as shown in Fig-
ure 2. The two attention maps show the attention
points when our model is generating different types
(which and what) of questions with respect to the
same input sentence, where x-axis is the source
sentence and y-axis is the generated question. Dif-
ferences between these attention maps prove that
our model can attend on different information when
generating different types of questions.

From the table, we prove that our model has the
ability to generate multiple questions. However, the
limitation is also obvious. First, if K is too large,
the generated questions of some low probable types
are of low quality. Second, since the probability
distribution of question types are automatically cal-
culated, the types of generated questions cannot be
known beforehand.

6 Conclusion

In this paper, we propose two new strategies to
deal with the answer-agnostic QG: question type
module and copy loss mechanism. These proposed
modules improve the performance over the base-

76

line model, achieving the state-of-the-art. More-
over, our model has the ability and flexibility to
generate multiple questions for one source sen-
tence. Hopefully, the idea of question type module
and copy loss mechanism can also be used to do
answer-aware QG task or other similar text genera-
tion tasks.

Acknowledgments

This work is supported by the National Natural Sci-
ence Foundation of China (61773026) and the Key
Project of Natural Science Foundation of China
(61936012).

References

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to alignand translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Klaus Beulen and Hermann Ney. 1998. Automatic
question generation for decision tree based state ty-
ing. In Proceedings of the 1998 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, ICASSP’98 (Cat. No. 98CH36181), vol-
ume 2, pages 805–808. IEEE.

Jonathan Brown, Gwen A. Frishkoff, and Maxine Es-
kenazi. 2005. Automatic question generation for vo-
cabulary assessment. In Proceedings of the confer-
ence on Human Language Technology and Empiri-
cal Methods in Natural Language Processing.

Xinlei Chen, Hao Fang, Tsung Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C. Lawrence Zitnick. 2015. Microsoft coco cap-
tions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. 2019.
Natural question generation with reinforcement
learning based graph-to-sequence model. arXiv
preprint arXiv:1908.11813.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the ninth
workshop on statistical machine translation, pages
376–380.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In Advances in Neural Informa-
tion Processing Systems, pages 13042–13054.

Xinya Du and Claire Cardie. 2017. Identifying where
to focus in reading comprehension for neural ques-
tion generation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. arXiv preprint arXiv:1705.00106.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
866–874.

Zhihao Fan, Zhongyu Wei, Piji Li, Yanyan Lan, and
Xuanjing Huang. 2018. A question type driven
framework to diversify visual question generation.
In IJCAI, pages 4048–4054.

Carlos Flick. 2004. Rouge: A package for automatic
evaluation of summaries. In Workshop on Text Sum-
marization Branches Out.

Jiatao Gu, Zhengdong Lu, Li Hang, and Victor
O. K. Li. 2016. Incorporating copying mechanism
in sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question generation.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics.

S Hochreiter, Schmidhuber, and Jrgen. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and Ky-
omin Jung. 2019. Improving neural question gen-
eration using answer separation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6602–6609.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Jinwen Ma, Wenpeng Hu, Bing Liu, Dongyan Zhao,
and Rui Yan. 2018. Aspect-based question genera-
tion. International Conference on Learning Repre-
sentations 2018.

Karen Mazidi and Rodney Nielsen. 2014. Linguistic
considerations in automatic question generation. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 321–326.

77

Ruslan Mitkov, Le An Ha, and Nikiforos Karamanis.
2006. A computer-aided environment for generat-
ing multiple-choice test items. Natural Language
Engineering, 12(2):177–194.

Preksha Nema, Akash Kumar Mohankumar, Mitesh M.
Khapra, Balaji Vasan Srinivasan, and Balaraman
Ravindran. 2019. Lets ask again: Refine network
for automatic question generation. arXiv preprint
arXiv:1909.05355.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International conference on machine
learning, pages 1310–1318.

Paul Piwek, Hugo Hernault, Helmut Prendinger, and
Mitsuru Ishizuka. 2007. T2d: Generating dia-
logues between virtual agents automatically from
text. In International Conference on Intelligent Vir-
tual Agents.

Pranav Rajpurkar, Zhang Jian, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing.

Vasile Rus and C Graesser Arthur. 2009. The question
generation shared task and evaluation challenge. In
The University of Memphis. National Science Foun-
dation. Citeseer.

Thomas Scialom, Benjamin Piwowarski, and Jacopo
Staiano. 2019. Self-attention architectures for
answer-agnostic neural question generation. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Heung-Yeung Shum, Xiao-dong He, and Di Li. 2018.
From eliza to xiaoice: challenges and opportunities
with social chatbots. Frontiers of Information Tech-
nology & Electronic Engineering, 19(1):10–26.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context infor-
mation for natural question generation. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2
(Short Papers), pages 569–574.

Sandeep Subramanian, Wang Tong, Xingdi Yuan, and
Adam Trischler. 2017. Neural models for key phrase
detection and question generation. arXiv preprint
arXiv:1706.04560.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun
Ma, and Shi Wang. 2018. Answer-focused and
position-aware neural question generation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3930–
3939.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works.

Duyu Tang, Duan Nan, Qin Tao, and Zhou Ming. 2017.
Question answering and question generation as dual
tasks. arXiv preprint arXiv:1706.02027.

Wang Tong, Xingdi Yuan, and Adam Trischler. 2017.
A joint model for question answering and question
generation. arXiv preprint arXiv:1706.01450.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in neural in-
formation processing systems, pages 2692–2700.

Siyuan Wang, Zhongyu Wei, Zhihao Fan, Yang Liu,
and Xuanjing Huang. 2019. A multi-agent commu-
nication framework for question-worthy phrase ex-
traction and question generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7168–7175.

Xingdi Yuan, Wang Tong, Caglar Gulcehre, Alessan-
dro Sordoni, Philip Bachman, Sandeep Subrama-
nian, Saizheng Zhang, Adam Trischler, Xingdi Yuan,
and Wang Tong. 2017. Machine comprehension
by text-to-text neural question generation. arXiv
preprint arXiv:1705.02012.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question genera-
tion with maxout pointer and gated self-attention net-
works. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3901–3910.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study. In
National CCF Conference on Natural Language
Processing and Chinese Computing, pages 662–671.
Springer.

Wenjie Zhou, Minghua Zhang, and Yunfang Wu. 2019.
Multi-task learning with language modeling for
question generation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

78

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 79–87
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

A Generative Approach to Titling and Clustering Wikipedia Sections

Anjalie Field
Carnegie Mellon University∗

anjalief@cs.cmu.edu

Sascha Rothe
Google Research

rothe@google.com

Simon Baumgartner
Google Research

simonba@google.com

Cong Yu
Google Research

congyu@google.com

Abe Ittycheriah
Google Research

aittycheriah@google.com

Abstract

We evaluate the performance of transformer
encoders with various decoders for informa-
tion organization through a new task: gener-
ation of section headings for Wikipedia arti-
cles. Our analysis shows that decoders con-
taining attention mechanisms over the encoder
output achieve high-scoring results by gener-
ating extractive text. In contrast, a decoder
without attention better facilitates semantic en-
coding and can be used to generate section
embeddings. We additionally introduce a new
loss function, which further encourages the de-
coder to generate high-quality embeddings.

1 Introduction

Automated information labeling and organization
has become a desirable way to process the copious
amounts of available text. We develop methods for
producing text headings and section-level embed-
dings through a new task: generation of section
titles for Wikipedia articles. This task is useful for
improving Wikipedia, an active area of research
due to the long tail of poor quality articles, includ-
ing articles lacking section subdivisions or consis-
tent headings (Lebret et al., 2016; Piccardi et al.,
2018; Liu et al., 2018). Additionally, the types of
labels used to denote sections can be useful for
organizing other unstructured collections of text.

We approach this task in two ways: first we
train a text generation model for producing section
titles, and second, we leverage our model archi-
tecture to extract section embeddings, which offer
a useful mechanism for comparing and clustering
sections with similar information (Banerjee et al.,
2007; Hu et al., 2009; Reimers et al., 2019). This
approach provides a flexible framework for creat-
ing paragraph-level embeddings, in which the type

∗Work done while the first author was an intern at Google
Research.

of information encoded in the embedding can be
controlled by changing the generation task.

Section title generation is similar to existing
tasks, such as generating titles for newspaper ar-
ticles (Rush et al., 2015; Nallapati et al., 2016).
However, Wikipedia section titles contain a unique
mix of short abstractive headings like “History” and
longer extractive headings like song titles, where
many of the words in the section title also appear
in the section text. The variations in the type of
headings makes this dataset useful for analyzing
how models perform on different subsets of the
data.

A common state-of-the-art model for many
existing text generation tasks uses an encoder-
decoder framework where the encoder is initialized
with BERT and the decoder is also a transformer
(Vaswani et al., 2017; Devlin et al., 2019; Zhang
et al., 2019; Rothe et al., 2019). The entire out-
put of the encoder is passed to the decoder, which
allows the decoder to attend over the entire input
sequence during each generation step.

In contrast, we explore using transformer en-
coders with RNN decoders and show that RNN de-
coders better generate short abstractive titles while
transformer decoders perform better on longer ex-
tractive titles. Embeddings extracted from the RNN
decoders also perform better in clustering evalua-
tions, which suggests that the attention-based mech-
anisms in the transformer facilitate copying input
text into the output, but the RNN architecture better
facilitates encoding semantic meaning.

We additionally introduce a new loss function
for the RNN decoder that encourages the start and
end states of the RNN to be similar. This loss func-
tion encourages the model to encode meaningful
information into a single state, which further im-
proves the quality of the generated section-level
embeddings.

We first describe our models (Section 2) and

79

https://www.aclweb.org/anthology/D19-56%2d

our data set (Section 3) and then present results,
evaluating our models on a held-out test corpus
(Section 5). Our main contributions include: (1) the
introduction of a new short-text generation task that
is useful for information labeling and organization;
(2) an analysis of text generation models for this
task; (3) the introduction of a novel loss function
that results in high-quality section embeddings.

2 Models

Our primary task is to generate section titles, and
our secondary task is to generate section-level em-
beddings. All models use an encoder-decoder archi-
tecture, where the encoder is initialized with BERT
(Devlin et al., 2019). We use 4 decoder variants,
including one trained with a novel loss function.

TRANS This model contains a (randomly initial-
ized) transformer decoder, with hyperparameters
identical to the BERT-base model. The hidden
states generated by the encoder for the entire in-
put sequence are passed to the decoder, thus al-
lowing the decoder to attend over the entire input
sequence during each decoding step. This model
serves as our primary baseline, as it is identical
to the BERT2RND model in Rothe et al. (2019).
We use the same hyperparameters as Rothe et al.
(2019), which were selected after extensive tuning.

RNN Instead of a transformer decoder, we use an
RNN, specifically a gated recurrent neural network
(GRU) (Cho et al., 2014), as the decoder. Unlike
the transformer decoder, which computes attention
over the full input sequence, we do not use any
attention mechanisms over the input to the decoder.
Instead, we only pass the last hidden layer for the
first token (“CLS” token), forcing the model to en-
code all meaningful information about the input
sequence into this single state. The RNN decoder,
which consists of a single decoder layer, is substan-
tially smaller than the transformer decoder used in
the TRANS model.

RNN+SC Our third model uses the same archi-
tecture as the RNN model, but we add an additional
component to the loss function that encourages
the start state and the end state of the decoder to
be similar, which we call a state constraint (SC).
The primary intuition behind this loss function is
that it encourages the decoder to stay “on topic”
while generating text, as it discourages the RNN
from wandering too far away from where it started.
It further encourages the start state to encode all
information needed to generate the entire output se-

quence, rather than allowing the start state to focus
on information in the beginning of the sequence
and the end state to encode information for the end
of the sequence.

The general form for the state of an RNN de-
coder (Cho et al., 2014) is

ht = f(ht−1, yt−1) (1)

Here, f is a GRU, t ∈ {1, . . . , T} is the target
token position, and h0 is initialized to the CLS
token of the BERT source encoder.

The formula for the state constraint function is
given in Equation 2:

d =
h0
||h0||2

− hT
||hT ||2

LSC = ||d||2 (2)

The normalization terms force the loss term to
focus on embedding direction rather than magni-
tude; they are necessary to account for the arbitrary
magnitude of model states. During training, we
multiply the state constraint loss, LSC , by a fixed
scalar (α) and add it to the standard cross-entropy
(CE) loss function. The final loss function is then
given by:

L = LCE + αLSC

RNN+ATTN Our final model also uses a trans-
former encoder and an RNN decoder. However,
unlike the previous model, we pass the entire last
layer of the encoder to the decoder and add an atten-
tion mechanism over this input sequence (Luong
et al., 2015). This model and the TRANS model
are attention-based decoders, while the RNN and
the RNN+SC models do not use attention over the
decoder input.

3 Data

Our primary data set consists of articles from En-
glish Language Wikipedia collected on June 25,
2019. We filter out articles that contain the word
“redirect” and omit any section whose title has
fewer than 2 characters. We extracted sections and
section titles from each article and randomly di-
vided the data into train, test, and development sets,
using an 80/10/10 split (11.43M/1.43M/1.44M arti-
cles).

Wikipedia articles are often hierarchical, con-
taining multiple subsections. However, we make

80

no distinction between titles that are complete sec-
tions and titles that are subsections. This lack of
distinction makes the generation task harder, as our
models are not able to take advantage of hierarchi-
cal information and also allows our models and
results to better generalize to other data sets that do
not have this hierarchy.

More detailed statistics on the data set are shown
in Table 1. For reference, we also show statistics
for the commonly-used Gigaword Corpus (Rush
et al., 2015), which we also use to evaluate our
models in §5. The Gigaword corpus entails an ab-
stractive short summary generation task: given the
first sentence of a newspaper article, predict the ar-
ticle title. We use this task for comparison because
it uses a well-studied data set that is more similar
to the Wikipedia section heading generation task
than other text generation tasks, such as summa-
rization tasks, which typically involve much longer
outputs (Narayan et al., 2018). However, as shown
in Table 1, there are notable differences between
these data sets.

Wikipedia Gigaword
Total size 14.3M 4.4M
Train size 11.43M 4.2M
Test size 1.43M 1.9K
Dev size 1.44M 210K
Distinct titles 45.25% 80.45%
Unique titles 41.82% 70.28%
Most common title 3.35% 0.17%
Avg. words per title 2.65 8.64

Table 1: Overview of the Wikipedia section title data,
as compared with the Gigaword corpus. “Distinct ti-
tles” refers to the total number of titles with duplicates
removed. “Unique titles” refers to the number of titles
that occur exactly 1 time. In general, the Wikipedia
titles are shorter and more repetitive than Gigaword ti-
tles.

In the Wikipedia corpus, across 14.3M data
points, there are only 6.5M distinct headings
(45.25% of all titles). Approximately 6M headings
(41.82%) occur only 1 time in the data, meaning
the other 0.5M headings are reused multiple times
across 8.3M articles to constitute the remainder
of the corpus. The most common heading, “His-
tory”, occurs 480K times in the data set, making
up 3.35% of the total corpus. Other common head-
ings include “Career” (181K), “Biography” (151K),
“Early Life” (111K), “Background” (102K) and
“Plot” (96K).

In contrast, the titles in Gigaword are generally
longer and more distinctive than the Wikipedia sec-
tion titles, with 80.45% of all titles being unique.
However, in the absence of generic abstract head-
ings like “History”, the Gigaword corpus tends to
be more extractive, meaning there is high token-
overlap between articles and their titles. The
Wikipedia corpus is also much larger than Giga-
word, which facilitates analyses.

4 Experimental Setup

For all encoders, we use the BERT-base uncased
model. Thus, we lowercase all text and use word-
piece tokenization from the public BERT word-
piece vocabulary (Devlin et al., 2019). We use the
same preprocessing pipeline, including word-piece
tokenization, when computing target text length
and extractive scores.

For all models, we limit the encoder input size
to 128 tokens and the decoder output size to 32
tokens and use a batch size of 32. We generally
use a learning rate of 0.05 with square root decay,
40K warm-up steps, and the Adam optimizer; how-
ever, for the RNN models with the Gigaword data,
we use 100K warm-up steps, clip gradients to 20,
and optimize with Adagrad, which we found to
produce smoother training curves. For the state
constraint models, we start by setting the scalar
α = 0, and linearly increase α to 1, between 100k
and 200k training steps. We train the RNN models
for 2M steps using v100 GPUs, and we train the
transformer models for 500K steps using TPUs. In
practice, we find that the RNN performance stops
improving within 1M steps and the transformer
performance stops within 50K steps.

5 Results and Analysis

5.1 Section Heading Generation
Our main task is to generate a Wikipedia section
title given the section text. Table 2 reports results
using standard summarization metrics: Rouge-1,
Rouge-L, and exact match. Rouge-1 measures the
unigram overlap between the generated text and
the reference text; Rouge-L measures the longest
subsequence that occurs in both the generated text
and the reference; exact match measures if the
generated text exactly matches the reference. The
RNN+ATTN model performs the best overall. The
TRANS and the RNN+SC models perform approxi-
mately the same, and both outperform the regular
RNN model.

81

Because the Wikipedia dataset contains diverse
types of headings, including short abstractive head-
ings and long extractive headings, we subdivide
our test data in order to better understand model
performance. In Table 3, we examine how well
these models generate outputs of different lengths
by dividing the test set according to the number of
tokens in the target headings.

All of the RNN decoders outperform the trans-
former decoder for short headings containing 1-
5 tokens, and the RNN+SC model performs the
best overall. Over these short headings, the atten-
tion mechanism provides little advantage. How-
ever, the two attention-based decoders, TRANS

and RNN+ATTN outperform the RNNs without
attention for mid-range-length headings containing
5-10 tokens, which is consistent with prior work
suggesting that attention improves the modeling
of long-term dependencies (Vaswani et al., 2017).
Nevertheless, on headings with > 10 tokens, the
Rouge-L scores for all decoders decline.

Rouge-1 Rouge-L Exact
TRANS 52.0 51.9 39.3
RNN 50.2 50.1 33.8
RNN+SC 52.6 52.4 36.5
RNN+ATTN 54.4 54.3 40.5

Table 2: Results on Wikipedia section heading genera-
tion over the full test set.

Tokens 1-5 5-10 10-15 15+
Data Size 1M 300K 56K 9K
TRANS 52.5 53.8 36.3 20.8
RNN 54.0 39.6 35.1 25.3
RNN+SC 55.8 44.2 37.7 24.0
RNN+ATTN 54.4 55.7 47.8 32.9

Table 3: Rouge-L on Wikipedia section heading gener-
ation by length. The attention-based decoders outper-
form the decoders without attention on target texts con-
taining 5-10 tokens, but not on shorter target sequences.

Prior work has also examined the trend of ex-
tractiveness in text generation models, specifically
observing that models achieve high performance
when they can copy input tokens directly into the
output, rather than having to encode semantic in-
formation and produce new tokens (Nallapati et al.,
2016; Cheng and Lapata, 2016; See et al., 2017;
Nallapati et al., 2017; Narayan et al., 2018; Grusky
et al., 2018; Pasunuru and Bansal, 2018). Because

we ultimately extract embeddings from our mod-
els, understanding to what extent they copy tokens
or encode more abstract information offers insight
into how useful we can expect embeddings to be.
To examine this, we introduce a metric called ex-
tractive score, which measures what percentage of
the output text can be directly copied from the in-
put text: |Ttarget

⋂
Tinput|

|Ttarget| , where Ttarget and Tinput
represent the tokens in the target text and the input
text respectively.

Thus, for a section and title pair, an extractive
score of 0 indicates that there is no token overlap
between the title and the section text, while a score
of 1 indicates that every token in the title is also in
the section text. Because of the short length of our
section titles, we focus on unigrams, rather than
examining higher-order n-grams. When comput-
ing extractive scores, we use the same text prepro-
cessing pipeline as used in our models, including
wordpiece tokenization and lowercasing.

Extractive Score

R
ou

ge
-L

0
20
40
60
80

0-0
.1

0.1
-0.

2

0.2
-0.

3

0.3
-0.

4

0.4
-0.

5

0.5
-0.

6

0.6
-0.

7

0.7
-0.

8

0.8
-0.

9
0.9

-1

BERT+Trans. BERT+RNN
BERT+RNN+SC BERT+RNN+Attn.

Figure 1: Rouge-L scores for each model over test data
of length 5-10 tokens (300K test samples), segmented
according to extractive score.

In Figure 1, we limit the test data to headings
with 5-10 tokens and divide it into segments ac-
cording to extractive score. The RNN and RNN+SC

models outperform the attention-based models on
data with low extractive scores (≤ 0.5). The higher
performance of the TRANS and the RNN+ATTN

models as compared to the RNN and RNN+SC mod-
els over this data segment (Table 3) is almost en-
tirely on headings where the extractive score is
≥ 0.9. The attention-based models are not better
at producing long titles in general, but rather their
ability to copy from the input text allows them to
generate long titles when they are extractive.

We can further examine this trend by computing
correlations between Rouge-L and extractive score.

82

TRANS RNN RNN+SC RNN+ATTN

0.215 0.115 0.136 0.205

Table 4: Partial correlations between Rouge-L and ex-
tractive score, controlled for length. All values are sta-
tistically significant.

However, as Table 3 shows, all decoders perform
differently over texts of different lengths. Thus,
in order to isolate the effect of extractiveness, we
compute partial correlations (Rummel, 1976). The
idea behind a partial correlation is to identify the
relationship between two variables X and Y that is
not explained by a confound Z. We first compute
the residuals eX,i and eY,i, and then compute the
correlation between these residuals:

eX,i = xi − 〈w∗X , zi〉

eY,i = yi − 〈w∗Y , zi〉

Partial Correlation = ρeX,i,eY,i

where w∗X and w∗Y are the coefficients learned
by a linear regression between X and Z and be-
tween Y and Z. In our case, X = Rouge-L, Y =
extractive score, and Z = target length.

Table 4 reports results. For all models, the re-
sulting correlations are positive, indicating that
they generate extractive headings better than non-
extractive headings. However, the correlations for
the TRANS and RNN+ATTN models are highest.
Overall, these results suggest that decoders with
attention mechanisms achieve high performance on
this task because they better copy tokens from the
input into the output, rather than because they en-
code more semantics. Encoding semantic informa-
tion is essential for generating section embeddings,
which we extract and evaluate in Section 5.3.

Rouge-1 R.-L P. Corr
Song et al. (2019) 38.7 36.0 –
TRANS 37.1 34.6 0.647
RNN 35.6 32.6 0.619
RNN+SC 35.1 32.8 0.630
RNN+ATTN 36.3 33.8 0.667

Table 5: Results on Gigaword heading generation. The
correlations between extractive score and model perfor-
mance are stronger than for the Wikipedia corpus for
all models. All correlations are statistically significant.

5.2 Gigaword Results

In order to compare our models against published
benchmarks and to generalize our observations
about extractiveness, we conduct the same experi-
ments over the Gigaword corpus as the Wikipedia
corpus, using the established train, test, and dev
splits (Rush et al., 2015).

Table 5 reports the results of our models as well
as a state-of-the-art model for reference (Song
et al., 2019). Like TRANS, the MASS model
from Song et al. (2019) uses a transformer encoder-
decoder architecture but with generalizations that
allow for additional pre-training. From our models,
the transformer decoder performs the best overall.
However, the attention-based decoders TRANS and
RNN+ATTN also have the highest partial correla-
tions, suggesting much of their performance stems
from extractive titles. For all models the partial
correlations between Rouge-L and extractive score
are higher for the Gigaword corpus than for the
Wikipedia corpus. This correlation is visually ev-
ident in Figure 2, which we constructed the same
way as Figure 1.

Extractive Score

R
ou

ge
-L

0
20
40
60
80

0-0
.1

0.1
-0.

2

0.2
-0.

3

0.3
-0.

4

0.4
-0.

5

0.5
-0.

6

0.6
-0.

7

0.7
-0.

8

0.8
-0.

9
0.9

-1

BERT+Trans. BERT+RNN
BERT+RNN+SC BERT+RNN+Attn.

Figure 2: Rouge-L scores for each model over the Gi-
gaword test data of length 5-10 tokens, segmented ac-
cording to extractive score. Each data segment contains
at least 35 samples.

Figure 2 mirrors the trend in the Wikipedia data
(Figure 1). While the TRANS model performs well
across all extractiveness levels, the RNNs with and
without attention perform similarly for lower levels
of extractiveness. However, the RNN+ATTN begins
outperforming the RNNs without attention when
the extractive score is ≥ 0.5, and especially when
the extractive score is ≥ 0.9.

83

Homogeneity Completeness V-measure ARI
Doc2Vec 0.334 0.443 0.381 0.065
TF-IDF 0.428 0.361 0.392 0.044
TRANS 0.633 0.529 0.576 0.065
RNN 0.668 0.558 0.608 0.079
RNN+SC 0.670 0.561 0.611 0.088
RNN+ATTN 0.626 0.521 0.569 0.067

Table 6: Results on Wikipedia section clustering. The RNN+SC model performs the best on all metrics.

5.3 Section-embedding Generation and
Clustering

While labeling sections can improve Wikipedia arti-
cles and identify the type of information contained
in general paragraphs, embedding representations
for paragraphs and documents can offer a more use-
ful way to structure corpora, by facilitating informa-
tion clustering and retrieval. Rather than creating
generic all-purpose embeddings (Le and Mikolov,
2014), our generative models facilitate creating em-
beddings that target specific information, in our
case, the title of the section.

We extract internal states from our models as
section embeddings, and we evaluate them through
a clustering task. Because many Wikipedia articles
use the same generic headings, like “History” and
“Plot”, we can use these headings as gold cluster
assignments by assuming that all sections with the
same title constitute a cluster.

For all models, we use the final hidden layer for
the first token in the input sequence (CLS token)
as the embedding. In the case of the RNN decoder,
this embedding is also the initial state of the RNN,
and thus is the single state that the model is forced
to encode the entire input sequence into.1

We cluster these embeddings using k-means clus-
tering, where we set the number of clusters to the
true number of clusters in the gold cluster assign-
ments. We discard any section titles that occur
fewer than 100 times, ensuring that the minimum
size of any cluster is 100, resulting in 467,286 data
points and 755 clusters. The large number of data
points makes this task particularly difficult.

Table 6 reports results using standard metrics for
evaluating a proposed cluster assignment against
gold data (Hubert and Arabie, 1985; Rosenberg and
Hirschberg, 2007). Homogeneity assesses to what
extent each cluster contains only members of the

1For TRANS and RNN+ATTN, preliminary experiments
showed that using this hidden state as the embedding achieved
strictly better performance than other pooling possibilities.

same class (e.g. does each cluster contain only sec-
tions with the same title?); completeness assesses
to what extent members of the same class are in the
same cluster (e.g. are sections with the same title
in the same cluster?); V-measure is the harmonic
mean between homogeneity and completeness; and
adjusted Rand index (ARI) counts how many pairs
of data points are assigned to the same or different
clusters in the predicted and gold clusterings. On
all metrics, the RNN+SC model performs the best.

To show how our embeddings, which are tai-
lored to this task, differ from off-the-shelf embed-
dings, we report results using embeddings con-
structed from two popular methods for generating
document embeddings: distributed representations
using Doc2Vec (Le and Mikolov, 2014; Lau and
Baldwin, 2016; Vu and Iyyer, 2019) and sparse em-
beddings using TF-IDF weighting (Banerjee et al.,
2007). We train a Doc2Vec model over the train-
ing set using a window size of 5 and embedding
size of 768, to match the embedding size of our
models, and then infer embeddings over the test set.
For the TF-IDF vectors, we give this method an
additional advantage by directly training the model
over the test set with an embedding size of 1000.
As expected, all of our models outperform these
off-the-shelf models.

Unlike off-the-shelf models, our customizable
models encourage the embeddings to encode infor-
mation specific to our prediction task. In this case,
we train them to encode section title information.
However, by training our models on a different
prediction task, such as predicting the name of a
newspaper outlet or a comment on a newspaper
article, we can encourage the model to generate
document embeddings that encode different infor-
mation. Thus, our model architecture offers a way
to generate high-quality document embeddings that
encode information specific to the task at hand.

84

6 Related Work

While we introduce the task of Wikipedia section
heading generation, the task of article headline
generation using the Gigaword corpus has been
well-studied, primarily using an encoder-decoder
architecture with additional modules like attention
or copy mechanisms (Rush et al., 2015; Nallap-
ati et al., 2016). Zhang et al. (2019) further ex-
plore how to leverage the pretrained BERT model
for abstractive summarization, primarily using the
CNN/Daily Mail data set. Rothe et al. (2019) per-
form a comprehensive assessment of pretrained lan-
guage models for text generation tasks, including
the Gigaword task. Our TRANS model is identical
to their BERT2RND model and achieves compara-
ble results over the Gigaword corpus.

The high level of extraction in existing text gen-
eration tasks has motivated the use of mechanisms
that explicitly copy input text into the output (See
et al., 2017) or the introduction of new data sets
(Narayan et al., 2018; Grusky et al., 2018). Further-
more, models trained for extractive summarization
often outperform abstractive models on abstractive
data sets (Cheng and Lapata, 2016; Nallapati et al.,
2016, 2017). Our work extends these results by
showing that even abstractive models are implic-
itly learning extraction, as they perform better on
extractive text. Our metric for measuring extrac-
tiveness is similar to the ‘novel n-gram percentage’
proposed by See et al. (2017); however, we use the
same input pipeline for computing this metric as
for training our models, and we correlate extractive
score with performance, rather than just using it as
an extrinsic measure of abstraction (Pasunuru and
Bansal, 2018).

In our Wikipedia section heading generation
task, the prevalence of generic headings makes the
task more abstractive than datasets like Gigaword
(Rush et al., 2015), or even other short-text genera-
tion tasks, like email subject prediction (Zhang and
Tetreault, 2019), which makes it a useful dataset
for analyzing model performance. It is also extrin-
sically useful - most automated methods for im-
proving Wikipedia focus on creating new content,
such as through multi-document summarization
(Liu et al., 2018) or generating text from structured
data (Lebret et al., 2016). However, less than 1% of
all English Wikipedia articles are considered to be
of quality class good, suggesting there is a need for
improving existing articles. Piccardi et al. (2018)
show that many low quality articles consist of 0-1

sections and present a method for recommending
new sections for an author to add to the article. Our
approach offers a way to label existing paragraphs
as distinct sections.

Our approach also results in document embed-
dings, which we show can be used to cluster sec-
tions. Document embeddings are useful for a va-
riety of tasks including news clustering (Banerjee
et al., 2007; Hu et al., 2009), argument clustering
(Reimers et al., 2019), and as features for down-
stream tasks like text classification (Lau and Bald-
win, 2016; Liu and Lapata, 2018). While TF-IDF
vectors have historically been a popular construc-
tion method (Banerjee et al., 2007), more recent
methods have focused on distributive representa-
tions, particularly Doc2Vec, a generalization of the
Word2Vec algorithm (Le and Mikolov, 2014; Lau
and Baldwin, 2016; Vu and Iyyer, 2019).

Finally, the growing popularity of pretrained lan-
guage models like BERT has led to numerous in-
vestigations on what these models learn (Liu et al.,
2019; Goldberg, 2019; Jawahar et al., 2019). Most
investigations involve using targeted probing tasks.
While our work shares similar goals, in that we
investigate what type of information these models
learn, we focus on data subsets and performance
analysis.

7 Future Work

Our work offers several avenues for future ex-
ploration. We focus only on English Wikipedia.
However, there are numerous language editions
of Wikipedia, many of which have far fewer ar-
ticles than the English edition and could benefit
from tools for text generation.2 Additionally, while
we discard the hierarchical nature of Wikipedia
sections, this information could offer a way to im-
prove model performance (potentially at the cost
of generalizability to other data sets). Furthermore,
while we evaluate the performance of our gener-
ated section embeddings for clustering, more work
is needed to assess their usefulness on other tasks,
such as retrieving relevant sections from a query,
measuring section similarities, or as features for
text classification.

8 Conclusions

Overall, our work introduces the task of generat-
ing section titles for text. We also introduce the

2https://en.wikipedia.org/wiki/List_
of_Wikipedias

85

RNN+SC model and demonstrate how RNN de-
coders can be utilized for short text generation and
improved section embeddings. Specifically, our
method for generating text embeddings, which in-
volves leveraging internal states of models trained
for generation, allows the embeddings to contain
targeted information that maximizes their useful-
ness for specific tasks.

9 Acknowledgements

We would like to thank anonymous reviewers, Vid-
hisha Balakrishna, Keith Hall, Shan Jiang, Kevin
Lin, Riley Matthews, and Yulia Tsvetkov for their
helpful feedback and advice.

References
Somnath Banerjee, Krishnan Ramanathan, and Ajay

Gupta. 2007. Clustering short texts using Wikipedia.
In Proc. of SIGIR, pages 787–788.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proc. of ACL, pages 484–494.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proc. of
EMNLP, pages 1724–1734.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proc. of NAACL, pages 4171–4186.

Yoav Goldberg. 2019. Assessing BERT’s syntactic
abilities. arXiv preprint arXiv:1901.05287.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In ACL, pages 708–
719.

Xiaohua Hu, Xiaodan Zhang, Caimei Lu, Eun K Park,
and Xiaohua Zhou. 2009. Exploiting Wikipedia
as external knowledge for document clustering. In
Proc. of SIGKDD, pages 389–396.

Lawrence Hubert and Phipps Arabie. 1985. Compar-
ing partitions. Journal of classification, 2(1):193–
218.

Ganesh Jawahar, Benoı̂t Sagot, Djamé Seddah, Samuel
Unicomb, Gerardo Iñiguez, Márton Karsai, Yannick
Léo, Márton Karsai, Carlos Sarraute, Éric Fleury,
et al. 2019. What does BERT learn about the struc-
ture of language? In Proc. of ACL, pages 3651–
3657.

Jey Han Lau and Timothy Baldwin. 2016. An em-
pirical evaluation of doc2vec with practical insights
into document embedding generation. In Proc. of
ACL Workshop on Representation Learning for NLP,
pages 78–86.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proc. of
ICML, pages II1188–II1196.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with
application to the biography domain. In Proc. of
EMNLP, pages 1203–1213.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proc. of NAACL, pages 1073–
1094.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating Wikipedia by summariz-
ing long sequences. In Proc. of ICLR.

Yang Liu and Mirella Lapata. 2018. Learning struc-
tured text representations. TACL, 6:63–75.

Thang Luong, Hieu Pham, and Christopher D Manning.
2015. Effective approaches to attention-based neu-
ral machine translation. In Proc. of EMNLP, pages
1412–1421.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Proc. of AAAI, pages 3075–3081.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
rnns and beyond. In Proc. of CoNLL, pages 280–
290.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Dont give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proc. of EMNLP, pages
1797–1807.

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-
reward reinforced summarization with saliency and
entailment. In Proc. of NAACL, pages 646–653.

Tiziano Piccardi, Michele Catasta, Leila Zia, and
Robert West. 2018. Structuring wikipedia articles
with section recommendations. In Proc. of SIGIR,
pages 665–674.

Nils Reimers, Benjamin Schiller, Tilman Beck, Jo-
hannes Daxenberger, Christian Stab, and Iryna
Gurevych. 2019. Classification and clustering of ar-
guments with contextualized word embeddings. In
Proc. of ACL, pages 567–578.

86

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proc. of EMNLP-CoNLL,
pages 410–420.

Sascha Rothe, Shashi Narayan, and Aliaksei Sev-
eryn. 2019. Leveraging pre-trained checkpoints
for sequence generation tasks. arXiv preprint
arXiv:1907.12461.

Rudolph J Rummel. 1976. Understanding correlation.
Honolulu: Department of Political Science, Univer-
sity of Hawaii.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proc. of EMNLP, pages
379–389.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proc. of ACL, pages 1073–
1083.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked sequence to se-
quence pre-training for language generation. In
Proc. of ICML, pages 5926–5936.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS, pages 5998–6008.

Tu Vu and Mohit Iyyer. 2019. Encouraging paragraph
embeddings to remember sentence identity improves
classification. In Proc. of ACL, pages 6331–6338.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Pretraining-based natural language genera-
tion for text summarization. In Proc. of CoNLL,
pages 789–797.

Rui Zhang and Joel Tetreault. 2019. This email could
save your life: Introducing the task of email subject
line generation. Proc. of ACL, pages 446–456.

87

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 88–96
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

The Unreasonable Volatility of
Neural Machine Translation Models

Marzieh Fadaee:
Informatics Institute

University of Amsterdam
marzieh.f@gmail.com

Christof Monz
Informatics Institute

University of Amsterdam
c.monz@uva.nl

Abstract

Recent works have shown that while Neural
Machine Translation (NMT) models achieve
impressive performance, questions about un-
derstanding the behaviour of these models re-
main unanswered. We investigate the unex-
pected volatility of NMT models where the
input is semantically and syntactically cor-
rect. We discover that with trivial modifi-
cations of source sentences, we can identify
cases where unexpected changes happen in the
translation and in the worst case lead to mis-
translations. This volatile behaviour of trans-
lating extremely similar sentences in surpris-
ingly different ways highlights the underlying
generalization problem of current NMT mod-
els. We find that both RNN and Transformer
models display volatile behaviour in 26% and
19% of sentence variations, respectively.

1 Introduction

The performance of Neural Machine Translation
(NMT) models has dramatically improved in re-
cent years, and with sufficient and clean data these
models outperform more traditional models. Chal-
lenges when sufficient data is not available include
translations of rare words (Pham et al., 2018) and
idiomatic phrases (Fadaee et al., 2018) as well
as domain mismatches between training and test-
ing (Koehn and Knowles, 2017; Khayrallah and
Koehn, 2018).

Recently, several approaches investigated NMT
models when encountering noisy input and how
worst-case examples of noisy input can ‘break’
state-of-the-art NMT models (Goodfellow et al.,
2015; Michel and Neubig, 2018). Belinkov and
Bisk (2018) show that character-level noise in the
input leads to poor translation performance. Lee
et al. (2018) randomly insert words in different po-
sitions in the source sentence and observe that in

:Marzieh is now affiliated with Zeta Alpha Vector.

Source: Ich bin
1

erleichtert und
2

bescheiden.

1 2 NMT output
φ φ I am easier and modest.
φ sehr ; I am relieved and very modest.
sehr φ I am very much easier and modest.
sehr sehr I am very easy and very modest.

Reference
φ φ I am relieved and humble.
sehr sehr I am very relieved and very humble.

Table 1: Insertion of the German word sehr (English:
very) in different positions in the source sentence re-
sults in substantially different translations. ; indicates
the original sentence from WMT 2017.

some cases the translations are completely unre-
lated to the input. While it is to some extent ex-
pected that the performance of NMT models that
are trained on predominantly clean but tested on
noisy data deteriorates, other changes are more un-
expected.

In this paper, we explore unexpected and er-
roneous changes in the output of NMT models.
Consider the simple example in Table 1 where the
Transformer model (Vaswani et al., 2017) is used
to translate very similar sentences. Surprisingly,
we observe that by simply altering one word in
the source sentence—inserting the German word
sehr (English: very)—an unrelated change occurs
in the translation. In principle, an NMT model that
generates the translation of the word erleichtert
(English: relieved) in one context, should also be
able to generalize and translate it correctly in a
very similar context. Note that there are no infre-
quent words in the source sentence and after each
modification, the input is still syntactically cor-
rect and semantically plausible. We call a model
volatile if it displays inconsistent behaviour across
similar input sentences during inference.

We investigate to what extent well-established

88

https://www.aclweb.org/anthology/D19-56%2d

Modification Sentence variations

DEL Some 500 years after the Reformation, Rome [now\φφφ] has a Martin Luther Square.
SUBNUM I’m very pleased for it to have happened at Newmarket because this is where I landed [30\31] years ago.
INS I loved Amy and she is [φφφ\also] the only person who ever loved me.
SUBGEN [He\She] received considerable appreciation and praise for this.

Table 2: Examples of different variations from WMT. [wi\wj] indicates thatwi in the original sentence is replaced
by wj . φ is an empty string.

NMT models are volatile during inference.
Specifically, we locally modify sentence pairs in
the test set and identify examples where a trivial
modification in the source sentence causes an ‘un-
expected change’ in the translation. These modi-
fications are generated conservatively to avoid in-
sertion of any noise or rare words in the data (Sec-
tion 2.2). Our goal is not to fool NMT models,
but instead identify common cases where the mod-
els exhibit unexpected behaviour and in the worst
cases result in incorrect translations.

We observe that our modifications expose
volatilities of both RNN and Transformer trans-
lation models in 26% and 19% of sentence varia-
tions, respectively. Our findings show how vulner-
able current NMT models are to trivial linguistic
variations, putting into question the generalizabil-
ity of these models.

2 Sentence Variations

2.1 Is this another noisy text translation
problem?

Noisy input text can cause mistranslations in most
MT systems, and there has been growing research
interest in studying the behaviour of MT systems
when encountering noisy input (Li et al., 2019).

Belinkov and Bisk (2018) propose to swap or
randomize letters in a word in the input sentence.
For instance, they change the word noise in the
source sentence into iones. Lee et al. (2018) exam-
ine how the insertion of a random word in a ran-
dom position in the source sentence leads to mis-
translations. Michel and Neubig (2018) proposes
a benchmark dataset for translation of noisy in-
put sentences, consisting of noisy, user-generated
comments on Reddit. The types of noisy input
text they observe include spelling or typographi-
cal errors, word omission/insertion/repetition, and
grammatical errors.

In these previous works, the focus of the re-
search is on studying how the MT systems are not
robust when handling noisy input text. In these

approaches, the input sentences are semantically
or syntactically incorrect which leads to mistrans-
lations.

However, in this paper, our focus is on input text
that does not contain any types of noise. We mod-
ify input sentences in a way that the outcomes are
still syntactically and semantically correct. We in-
vestigate how the MT systems exhibit volatile be-
haviour in translating sentences that are extremely
similar and only differ in one word without any
noise injection.

2.2 Variation generation

While there are various ways to automatically
modify sentences, we are interested in simple se-
mantic and syntactic modifications. These trivial
linguistic variations should have almost no effect
on the translation of the rest of the sentence.

We define a set of rules to slightly modify the
source and target sentences in the test data and
keep the sentences syntactically correct and se-
mantically plausible.

DEL A conservative approach of modifying a
sentence automatically without breaking the gram-
maticality of a sentence is to remove adverbs. We
identify a list of the 50 most frequent adverbs in
English and their translations in German∗. For ev-
ery sentence in the WMT test sets, if we find a
sentence pair containing both a word and its trans-
lation from this list, we remove both words and
create a new sentence pair.

SUBNUM Another simple yet effective approach
to safely modify sentences is to substitute num-
bers with other numbers. In this approach, we
select every sentence pair from the test sets that
contains a number and substitute the number i in
both source and target sentences with i` k where
1 ď k ď 5. We choose a small range for change
so that the sentences are still semantically correct

∗dict.cc

89

0 10 20 30 40 50 60
Levenshtein distance

0

20

40

60

80
S

pa
n

of
ch

an
ge

RNN

0

2

4

6

8

10

F
re

qu
en

ci
es

(l
og

)

0 10 20 30 40 50 60
Levenshtein distance

0

20

40

60

80

S
pa

n
of

ch
an

ge

Transformer

0

2

4

6

8

10

F
re

qu
en

ci
es

(l
og

)

Figure 1: Levenshtein distance and span of change between translations of sentence variations for RNN and
Transformer. The majority of sentence variations falls into the category of minor changes between translations
(blue area). However, a surprising number of cases have significant changes (red area). RNN exhibits a slightly
more unstable pattern i.e., sentence variations with large edit differences and large spans of change.

for the most part and result in few implausible sen-
tences.

INS Randomly inserting words in a sentence
has a high chance of producing a syntactically in-
correct sentence. To ensure that sentences remain
grammatical and semantically plausible after mod-
ification, we define a bidirectional n-gram proba-
bility for inserting new words as follows:

P pw3|w1w2w4w5q “ Cpw1w2w3w4w5q
Cpw1w2 ‚ w4w5q

w3 is inserted in the middle of the phrase
w1w2w4w5, if the conditional probability is
greater than a predefined threshold. The probabil-
ities are computed on the WMT data. This simple
approach, instead of using a more complex lan-
guage model, serves our purposes since we are in-
terested in inserting very common words that are
already captured by the n-grams in the training
data.

SUBGEN Finally, a local modification is chang-
ing the gender of the person in the sentences.
The goal of this modification is to investigate
the existence and severity of gender bias in our
models. This is inspired by recent approaches
that have shown that NMT models learn social
stereotypes such as gender bias from training data
(Escudé Font and Costa-jussà, 2019; Stanovsky
et al., 2019).

Note that in a minority of cases these procedures
can lead to semantically incorrect sentences,
for instance, by substituting numbers we can
potentially generate sentences such as “She was

born on October 34th“. While this can cause
problems for a reasoning task, it barely affects the
translation task, as long as the modifications are
consistent on the source and target side.

Table 2 shows examples of generated variations.
We emphasize that only modifications with local
consequences have been selected and we inten-
tionally ignore cases such as negation which can
result in wider structural changes in the translation
of the sentence.

DE-EN EN-DE

2016 2017 2018 2016 2017 2018

RNN 32.5 28.2 35.2 28.1 22.4 34.6
Transformer 36.2 32.1 40.1 33.4 27.9 39.8

Table 3: BLEU scores for different models on the
WMT data for translation DEØEN.

We generate 10k sentence variations by apply-
ing these modifications to all sentence pairs in
WMT test sets 2013–2018 (Bojar et al., 2018). We
use RNN and Transformer models to translate sen-
tences and their variations.

2.3 Experimental setup

In the translation experiments, we use the standard
ENØDE WMT-2017 training data (Bojar et al.,
2018). We perform NMT experiments with two
different architectures: RNN (Luong et al., 2015)
and Transformer (Vaswani et al., 2017). We pre-
process the training data with Byte-Pair Encod-
ing (BPE) using 32K merge operations (Sennrich
et al., 2016). During inference, we use beam
search with a beam size of 5. Table 3 shows
the case-sensitive BLEU scores as calculated by

90

Table 4: A random sample of sentences from the WMT test sets and our proposed variations shown with ‘un-
expected change’ annotations (∆Translation). The cases where the unexpected change leads to a change in
translation quality are marked in column ∆Quality. [wi\wj] indicates that wi in the original sentence is replaced
by wj . S is the original and modified source sentence, R is the original and modified reference translation, T is the
translation of the original sentence, and Tm is the translation of the modified sentence. Differences in translations
related to annotations in the original and the modified translations are in red and orange, respectively. Note that
we are interested in unexpected changes and do not highlight the changes that are a direct consequence of the
modifications.

S Coes letztes Buch “Chop Suey” handelte von der chinesischen Küche in den USA, während Ziegelman in ihrem Buch
“[97\101] Orchard” über das Leben in einem Wohnhaus an der Lower East Side aus der Lebensmittelperspektive
erzählt.

R Mr. Coe’s last book, “Chop Suey,” was about Chinese cuisine in America, while Ms. Ziegelman told the story of life in
a Lower East Side tenement through food in her book “[97\101] Orchard.”

T Coes’s last book, “Chop Suey,” was about Chinese cuisine in the US, while Ziegelman, in her book “97 Orchard”
talks about living in a lower East Side.

Tm Coes last book “Chop Suey” was about Chinese cuisine in the United States, while Ziegelman writes in her book
“101 Orchard” about living in a lower East Side.

∆Translation: [reordered] [paraphrased]
∆Quality: No

S Man hält [bereits\φφφ] Ausschau nach Parkbank, Hund und Fußball spielenden Jungs und Mädels.
R You are [already\φφφ] on the lookout for a park bench, a dog, and boys and girls playing football.
T We are already looking for Parkbank, dog and football playing boys and girls.
Tm Look for Parkbank, dog and football playing boys and girls.

∆Translation: [word form] [add/remove]
∆Quality: Yes

S Bei einem Unfall eines Reisebusses mit [43\45] Senioren als Fahrgästen sind am Donnerstag in Krummhörn (Landkreis
Aurich) acht Menschen verletzt worden.

R On Thursday, an accident involving a coach carrying [43\45] elderly people in Krummhörn (district of Aurich) led to
eight people being injured.

T In the event of an accident involving a coach with 43 senior citizens as passengers, eight people were injured on
Thursday in Krummaudin (County Aurich).

Tm In the event of an accident involving a 45-year-old coach as a passenger, eight people were injured on Thursday in
the district of Aurich.

∆Translation: [word form] [add/remove] [other]
∆Quality: Yes

S Es ist ein anstrengendes Pensum, aber die Dorfmusiker helfen [normalerweise\φφφ], das Team motiviert zu halten.
R It’s a backbreaking pace, but village musicians [usually\φφφ] help keep the team motivated.
T It’s a demanding child, but the village musicians usually help keep the team motivated.
Tm It is a hard-to-use, but the village musician helps to keep the team motivated.

∆Translation: [word form] [other]
∆Quality: Yes

multi-bleu.perl.

RNN As the first NMT system, we use a 2-layer
bidirectional attention-based LSTM model imple-
mented in OpenNMT (Klein et al., 2017) trained
with an embedding size of 512, hidden dimension
size of 1024, and batch size of 64 sentences. We
use Adam (Kingma and Ba, 2015) for optimiza-
tion.

Transformer We also experiment with the
Transformer model (Vaswani et al., 2017) imple-
mented in OpenNMT. We train a model with 6
layers, the hidden size is set to 512 and the fil-

ter size is set to 2048. The multi-head attention
has 8 attention heads. We use Adam (Kingma and
Ba, 2015) for optimization. All parameters are set
based on the suggestions in Klein et al. (2017) to
replicate the results of the original paper.

3 Evaluation of unexpected and
erroneous changes

The modifications described above generate sen-
tences that are extremely similar and hence are ex-
pected to have a very similar difficulty of transla-
tion. We evaluate the NMT models on how robust
and consistent they are in translating these sen-

91

minor major
0

25

50

75

100
Word form

minor major
0

25

50

75

100
Reorder

minor major
0

25

50

75

100
Paraphrase

minor major
0

25

50

75

100
Add/Drop

minor major
0

25

50

75

100
Other

RNN Transformer

Figure 2: Categories of unexpected changes in the translation of sentence variations as provided by annotators. The
percentage of sentence variations with minor and major edit differences, as defined in 3.1, are shown separately.
The hatched pattern indicates the ratio of sentence variations for which the translation quality changes. Note that
expected changes are not plotted here.

tence variations rather than their absolute quality.

3.1 Deviations from Original Translations

The variations are aimed to have minimal effect
on changing the meaning of the sentences. Hence,
major changes in the translations of these vari-
ations can be an indication of volatility in the
model. To assess whether the proposed sentence
variations result in major changes in the trans-
lations, we measure changes in the translations
of sentence variations with Levenshtein distance
(Levenshtein, 1966). Specifically, Levenshtein
distance measures the edit distance between the
two translations. We also use the first and last po-
sitions of change in the translations, which repre-
sents the span of changes.

Ideally, with our simple modifications, we ex-
pect a value of zero for the span of change and a
value of at most 2 for the Levenshtein distance for
a translation pair. This indicates that there is only
one token difference between the translation of the
original sentence and the modified sentence. We
define two types of changes based on these mea-
sures: minor and major. We choose the threshold
to distinguish between minor and major changes
more conservatively to allow for more variations
in the translations. The change in translations is
empirically considered major if both metrics are
greater than 10, and minor if both are less than
10. Note that edit distances and spans are based
on BPE subword units.

With two very similar source sentences, we ex-
pect the Levenshtein distance and span of change
between translations of these sentences to be
small. Figure 1 shows the results for the RNN and
Transformer model. While the majority of sen-
tence variations have minor changes, a substan-

tial number of sentences, 18% of RNN and 13%
of Transformer translations, result in translations
with major differences. This is surprising and an
indication of volatility since these trivial modifica-
tions, in principle, should only result in minor and
local changes in the translations.

3.2 Oscillations of Variation in Translations

In this section, we look into various sentence-level
metrics to further analyze the observed behaviour.
In particular, we focus on the SUBNUM modifica-
tion because with this modification we can gen-
erate numerous variations of the same sentence.
Having a high number of variations for each sen-
tence gives us the opportunity of observing oscil-
lations of various string matching metrics.

We use sentence-level BLEU, METEOR
(Denkowski and Lavie, 2011), TER (Snover et al.,
2006), and LengthRatio to quantify changes in the
translations. LengthRatio represents the transla-
tion length over reference length as a percentage.
For a given source sentence, we define the os-
cillation range as changes in the sentence-level
metric for the translations of variations of a given
sentence.

While sentence-level metrics are not reliable
indicators of translation quality, they do capture
fluctuations in translations. With the variations we
introduce, in theory there should be no fluctuations
in the translations. Table 5 and Figure 3 provide
the results. We observe that even though these sen-
tence variations differ by only one number, there
are many cases where an insignificant change in
the sentence results in unexpectedly large oscil-
lations. Both RNN and Transformer exhibit this
behaviour to a certain extent.

92

0

25

50

75
BL

EU
RNN

20

40

60

80 Transformer

0

25

50

75

M
ET

EO
R

20

40

60

80

50

100

150

TE
R

50

100

150

Target Sentences50

100

150

200

Le
ng

th
Ra

tio

Target Sentences50

100

150

200

Figure 3: Oscillations of various sentence-level attributes for randomly sampled sentences from our test data and
their SUBNUM variations. The data points are the mean values for all variations of each sentence, and the error bars
indicate the range of oscillation of the metrics. The x-axis represents test sentence instances, sorted based on the
corresponding metric. Ideally each data point should have zero oscillation.

Table 5: Mean oscillations for SUBNUM variations. In
theory the variations should result in zero oscillations
for every metric.

BLEU METEOR TER LengthRatio

RNN 4.0 3.8 5.2 5.3
Transformer 3.8 3.3 4.2 3.4

3.3 The Effect of Volatility on Translation
Quality

While edit distances and spans of change provide
some indication of volatility, they do not capture
all aspects of this unexpected behaviour. It is
also not entirely clear what effect these unexpected
changes have on translation quality. To further
investigate this, we also perform manual evalua-
tions.

In the first evaluation, we provide annotators
with a pair of sentence variations and their cor-
responding translations and ask them to identify

the differences between the two sentence pairs. In
the second evaluation, we additionally provide the
source sentences and reference translations, and
ask the annotators to rank the sentence variations
based on the translation quality similar to Bojar
et al. (2016). In total the annotators evaluated 400
randomly selected sentence quadruplets.

The annotators identified 71% and 68% of
changes in the variation translation as expected
for the RNN and Transformer model, respectively.
The main types of unexpected changes identified
by the annotators are a change of word form, e.g.,
verb tense,, reordering of phrases, paraphrasing
parts of the sentence, and an ‘other’ category, e.g.,
preposition. A sentence pair can have multiple la-
bels based on the types of changes. Table 4 pro-
vides examples from the test data.

Statistics for each category of unexpected
change is shown in Figure 2. Our first observa-
tion is that, as to be expected, there are very few

93

‘unexpected changes’ when two variations lead to
translations with minor differences. Interestingly,
the vast majority of changes are due to paraphras-
ing and dropping of words. Comparing the per-
formance of the RNN and Transformer model, we
see that both RNN and Transformer display incon-
sistent translation behaviour. While Transformer
has slightly fewer sentences with major changes, it
has a higher number of sentence variations in the
major category that result in a change in transla-
tion quality. From the annotators’ assessments, we
find that in 26% and 19% of sentence variations,
the modification results in a change in translation
quality for the RNN and Transformer model, re-
spectively.

3.4 Generalization and Compositionality

Because of their ability to generalize beyond their
training data, deep learning models achieve excep-
tional performances in numerous tasks. The gen-
eralization ability allows MT systems to generate
long sentences not seen before. Recently there has
been some interest in understanding whether this
performance depends on recognizing shallow pat-
terns, or whether the networks are indeed captur-
ing and generalizing linguistic rules.

In simple terms, compositionality is the ability
to construct larger linguistic expressions by com-
bining simpler parts. For instance, if a model un-
derstands the correct compositional rules to under-
stand ‘John loves Mary’, it must also understand
‘Mary loves John’ (Fodor and LePore, 2002). In-
vestigating the compositional behaviour of neural
networks in real-world natural language problems
is a challenging task. Recently, several works have
studied deep learning models’ understanding of
compositionality in natural language by using syn-
thetic and simplified languages (Andreas, 2019;
Chevalier-Boisvert et al., 2019). Baroni (2019)
shows that to a certain extent neural networks can
be productive without being compositional.

Although we do not specifically look into the
compositional potential of MT systems, we are in-
spired by compositionality in defining our modi-
fications. We argue that the observed volatile be-
haviour of the MT systems in this paper is a side
effect of current models not being compositional.
If an MT system has a good ‘understanding’ of the
underlying structures of the sentences ‘Mary is 10
years old’ and ‘Mary is 11 years old’, it must also
translate them very similarly regardless of the ac-

curacy of the translation. While current evaluation
metrics capture the accuracy of the NMT models,
these volatilities go unnoticed.

Current neural models are successful in general-
izing without learning any explicit compositional
rules, however, our findings signal that they still
lack robustness. We highlight this lack of robust-
ness and suspect that it is associated with these
models’ lack of understanding of the composi-
tional nature of language.

4 Conclusion

In this paper, we showed the unexpected volatil-
ity of NMT models by using a simple approach
to modifying standard test sentences without in-
troducing noise, i.e., by generating semantically
and syntactically correct variations. We show
that even with trivial linguistic modifications of
source sentences we can effectively identify a sur-
prising number of cases where the translations
of extremely similar sentences are surprisingly
different, see Figure 1. Our manual analyses
show that both RNN and Transformer models ex-
hibit volatile behaviour with changes in transla-
tion quality for 26% and 19% of sentence vari-
ations, respectively. This highlights the problem
of generalizability of current NMT models and we
hope that our insights will be useful for developing
more robust NMT models.

Acknowledgments

We thank Arianna Bisazza for helpful discus-
sions. This research was funded in part by the
Netherlands Organization for Scientific Research
(NWO) under project numbers 639.022.213 and
612.001.218. We also thank NVIDIA for their
hardware support and the anonymous reviewers
for their helpful comments.

References

Jacob Andreas. 2019. Measuring compositionality in
representation learning. CoRR, abs/1902.07181.

Marco Baroni. 2019. Linguistic generalization and
compositionality in modern artificial neural net-
works. CoRR, abs/1904.00157.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In Proceedings of the International Conference
on Learning Representations (ICLR).

94

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the First
Conference on Machine Translation, pages 131–
198, Berlin, Germany. Association for Computa-
tional Linguistics.

Ondřej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, and Christof Monz. 2018. Find-
ings of the 2018 conference on machine translation
(wmt18). In Proceedings of the Third Conference
on Machine Translation, Volume 2: Shared Task Pa-
pers, pages 272–307, Belgium, Brussels. Associa-
tion for Computational Linguistics.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau,
Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. 2019.
BabyAI: First steps towards grounded language
learning with a human in the loop. In International
Conference on Learning Representations.

Michael Denkowski and Alon Lavie. 2011. Meteor
1.3: Automatic metric for reliable optimization and
evaluation of machine translation systems. In Pro-
ceedings of the Sixth Workshop on Statistical Ma-
chine Translation, pages 85–91, Edinburgh, Scot-
land. Association for Computational Linguistics.

Joel Escudé Font and Marta R. Costa-jussà. 2019.
Equalizing gender bias in neural machine transla-
tion with word embeddings techniques. In Proceed-
ings of the First Workshop on Gender Bias in Natu-
ral Language Processing, pages 147–154, Florence,
Italy. Association for Computational Linguistics.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz.
2018. Examining the tip of the iceberg: A data set
for idiom translation. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC-2018). European Language
Resource Association.

J.A. Fodor and E. LePore. 2002. The Compositionality
Papers. Clarendon Press.

G. Frege. 1892. ”uber sinn und bedeutung. In Mark
Textor, editor, Funktion - Begriff - Bedeutung, vol-
ume 4 of Sammlung Philosophie. Vandenhoeck &
Ruprecht, G”ottingen.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adver-
sarial examples. In Proceedings of the International
Conference on Learning Representations (ICLR).

Theo M. V. Janssen. 2001. Frege, contextuality and
compositionality. Journal of Logic, Language and
Information, 10(1):115–136.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages
74–83. Association for Computational Linguistics.

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017, System Demonstra-
tions, pages 67–72. Association for Computational
Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six
challenges for neural machine translation. arXiv
preprint arXiv:1706.03872.

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara
Fannjiang, and David Sussillo. 2018. Hallucinations
in neural machine translation. In Neural Informa-
tion Processing Systems (NeurIPS) Workshop on In-
terpretability and Robustness for Audio, Speech, and
Language. NeurIPS.

Vladimir I Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. So-
viet physics doklady, 10(8):707–710.

Xian Li, Paul Michel, Antonios Anastasopoulos,
Yonatan Belinkov, Nadir Durrani, Orhan Firat,
Philipp Koehn, Graham Neubig, Juan Pino, and Has-
san Sajjad. 2019. Findings of the first shared task on
machine translation robustness. In Proceedings of
the Fourth Conference on Machine Translation (Vol-
ume 2: Shared Task Papers, Day 1), pages 91–102,
Florence, Italy. Association for Computational Lin-
guistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Paul Michel and Graham Neubig. 2018. Mtnt: A
testbed for machine translation of noisy text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 543–
553. Association for Computational Linguistics.

Richard Montague. 1974. Universal grammar. In For-
mal Philosophy: Selected Papers of Richard Mon-
tague, number 222–247 in Theoria, New Haven,
London. Yale University Press.

Francis Jeffry Pelletier. 1994. The principle of seman-
tic compositionality. Topoi, 13:11–24.

95

Ngoc-Quan Pham, Jan Niehues, and Alexander Waibel.
2018. Towards one-shot learning for rare-word
translation with external experts. In Proceedings
of the 2nd Workshop on Neural Machine Transla-
tion and Generation, pages 100–109. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In In Proceedings of Association for Machine
Translation in the Americas, pages 223–231.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettle-
moyer. 2019. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1679–1684, Florence, Italy. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

96

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 97–109
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Leveraging Sentence Similarity in Natural Language Generation:
Improving Beam Search using Range Voting

Sebastian Borgeaud
DeepMind & University of Cambridge

sborgeaud@google.com

Guy Emerson
University of Cambridge
gete2@cam.ac.uk

Abstract
We propose a method for natural language gen-
eration, choosing the most representative out-
put rather than the most likely output. By view-
ing the language generation process from the
voting theory perspective, we define represen-
tativeness using range voting and a similarity
measure. The proposed method can be ap-
plied when generating from any probabilistic
language model, including n-gram models and
neural network models. We evaluate differ-
ent similarity measures on an image caption-
ing task and a machine translation task, and
show that our method generates longer and
more diverse sentences, providing a solution
to the common problem of short outputs being
preferred over longer and more informative
ones. The generated sentences obtain higher
BLEU scores, particularly when the beam size
is large. We also perform a human evaluation
on both tasks and find that the outputs gener-
ated using our method are rated higher.

1 Introduction

A language model specifies a probability distri-
bution over sequences of words: given a se-
quence s = x1x2 · · ·xn of length n, the model as-
signs a probability P (s) to the entire sequence.
The probability distribution may be conditioned:
for example in machine translation the distribution
is conditioned on the source language sentence.

In many applications, it is desirable to output
a single sequence, rather than a distribution. A
common approach is to choose the most likely se-
quence. However, this is problematic when the
most likely sequence is not representative of the
whole distribution.

For example, in dialogue generation tasks, the
most likely output can be “I don’t know”, even
when most of the probability mass is assigned to
long informative sequences. Cao and Clark (2017)
call this the “boring output problem”.

For a real-valued distribution, we can choose a
representative output by taking the mean. However,
for a discrete distribution (such as over sequences),
the mean is not defined. In this paper, we choose a
representative output using tools from voting the-
ory, allowing us to avoid the boring output problem.
The general idea is that, if the distribution assigns
most of the probability mass to a group of similar
sequences, we would like to generate one of them
– even if they have low probability as individual
sequences, they have high probability as a group.
We can formulate this process as a range voting
election, where the sentences vote for each other,
with the strength of a vote being proportional to
the similarity between the voter sequence and the
candidate sequence.

Our approach can be used to mitigate problems
commonly associated with language models. For
example, a long-recognised problem is that shorter
sequences are assigned higher probabilities and
thus choosing the most likely sequence favours
short sequences (Brown et al., 1995). Indeed,
Stahlberg and Byrne (2019) show that the most
likely output in machine translation is often the
empty string. By designing the similarity function
to be asymmetric such that more informative candi-
date sequences receive stronger votes, we can gen-
erate longer and more diverse outputs (see Fig. 1
for an example).

We focus on simple similarity metrics based on
n-grams and generate the candidates and voters
using beam search. We evaluate on two tasks: im-
age captioning and machine translation. For both
tasks, we find that our approach achieves higher
BLEU scores, and performs better in a human eval-
uation. Our approach also generates longer and
more diverse outputs, with the generated length
and diversity more closely matching the length and
diversity of the reference captions and reference
translations.

97

https://www.aclweb.org/anthology/D19-56%2d

0.00230: a couple of people that are sitting on a bench
0.00132: a man sitting on a bench next to a dog
0.00079: a black and white photo of a man sitting on a

bench
0.00075: a couple of people sitting on a bench
0.00066: a man sitting on a bench with a dog
0.00064: a man and a woman sitting on a bench
0.00048: a man and a woman sitting on a park bench
0.00046: a black and white photo of a man and a horse
0.00033: a black and white photo of a man and a dog
0.00025: a black and white photo of a man on a horse

Figure 1: Image from the MSCOCO validation dataset
and beam search captions with their probabilities
(beam size k=10). See §3.1 for beam search, §4.1
for the sequence model. Range voting with overlap2
similarity (see §3.2) on this set of sequences selects
“a black and white photo of a man sitting on a bench”,
which shares many bigrams with other sequences.

2 Related work

Much work has gone into analysing sources of
errors in language generation, often focused on
machine translation. Koehn and Knowles (2017)
raise 6 challenges for machine translation, includ-
ing degrading performance for longer sentences,
and degrading performance for larger beam sizes.
Stahlberg and Byrne (2019) distinguish model er-
rors (high probabilities of bad sequences) and
search errors (failing to find sequences preferred
by the model). They show that the global optimal
translations (according to likelihood) are consider-
ably worse than translations found by beam search.
This points to both serious model errors and seri-
ous search errors, which cancel out to some degree.
This suggests there is much work to be done in im-
proving both our models and our search objectives
– the latter is the aim of this paper.

Ott et al. (2018) find that beam search typically
covers only a small proportion of the model’s prob-
ability mass,1 and they show that the degradation
for large beams is at least partly due to the train-
ing data containing target sentences that are exact
copies of source sentences. They also suggest that
beam search is an effective search strategy, for the
maximum-likelihood search objective, finding hy-
potheses with higher model probabilities than the
reference translations.

Cohen and Beck (2019) also find a performance
degradation with larger beam sizes across different
tasks (translation, image captioning and summari-
sation) and propose to add a search discrepancy

1Since our paper was submitted, this finding was repli-
cated by Eikema and Aziz (2020), who further argue that
the maximum-likelihood decoding objective is hard to justify
when the maximum likelihood is so low.

heuristic to beam search. For image captioning,
Vinyals et al. (2017) show that larger beams not
only decrease performance but also reduce the di-
versity of the captions. They claim this is an over-
fitting effect and propose the use of small beam
sizes as further regularization.

In unconditional, open-ended language genera-
tion, Holtzman et al. (2020) find that using likeli-
hood as the decoding objective leads to bland and
repetitive text with unnaturally high probability and
too little variance. They claim this is not due to a
search error, but due to the maximum-likelihood
decoding objective. They propose sampling, trun-
cated the distribution to the top p percent of tokens.

2.1 Generation length and diversity

To increase the length and diversity of a model’s
outputs, some authors have proposed changes to the
model architecture. In dialogue generation, Cao
and Clark (2017) use a latent variable model to
capture the possible “topics” of a response.

Others have proposed changing the objective
function. In dialogue generation, Li et al. (2016a)
optimise mutual information instead of probability.
In machine translation, Tu et al. (2017) modify an
encoder-decoder model by adding a “reconstructor”
to predict the input based on the output.

However, modifying the model or the objec-
tive function depends on the particular task, and
applying these techniques to an existing system
requires retraining the model. In this paper, we
focus on general methods which can be applied
to any probabilistic model in any generation task.
Length normalisation (Wu et al., 2016; Freitag and
Al-Onaizan, 2017) explicitly penalises shorter se-
quences during the beam expansion phase by divid-
ing the log-probability of a sequence by its length.
Diverse decoding (Li et al., 2016b; Li and Juraf-
sky, 2016) penalises repeated expansions of the
same beam node. Diverse beam search (Vijayaku-
mar et al., 2018) penalises generation of similar
beams using their Hamming diversity. These last
two methods aim to increase the diversity within a
beam, but not necessarily across the dataset.

Kool et al. (2019) propose a stochastic beam
search based on the Gumbel-Top-k trick to sample
without replacement. The proposed approach can
trade-off BLEU score against translation diversity.

Finally, it is important to make sure that improve-
ments to a model can be properly evaluated. After
our paper was submitted, Freitag et al. (2020) re-

98

port that the references used in machine translation
often exhibit poor diversity, which can unfairly pe-
nalise models which exhibit good diversity. They
propose to use paraphrased reference translations
instead. These paraphrases yield higher correla-
tion with human judgement when evaluated using
BLEU, and could be used in future work to im-
prove the evaluation of translation systems which
aim to generate appropriately diverse outputs.

2.2 Minimum Bayes Risk Decoding

Kumar and Byrne (2004) introduce the Minimum
Bayes Risk (MBR) decoder for machine transla-
tion. Like our proposed approach, this aims to use
the whole distribution, rather than picking the most
likely sequence. They frame the problem in terms
of Bayes Risk: given the true distribution over out-
puts, and given a loss function between the system
output and the target output, the Bayes Risk is de-
fined as the expected loss. The best output is the
one which minimises the Bayes Risk.

However, the true distribution over outputs is not
known, so Kumar and Byrne approximate it using
the model’s distribution. The MBR decoder first
uses beam search, and then re-ranks it according to
the BLEU scores between sequences in the beam.

Tromble et al. (2008) apply MBR over transla-
tion lattices. Shimizu et al. (2012) use MBR with a
smoothed BLEU loss function and propose to limit
the possible translations to those that are similar to
most-likely translation generated by beam search.

Blain et al. (2017) propose to re-rank the sen-
tences generated by beam search using a similar-
ity metric. Their approach is similar to ours but
doesn’t include the probability of the sentences
given by the decoder, and thus would degrade com-
pletely in the limit of very large beam sizes. They
find that using BLEU as a similarity metric reduces
the quality of generated translations, according to
both BLEU and a human evaluation.

3 Method

3.1 Beam search

When working with a distribution over sequences,
it is not feasible to consider all possible sequences.
Finding the most likely sequence can be compu-
tationally expensive – in fact, for an RNN it is
undecidable in the general case (Chen et al., 2018).
A common solution is to use beam search, which
generates the sequence one token at a time, main-
taining a list of the k most promising sequences at

each time step (for example: Brown et al., 1995;
Koehn, 2004a). Greedy search is the special case
where k = 1.

Beam search introduces an extra hyper-
parameter, the beam size k. Increasing k covers
more of the search space, but increases the compu-
tational cost. It is tempting to assume that increas-
ing k will produce better results, but empirically,
the quality of the most likely sequence starts to
decrease after k exceeds a certain threshold (Koehn
and Knowles, 2017; Cohen and Beck, 2019).

In the next section, we propose an alternative
way to generate from a beam, which aims to avoid
the drop in performance as beam size increases.
Rather than choosing the most likely sequence, we
choose the most representative sequence.

3.2 Range voting

To formalise representativeness, we propose to use
a voting procedure. Although voting has been ap-
plied to ensembles of classifiers (for an overview,
see: Kuncheva, 2004; Kuncheva and Rodrı́guez,
2014), we are not aware of work using voting to
select from a distribution.

We can see each sequence as a candidate in an
election, and the probability of a sequence as the
proportion of votes for that candidate. From this
perspective, the problem of probability mass being
split across long sequences is the well-known prob-
lem of vote splitting. Suppose candidate i wins an
election. Now suppose we run the election again,
but add an additional candidate j, identical to i. A
voting system is robust against vote splitting (and
called independent of clones) if the winner must
be i or j (Tideman, 1987).

A well-studied system which is independent of
clones is range voting (Heckscher, 1892; Smith,
2000; Tideman, 2006; Lagerspetz, 2016). Each
voter scores each candidate in the range [0, 1], and
the candidate with the highest total score wins.

In our setting, probability mass can be seen as
the proportion of votes placing a candidate as first
choice (see Fig. 1 for an example). For range vot-
ing, we need to augment the votes with scores for
all other candidates. We propose to do this using a
similarity measure. The final score for a sequence
c ∈ C (the set of candidates) is given in (1), for a set
of voter sequences V and a similarity measure sim.

score(c) =
∑

v∈V
P (v) · sim(v, c) (1)

99

A sequence can act as both voter and candidate.
Each voter sequence is weighted by its probability,
and casts a vote for each candidate sequence, where
the strength of the vote is the similarity between
the voter and the candidate. The simplest way to
apply this method is to use beam search to define
both the set of candidates and the set of voters.

This can be seen as a generalisation of tak-
ing an average. In a Euclidean space, the mean
is equivalent to voting with quadratic similar-
ity 1− k(x− y)2, and the median is equivalent
to voting with linear similarity 1− k|x− y|, for
some constant k.

Although the vote splitting problem may appear
abstract, it can happen in practice, even without
considering similarity. When using subword vocab-
ularies (Sennrich et al., 2016), there are multiple
ways of encoding any given sentence. The model’s
probability mass is split across sentences with iden-
tical surface form but different encodings.

Defining semantic similarity between sentences
is recognised as a hard problem (Achananuparp
et al., 2008; Cer et al., 2017; Pawar and Mago,
2019). In this work, we focus on simple, domain-
agnostic similarity measures which do not require
additional training.

First, we consider similarity based on n-grams.
For a sequence s, we write setn(s) for its set of
n-grams, and bagn(s) for its bag (or multiset)
of n-grams. We define two measures in (2–3).
Both are asymmetric, to encourage informative se-
quences: if c contains v plus more information,
sim(v, c) should be high, but if c contains less in-
formation, then sim(v, c) should be lower. This
allows an informative candidate sequence to gather
more votes.

precisionn(v, c) =
|bagn(v) ∩ bagn(c)|

| bagn(v)|
(2)

overlapn(v, c) =
| setn(v) ∩ setn(c)|

| setn(v)|
(3)

Second, inspired by Mueller and Thyagarajan
(2016), we consider a similarity measure based
on the hidden states of the decoders (LSTM and
Transformer) during generation (see §4.1). For
each sequence, we find the average of the hid-
den states, and then compute the cosine similar-
ity. We refer to this measure as lstm states and
transformer states.

3.3 Comparison with MBR Decoding

The formulation used for range voting is reminis-
cent of MBR decoding (see §2.2). In fact, if the sim-
ilarity measure in (1) is sim(v, c) = BLEU(c,v),
range voting recovers MBR decoding. From a the-
oretical point of view, range voting provides an
independent motivation for MBR decoding, and
furthermore, one which does not require the as-
sumption that we can approximate the true distribu-
tion by the model’s distribution. We know that the
model’s distribution does not match the true distri-
bution (or else we would have already solved the
task), and so this is a strong assumption to make.

From a practical point of view, range voting sug-
gests that any similarity measure could be used, and
not necessarily the evaluation metric. Using BLEU
has several disadvantages. Firstly, BLEU can be
harsh: when there are no 3- or 4-gram matches, the
score is 0. Secondly, BLEU is a corpus-level metric
which does not decompose over sentences. Finally,
BLEU is precision-based, penalising translations
containing information that is not in the reference.
In MBR, this means that candidate sequences are
penalised for containing more information than
voter sequences. Our proposed similarity measures
are asymmetric in the opposite direction, to encour-
age generation of long and informative sequences.

Indeed, in our experiments, we have found that
simple similarity measures produce longer and
more diverse sentences than BLEU, and for trans-
lation better results, even though BLEU is used as
the evaluation metric.

Furthermore, the voting theory perspective can
yield analytical insights even when range voting is
not used. For example, the performance degrada-
tion found by Cohen and Beck (2019) can be in-
terpreted in terms of vote splitting. They argue for
the need to filter out sequences which begin with a
low-probability token that is followed by very-high-
probability tokens, in favour of sequences where all
tokens have fairly high probability. The sequences
they want to filter out have not split the vote (later
tokens have probability close to 1, so there are no
similar sequences that have high probability), but
the sequences they want to keep have split the vote
(there are similar sequences with similar probabil-
ity). Their method aims to remove these problem-
atic sequences that don’t split the vote, while our
method aims to be robust against vote splitting.

100

BLEU-1 BLEU-4
Beam size k 1 2 10 100 1 2 10 100
Beam search 66.66 67.97 67.22 66.18 25.39 26.83 27.16 26.31
Length normalisation 66.66 68.47 64.72 63.10 25.39 26.72 25.76 24.72
Diverse decoding 66.66 67.90 67.24 66.43 25.39 26.68 26.93 26.37
overlap1 66.66 68.55 66.26 66.36 25.39 26.47 25.61 24.60
precision1 66.66 68.54 66.31 66.46 25.39 26.47 25.62 24.58
overlap2 66.66 68.20 67.36 67.19 25.39 26.82 27.22 27.13
precision2 66.66 68.20 67.63 67.21 25.39 26.82 27.23 27.13
lstm states 66.66 67.97 68.42 69.10 25.39 26.83 27.96 28.23
bleu4 (MBR) 66.66 67.93 67.66 68.56 25.39 26.83 27.80 28.71
smoothed bleu4 (MBR) 66.66 67.98 67.87 69.45 25.39 26.84 27.89 29.19

Table 1: BLEU-1 and BLEU-4 scores obtained on the MSCOCO validation images.

4 Experiments

We evaluate our method on two tasks: image cap-
tioning and machine translation. For MBR, we use
BLEU (bleu4) and a smoothed version of BLEU
(smoothed bleu4) which adds 1 to the n-gram
counts for n>1 to mitigate the harshness of the
metric (Shimizu et al., 2012).

We consider two baselines: length normalisation
and diverse decoding, described in §2.1. For ma-
chine translation, we also consider diverse beam
search as a further baseline. Other methods men-
tioned in §2 cannot be straightforwardly applied as
they require modifying the model or the training
objective.

4.1 Image captioning

We use the MSCOCO dataset (Lin et al., 2014),
which consists of 82,783 training images and
40,504 validation images, each annotated with 5
captions from human annotators.

We use the “Show and Tell” encoder-decoder
architecture of Vinyals et al. (2015). The encoder
is a pretrained Inception V3 CNN (Szegedy et al.,
2016) from which we extract a feature vector from
the final pooling layer (Ioffe and Szegedy, 2015).
The decoder is an LSTM (Hochreiter and Schmid-
huber, 1997) with 512 hidden units, initialising the
hidden state using the encoder. The vocabulary
consists of the 5000 most common words in the
training captions, for which embeddings of size
512 are learned from scratch.

4.1.1 BLEU scores
Table 1 shows BLEU scores (Papineni et al., 2002)
on the MSCOCO validation set computed using
NLTK (Bird et al., 2009). The bigram similarity

measures and the lstm states measure improve
BLEU scores for almost all beam sizes. In contrast,
diverse decoding has almost no effect on BLEU,
while length normalisation performs worse than
standard beam search. The best result with our sim-
ilarity metrics is achieved by lstm states at k=100.
This is significantly better than the best result for
standard beam search (k=10), with p<0.001 for
a paired bootstrap test following Koehn (2004b).
Using smoothed bleu4 and increasing the beam
size to k=100 gives the overall best results.

Sampling methods proposed for open-ended gen-
eration perform poorly. Top-k sampling (Fan et al.,
2018) achieves BLEU scores of 17.15 (k=4) and
13.79 (k=10), nucleus sampling (Holtzman et al.,
2020) achieves a score of 13.62 (top p=0.9)

Consistent with Ott et al. (2018) and Koehn and
Knowles (2017), increasing k with beam search
too much reduces BLEU. However, this drop does
not occur for our voting method.

4.1.2 Caption length

To analyse differences between methods, we first
look at caption length, shown in Table 3. Standard
beam search produces slightly longer captions as
k increases up to 10. All n-gram measures gen-
erate longer captions than standard beam search,
and length continues to increase as k goes to 100.
Length normalisation also increases caption length,
but this is at the cost of BLEU score (see §4.1.1).
Diverse decoding does not increase caption length.
The lstm states measure produces slightly shorter
captions – as it is symmetric, it does not favour long
sequences as the asymmetric n-gram measures do
(see §3.2). As predicted by our range voting inter-
pretation, MBR, for which the asymmetry is in the

101

Distinct captions Distinct unigrams Distinct bigrams
Beam size k 2 10 100 2 10 100 2 10 100
Beam search 9208 5488 4150 668 621 605 3395 2778 2479
Length normalisation 9978 6418 5039 681 627 587 3502 2863 2471
Diverse decoding 9942 6424 4403 672 646 612 3402 3023 2561
overlap1 10727 8916 10808 687 646 628 3576 3232 3596
precision1 10727 8902 10768 687 645 638 3572 3238 3607
overlap2 9519 7598 9221 673 620 580 3446 2854 2887
precision2 9522 7590 9248 673 620 581 3444 2848 2892
lstm states 9208 7613 10133 668 629 655 3395 2891 3331
bleu4 (MBR) 9159 6512 6763 667 612 570 3392 2666 2446
smoothed bleu4 (MBR) 9206 6522 7019 667 613 560 3396 2675 2415

Table 2: Number of distinct captions, unigrams and bigrams in the generated captions.

Average caption length
Beam size k 1 2 10 100
Beam search 8.41 8.79 9.18 9.11
Length norm. 8.41 9.19 10.24 10.43
Diverse decod. 8.41 8.71 9.12 9.15
overlap1 8.41 9.22 10.40 11.20
precision1 8.41 9.21 10.38 11.15
overlap2 8.41 8.96 9.86 10.55
precision2 8.41 8.96 9.86 10.55
lstm states 8.41 8.79 9.17 8.82
bleu4 (MBR) 8.41 8.77 9.27 9.32
smoothed bleu4 8.41 8.79 9.24 9.13

Table 3: Average length of the generated captions. The
reference captions contain on average 10.59 words.

opposite direction, produces shorter captions than
the simple n-gram similarity metrics.

4.1.3 Caption diversity
Following the approach of Li et al. (2016a), Dhin-
gra et al. (2017), and Xu et al. (2017, 2018), we
investigate the diversity of the generated captions
by counting the number of distinct captions, uni-
grams, and bigrams (see Table 2).

For standard beam search, the number of dis-
tinct captions drops as k increases. Both baselines
weaken this effect, but the drop is still present. In
contrast, range voting maintains caption diversity
as k increases, for all similarity measures.

Similarly, standard beam search sees a drop in
the number of distinct unigrams and bigrams as
k increases, and the baselines do not seem to miti-
gate this. In contrast, the unigram measures and the
lstm states measure maintain both unigram diver-
sity and bigram diversity as k increases, while the

bigram measures partially maintain bigram diver-
sity. As expected from our range voting perspective,
MBR generates less diverse captions.

4.1.4 Human evaluation

BLEU is known to be imperfect, and does not al-
ways match human judgements (Callison-Burch
et al., 2006; Blain et al., 2017). While the n-gram
similarity measures produce similar BLEU scores
to standard beam search, they also produce longer
captions, which are potentially more informative.
To investigate whether they are more informative
in way that is not reflected by BLEU, we took 500
validation images for human evaluation, compar-
ing the captions produced by standard beam search
(k=10) against our best-performing n-gram mea-
sure (precision2, k=100). Each pair of captions
was presented in a random order, with the original
image, and judged on a five-point scale (one cap-
tion much better, slightly better, or no difference).

The voted caption was rated better 106 times,
and worse 73 times. This is statistically significant,
with p=0.0165 for a two-tailed sign test, discard-
ing ties (Emerson and Simon, 1979). However,
for captions rated much better, the voted caption
was better 27 times and worse 40 times. This is
suggestive but not fully significant (p=0.142).

These results support the claim that a voted cap-
tion represents more of the information present in a
model’s distribution over captions – this often leads
to a better caption, but where the model is wrong,
adding wrong information can make the caption
much worse. After all, our method is designed as a
better way to select from a distribution, not as an
improvement to the distribution itself.

102

Beam size k 1 2 4 10 30 100
Beam search 24.04 25.10 25.36 24.91 23.46 20.56
Length normalisation 24.04 25.19 25.59 25.55 24.40 21.78
Diverse decoding 24.04 24.88 25.17 24.71 23.49 20.82
Diverse beam search 24.04 24.55 24.70 23.93 22.14 18.38
Beam search (no copy) 23.96 25.10 25.43 25.23 24.38 22.59
overlap1 23.96 25.17 25.48 25.55 24.97 24.20
precision1 23.96 25.17 25.47 25.54 24.95 24.21
overlap2 23.96 25.14 25.49 25.70 25.08 24.62
precision2 23.96 25.20 25.53 25.39 24.69 23.96
transformer states 23.96 25.10 25.44 25.51 24.67 23.36
bleu4 (MBR) 23.96 25.09 25.42 25.51 24.79 23.53
smoothed bleu4 (MBR) 23.96 25.10 25.42 25.51 24.81 23.65

Table 4: BLEU scores on newstest2014, with range voting applied to the beams obtained with no-copy filtering.

4.2 Machine translation

For the translation task, we use the WMT’14
English-German dataset, consisting of 4.5M sen-
tence pairs. We train a Transformer ‘big’ model
(Vaswani et al., 2017), implemented in the Ten-
sor2Tensor library (Vaswani et al., 2018). We use
the joint source and target byte-pair encoding vo-
cabulary (Sennrich et al., 2016) with 32,000 tokens
available on Tensor2Tensor. All results reported are
for the newstest2014 test set, containing 2737 sen-
tence pairs (Bojar et al., 2014).2 The BLEU scores
were computed using SacreBleu (Post, 2018).

Ott et al. (2018) found that a common source of
model error comes from outputting a copy of the
input sentence, still in the source language. We
also observe this phenomenon: with beam size 4,
0.4% of the outputs are exact copies of the input.
This increases to 3.8% of the outputs for beam
size 100. When counting the number of partial
copies3 the effect is even stronger: for beam sizes
4 and 100, respectively 1.3% and 12.4% of the
generated translations are partial copies. Because
of this, we add the method proposed by Ott et al.

2We are evaluating systems translating from English into
German, but half of the newstest2014 sentences were orig-
inally in German and translated into English. Translation
artifacts are known to have an impact on machine translation
performance (for example: Kurokawa et al., 2009; Holmqvist
et al., 2009; Lembersky et al., 2012). One reviewer asked
whether there is a difference in performance for the two halves
of the dataset, as found by Freitag et al. (2019). In terms of
BLEU score, range voting appears more effective for forward-
translation (original text in English), but in terms of manual
evaluation, it appears more effective for backward-translation
(original text in German). For reasons of space, we only report
results for the whole dataset.

3A partial copy is defined to be a generated sentence con-
taining at least 50% of the unigrams in the input sentence.

(2018), which filters out partial copies during beam
search, as an extra baseline.

4.2.1 BLEU scores

The BLEU scores obtained on the WMT’14 En-De
newstest2014 test set are shown in Table 4.

For beam search and all considered baselines, the
scores for the larger beam sizes drop considerably.
Adding the copy pruning heuristic from Ott et al.
(2018) does help mitigate this problem somewhat
but does not solve it: there is almost a 3 BLEU
point drop between k=4 and k=100.

To decouple a trivial source of model errors (in-
put copies) from search errors, we apply our range
voting method on the beams obtained with the fil-
tering heuristic (Table 4, bottom half). Regardless
of which similarity metric is used, re-ranking using
range voting improves the BLEU score, and with
the overlap2 similarity, we achieve the best overall
score of 25.70. Furthermore, the performance drop
at large beam sizes is reduced when using range
voting to about 1 BLEU point for overlap2.

There are two possible reasons for lower perfor-
mance at larger beams: (1) different candidates:
the sentence selected for a small beam is not in
the larger beam; or (2) different voter preferences:
the sentence selected for a small beam size is still
there, but range voting selects a different sentence.
In fact, both phenomena occur. First, for beam
search and all similarity metrics, about 10% and
5% of the sentences selected at k=4 and k=10 re-
spectively are not in the beam of size 100. Second,
48% and 61% of the sentences chosen by standard
beam search with k=4 and k=10 respectively are
also chosen for k=100, but this drops to 32% and

103

1 2 4 10 30 100

Beam size

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5
Tr

an
sla

tio
n

le
ng

th
 (w

or
ds

)

beam search
beam search (no copy)
diverse decoding
diverse beam search
length norm.
precision2
overlap2
smoothed_bleu4
reference

1 2 4 10 30 100

Beam size

34000

35000

36000

37000

38000

39000

40000

41000

Un
iq

ue
 b

ig
ra

m
s

beam search
beam search (no copy)
diverse decoding
diverse beam search
length norm
precision2
overlap2
smoothed_bleu4
reference

Figure 2: The lengths (left) and the number of unique bigrams in the generated translations (right). Baseline
methods are shown as dashed lines, voting and MBR results as solid lines, and reference translations in black (the
horizontal line). Full tables of results are given in Appendix A.

36% respectively when using range voting with
overlap2 similarity. This suggests that generating
candidates and voters independently could lead to
further improvements, which we explore in §4.2.5.

Sampling methods also perform poorly on this
task. Top k sampling achieves BLEU scores of
17.39 (k=4) and 15.21 (k=10), nucleus sampling
achieves a score of 10.10 (top p=0.9)

4.2.2 Translation length
The average length of the generated translations
are shown in Figure 2. All similarity metrics gener-
ate longer translations than standard beam search
with and without filtering, but shorter than length
normalisation. At beam size k=100, length nor-
malised beam search generates almost an extra
word per translation compared to k=30.

Just as for image captioning, the length of trans-
lations generated by standard beam search de-
creases as the beam size increases. We again
note that the translations generated by range voting
with asymmetric similarity metrics are on average
longer, except for MBR where the asymmetry in
the similarity metric penalises longer candidates.
However, it is no longer the case that increasing
the beam size also increases the length of the trans-
lations generated by range voting.

4.2.3 Translation diversity
The numbers of distinct bigrams generated are
shown in Figure 2. Out of diverse decoding and di-
verse beam search, which aim to increase diversity
within a beam, only diverse decoding increases the
number of generated bigrams compared to beam

search. Length normalisation generates the most
unique bigrams, and this increases with beam size,
also due to the translations being longer on average.
On the other hand, the copy filtering heuristic de-
creases the number of distinct bigrams generated.
Just as for image captioning, range voting increases
the diversity of the generated translations. For all
similarity metrics, more unique bigrams are gener-
ated than beam search with copy filtering (on top
of which range voting was applied). Furthermore,
the simple n-gram metrics generate more unique
bigrams than standard beam search, recovering the
drop occurring for the filtering heuristic.

4.2.4 Human evaluation
We used a human evaluation to investigate dif-
ferences not reflected by BLEU. For 500 sen-
tences, we compared the strongest baseline
(length normalisation, k=4) with range voting
(precision2, k=10, as this performed well on
BLEU, length, and diversity), following the proce-
dure as in §4.1.4. The voted translation was rated
better 69 times, and worse 44 times. This is statis-
tically significant, with p=0.0235 for a two-tailed
sign test. For translations rated much better, the
difference is not significant (36 better, 28 worse).

4.2.5 Including more voters
The range voting formulation doesn’t require the
set of candidates C and voters V to be the same (see
Equation 1). We can capture more knowledge from
the underlying distribution by using a larger and
more diverse set of voters (and could be acquired
more efficiently by repeatedly sampling) whilst

104

4 10 30 100 1000

number of voters

25.0

25.2

25.4

25.6

25.8

26.0

BL
EU

beam search (no copy)
sampling
stochastic beam search

Figure 3: Performance of overlap2 range voting, vary-
ing the number of voters for a fixed set of candidates.

constraining the set of candidates to avoid model
errors. This was similarly done by Tromble et al.
(2008), who refer to the sets of voters and candi-
dates as the “evidence” and “hypothesis” spaces.

For the voters, we increase k from 4 to 1000 and
apply 3 different search methods: sampling k times,
stochastic beam search (Kool et al., 2019), and
beam search with copy filtering. For the candidates
we use beam search with copy filtering and k=4.
We fix the similarity metric to overlap2, which was
the best performing metric for large k≥4 (§4.2.1).

For all 3 generation methods, increasing the num-
ber of voters increases BLEU (Figure 3), suggest-
ing that the previous drop in performance is due
to worse candidates in larger beams, rather than
worse voter preferences.

5 Conclusion

Instead of generating the most likely sequence, we
propose a method to generate the most representa-
tive sequence, formalising representativeness using
a similarity measure and range voting.

The evaluation on image captioning and machine
translation shows that despite using simple simi-
larity measures, we achieve an increase in BLEU
score, an increase in caption length and diversity,
and statistically significantly better human evalua-
tion performance on both tasks.

For the image captioning task, performance of
our method does not drop as beam size increases,
removing the sensitivity of results to this hyperpa-
rameter. On the machine translation task, perfor-
mance does drop for larger beam sizes, although
by much less than with standard beam search or

the baselines. Furthermore, performance increases
as the number of voters increases, for a fixed set of
candidates.

Using better similarity measures that capture
semantics could further improve results and is a
promising direction for further research.

Finally, our approach can be applied to any prob-
abilistic language model, without any need for ad-
ditional training. This opens up many other tasks,
including summarisation, dialogue systems, and
question answering. If multiple outputs can be used
(e.g. offering options to a user), our method can be
extended to use reweighted range voting (Smith,
2005), a procedure that elects multiple candidates.

Acknowledgements

We would like to thank Kris Cao for discus-
sions about distributions over sequences, which
prompted the initial idea for this project. We would
like to thank Dr. Robert Harle and Prof. Ann Copes-
take for making this project possible, and for pro-
viding some early feedback. We would like to thank
Andreas Vlachos, Guy Aglionby, James Thorne,
Chris Davis, and the NLIP reading group in Cam-
bridge, for feedback on earlier drafts of this paper.
Finally, we would like to thank Chris Dyer for his
insightful comments and suggestions.

References

Palakorn Achananuparp, Xiaohua Hu, and Xiajiong
Shen. 2008. The evaluation of sentence similarity
measures. In Proceedings of the 10th International
Conference on Data Warehousing and Knowledge
Discovery, pages 305–316. Springer.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python: An-
alyzing Text with the Natural Language Toolkit.
O’Reilly Media Inc.

Frédéric Blain, Lucia Specia, and Pranava Madhyastha.
2017. Exploring hypotheses spaces in neural ma-
chine translation. In Proceedings of the 16th
Machine Translation Summit (MT Summit XVI).
Asia-Pacific Association for Machine Translation
(AAMT).

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, et al. 2014. Findings of the 2014
Workshop on Statistical Machine Translation. In
Proceedings of the Ninth Workshop on Statistical
Machine Translation, pages 12–58.

105

Peter F Brown, John Cocke, Stephen A Della Pietra,
Vincent J Della Pietra, Frederick Jelinek, Jennifer C
Lai, and Robert L Mercer. 1995. Method and sys-
tem for natural language translation. US Patent
5,477,451.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluation the role of BLEU in
machine translation research. In Proceedings of the
11th Conference of the European Chapter of the As-
sociation for Computational Linguistics (EACL).

Kris Cao and Stephen Clark. 2017. Latent variable dia-
logue models and their diversity. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL).

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

Yining Chen, Sorcha Gilroy, Kevin Knight, and
Jonathan May. 2018. Recurrent neural networks as
weighted language recognizers. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 2261–2271.

Eldan Cohen and Christopher Beck. 2019. Empirical
analysis of beam search performance degradation in
neural sequence models. In Proceedings of the 36th
International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 1290–1299. PMLR.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2017.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 484–495. Association for Computational Lin-
guistics.

Bryan Eikema and Wilker Aziz. 2020. Is MAP decod-
ing all you need? the inadequacy of the mode in neu-
ral machine translation. Unpublished manuscript,
arXiv preprint 2005.10283v1.

John D Emerson and Gary A Simon. 1979. Another
look at the sign test when ties are present: The prob-
lem of confidence intervals. The American Statisti-
cian, 33(3):140–142.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898. Association for Computational Lin-
guistics.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 56–60.

Markus Freitag, Isaac Caswell, and Scott Roy. 2019.
APE at scale and its implications on MT evaluation
biases. In Proceedings of the Fourth Conference on
Machine Translation (Volume 1: Research Papers),
pages 34–44.

Markus Freitag, David Grangier, and Isaac Caswell.
2020. BLEU might be guilty but references are not
innocent. Unpublished manuscript, arXiv preprint
2004.06063v1.

Albert Gottlieb Heckscher. 1892. Bidrag til
grundlæggelse af en afstemningslære. Om method-
erne ved udfindelse af stemmerflerhed i parlamenter
(afsteming over ændringforslag m.v.) ved valg og
domstole. Ph.D. thesis, University of Copenhagen.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Maria Holmqvist, Sara Stymne, Jody Foo, and Lars
Ahrenberg. 2009. Improving alignment for smt by
reordering and augmenting the training corpus. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 120–124. Association
for Computational Linguistics.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. In Proceedings of the 8th International Con-
ference on Learning Representations (ICLR).

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine
Learning Research, pages 448–456.

Philipp Koehn. 2004a. Pharaoh: a beam search de-
coder for phrase-based statistical machine transla-
tion models. In Conference of the Association for
Machine Translation in the Americas, pages 115–
124. Springer.

Philipp Koehn. 2004b. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 conference on empirical methods in natural
language processing (EMNLP), pages 388–395.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In First Work-
shop on Neural Machine Translation, pages 28–39.
Association for Computational Linguistics.

Wouter Kool, Herke Van Hoof, and Max Welling.
2019. Stochastic beams and where to find them:
The Gumbel-top-k trick for sampling sequences
without replacement. In Proceedings of the Inter-
national Conference on Machine Learning, pages
3499–3508.

106

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-Risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 169–176.

Ludmila I. Kuncheva. 2004. Combining Pattern Classi-
fiers: Methods and Algorithms. John Wiley & Sons.

Ludmila I. Kuncheva and Juan J Rodrı́guez. 2014.
A weighted voting framework for classifiers en-
sembles. Knowledge and Information Systems,
38(2):259–275.

David Kurokawa, Cyril Goutte, and Pierre Isabelle.
2009. Automatic detection of translated text and
its impact on machine translation. In Proceedings
of the 12th Machine Translation Summit (MT Sum-
mit XII). Association for Machine Translation in the
Americas.

Eerik Lagerspetz. 2016. Social Choice and Demo-
cratic Values. Springer.

Gennadi Lembersky, Noam Ordan, and Shuly Wint-
ner. 2012. Language models for machine translation:
Original vs. translated texts. Computational Linguis-
tics, 38(4):799–825.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 110–119.

Jiwei Li and Dan Jurafsky. 2016. Mutual informa-
tion and diverse decoding improve neural machine
translation. Unpublished manuscript, arXiv preprint
1601.00372v2.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. A
simple, fast diverse decoding algorithm for neural
generation. Unpublished manuscript, arXiv preprint
1611.08562v2.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft COCO:
Common objects in context. In European Confer-
ence on Computer Vision, pages 740–755. Springer.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. In Proceedings
of the 35th International Conference on Machine
Learning (ICML).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Atish Pawar and Vijay Mago. 2019. Challenging the
boundaries of unsupervised learning for semantic
similarity. IEEE Access, 7.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Hiroaki Shimizu, Masao Utiyama, Eiichiro Sumita,
and Satoshi Nakamura. 2012. Minimum Bayes-Risk
decoding extended with similar examples: NAIST-
NICT at IWSLT 2012. In International Workshop
on Spoken Language Translation (IWSLT) 2012.

Warren D. Smith. 2000. Range voting. Unpublished
manuscript.

Warren D. Smith. 2005. Reweighted range voting
– new multiwinner voting method. Unpublished
manuscript.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3347–
3353.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826.
Institute of Electrical and Electronics Engineers.

Nicolaus Tideman. 1987. Independence of clones as a
criterion for voting rules. Social Choice and Welfare,
4(3):185–206.

Nicolaus Tideman. 2006. Collective Decisions and Vot-
ing: The Potential for Public Choice. Routledge.

Roy Tromble, Shankar Kumar, Franz Och, and Wolf-
gang Macherey. 2008. Lattice Minimum Bayes-
Risk decoding for statistical machine translation. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages
620–629. Association for Computational Linguis-
tics.

107

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2017. Neural machine translation with
reconstruction. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan Gomez, Stephan Gouws, Llion
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Par-
mar, Ryan Sepassi, Noam Shazeer, and Jakob Uszko-
reit. 2018. Tensor2Tensor for neural machine trans-
lation. In Proceedings of the 13th Conference of the
Association for Machine Translation in the Americas
(Volume 1: Research Papers), pages 193–199.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3156–3164. Institute of
Electrical and Electronics Engineers.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2017. Show and tell: Lessons
learned from the 2015 MSCOCO image captioning
challenge. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(4):652–663.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Klingner Jeff, Shah Apurva, Johnson
Melvin, Liu Xiaobing, Kaiser Łukasz, Gouws
Stephan, Kato Yoshikiyo, Kudo Taku, Kazawa
Hideto, Stevens Keith, Kurian George, Patil Nishant,
Wang Wei, Young Cliff, Smith Jason, Riesa Jason,
Rudnick Alex, Vinyals Oriol, Corrado Greg, Hughes
Macduff, and Dean Jeffrey. 2016. Google’s neural
machine translation system: Bridging the gap be-
tween human and machine translation. Unpublished
manuscript, arXiv preprint 1609.08144v2.

Xinnuo Xu, Ondřej Dušek, Ioannis Konstas, and Ver-
ena Rieser. 2018. Better conversations by modeling,
filtering, and optimizing for coherence and diversity.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3981–3991.

Zhen Xu, Bingquan Liu, Baoxun Wang, SUN Chengjie,
Xiaolong Wang, Zhuoran Wang, and Chao Qi. 2017.
Neural response generation via GAN with an ap-
proximate embedding layer. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 617–626.

108

A Translation length and diversity

Average translation length
Beam size k 1 2 4 10 30 100
Beam search 19.74 19.53 19.42 19.15 18.88 17.99
Length norm. 19.74 19.86 20.02 20.19 20.36 21.09
Diverse decoding 19.74 19.57 19.38 19.19 19.08 18.69
Diverse beam search 19.74 19.33 19.13 18.60 17.93 16.68
Beam search (no copy) 19.66 19.50 19.39 19.09 18.73 17.59
overlap1 19.66 19.79 19.86 19.93 20.03 19.96
precision1 19.66 19.79 19.86 19.93 20.03 19.96
overlap2 19.66 19.69 19.70 19.67 19.61 19.39
precision2 19.66 19.95 19.98 20.09 20.21 20.36
transformer states 19.66 19.50 19.48 19.31 19.12 18.27
bleu4 (MBR) 19.66 19.50 19.46 19.28 19.06 18.18
smoothed bleu4 (MBR) 19.66 19.50 19.46 19.28 19.06 18.30

Table 5: Average length of the generated translations on the newstest2014 dataset. The reference translations
contain on average 21.66 words, more than for any of the above generation methods.

Number of distinct bigrams
Beam size k 1 2 4 10 30 100
Beam search 38629 39029 39205 38894 38424 37135
Length normalisation 38629 39445 39971 40263 40638 41195
Diverse decoding 38629 39307 39217 38989 38870 38227
Diverse beam search 38629 38661 38611 37740 36575 34266
Beam search (no copy) 38473 38956 39073 38593 37694 35609
overlap1 38473 39353 39743 39775 39636 39334
precision1 38473 39354 39739 39772 39634 39334
overlap2 38473 39221 39528 39396 39015 38526
precision2 38473 39617 39955 40195 40170 40426
transformer states 38473 38956 39223 38930 38277 36787
bleu4 (MBR) 38473 38957 39157 38792 38166 36564
smoothed bleu4 (MBR) 38473 38961 39169 38799 38166 36645

Table 6: Number of distinct bigrams in the generated translations for the newstest2014 dataset. The reference
translations consist of 39,533 unique bigrams.

109

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 110–118
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Distill, Adapt, Distill:
Training Small, In-Domain Models for Neural Machine Translation

Mitchell A. Gordon
Johns Hopkins University
mitchg@jhu.edu

Kevin Duh
Johns Hopkins University
kevinduh@cs.jhu.edu

Abstract
We explore best practices for training small,
memory efficient machine translation models
with sequence-level knowledge distillation in
the domain adaptation setting. While both
domain adaptation and knowledge distillation
are widely-used, their interaction remains lit-
tle understood. Our large-scale empirical re-
sults in machine translation (on three language
pairs with three domains each) suggest dis-
tilling twice for best performance: once us-
ing general-domain data and again using in-
domain data with an adapted teacher. The code
for these experiments can be found here.1

1 Introduction

Machine translation systems rely on large amounts
of data to deduce the rules underlying translation
from one language to another. This presents chal-
lenges in some important niche domains, such as
patent and medical literature translation, due to
the high cost of hiring experts to generate suitable
training data. A cost-effective alternative is do-
main adaptation, which leverages large amounts
of parallel documents from less difficult and more
readily-available domains, such as movie subtitles
and news articles.

Domain adaptation works well in practice. How-
ever, these large datasets, which we call general
domain datasets, introduce some scalability prob-
lems. Large datasets require large models; neu-
ral machine translation systems can take days or
weeks to train. Some models require gigabytes of
disk space, making deployment to edge computing
devices challenging. They can also require exces-
sive compute during inference, making them slow
and costly to scale up in production environments
(Gordon, 2019).

To alleviate these issues, knowledge distillation
(aka Teacher-Student) (Hinton et al., 2015) is used

1https://git.io/Jf2t8

to compress models into a manageable form. But
although knowledge distillation is the most com-
monly used form of model compression in practice,
it is also one of the least understood.

In this work, we perform a large-scale em-
pirical analysis to attempt to discover best prac-
tices when using knowledge distillation in com-
bination with domain adaptation. Out of several
common-sense configurations, we find that two
stages of knowledge distillation give the best per-
formance: one using general-domain data and an-
other using in-domain data with an adapted teacher.
We perform experiments on multiple language
pairs (Russian-English, German-English, Chinese-
English), domains (patents, subtitles, news, TED
talks), and student sizes.

2 Background

Domain Adaptation helps overcome a lack of
quality training data in niche domains by lever-
aging large amounts of data in a more accessible
general-domain. Domain adaptation is usually ac-
complished by continued training (Luong and Man-
ning, 2015; Zoph et al., 2016), which involves two
steps:

1. A model is randomly initialized and trained
until convergence on the general-domain data.

2. A new model is initialized with the parame-
ters resulting from Step 1 and trained until
convergence on the in-domain dataset.

We can consider domain adaptation as extracting
a useful inductive-bias from the general-domain
dataset, which is encoded and passed along to the
in-domain model as a favorable weight initializa-
tion. While there are other methods of extracting
inductive bias from general-domain datasets (in-
cluding mixed fine-tuning (Chu et al., 2017) and

110

https://www.aclweb.org/anthology/D19-56%2d

GD
Teacher

GD Baseline

GD Student

Baseline
Teacher

Adapted
Teacher

1 2 3

4 5 6

7 8 9

In-Domain

Figure 1: There are 9 possible configurations for training small, in-domain models with knowledge distillation
and domain adaptation. Models trained on general-domain data are shown on the left, and in-domain models are
shown on the right. Solid arrows represent domain adaptation via continued training. Dashed arrows represent
improved optimization via sequence-level knowledge distillation. Configuration 1 is the model which is trained on
in-domain data with random initializations and without the assistance of a teacher.

cost weighting (Chen et al., 2017)), continued train-
ing is most common and the focus of this paper.

Knowledge Distillation is a method for improv-
ing the performance of under-parameterized “Stu-
dent” models by exploiting the probability distribu-
tion of a more computationally complex “Teacher”
network. Kim and Rush (2016) presented an exten-
sion of knowledge distillation to machine transla-
tion in two flavors: word-level and sequence-level
knowledge distillation.

Sequence-level knowledge distillation, which is
more general, involves three steps:

1. A large Teacher network is randomly initial-
ized and trained until convergence on the data.

2. The source-side of the training data is decoded
using the Teacher to produce “distilled” target
data.

3. A smaller Student model is randomly initial-
ized and trained until convergence on the dis-
tilled source-target pairs (discarding the origi-
nal target sequences in the data).

The goal of knowledge distillation is to train the
student model to mimic the teacher’s probability
distribution over translations. Since the teacher and
the student are trained on the same dataset, they
should be capable of learning the same distribution
in theory. In practice, however, pre-processing the
training data with the teacher improves student test
performance.2 Explanations for this phenomenon

2Interestingly, this can be true even when the student has

include dark knowledge (Furlanello et al., 2018),
mode reduction (Zhou et al., 2019), and regulariza-
tion (Gordon and Duh, 2019; Dong et al., 2019),
but no definitive evidence has been given.

Sequence-level knowledge distillation is widely
used in both industry (Xia et al., 2019) and research
and is the second focus of this paper. 3

3 Distilling and Adapting

How domain adaptation and knowledge distilla-
tion would interact when applied in combination
was not previously clear. Specifically, our research
questions are:

• Is a distilled model easier or harder to adapt
to new domains?

• Should knowledge distillation be used on in-
domain data? If so, how should the teacher be
trained?

To answer these questions, we performed ex-
periments on 9 possible configurations which are
assigned configuration numbers in Figure 1. For
ease of reference, we will primarily refer to small,
in-domain models by their configuration number
and encourage readers to consult Figure 1. Each
configuration has two attributes of interest.

the same computational resources as the teacher (Furlanello
et al., 2018)

3Sequence-level knowledge distillation is also commonly
used to train non-autoregressive machine translation models
(Zhou et al., 2019).

111

Distilling In-Domain Data How is in-domain
data pre-processed using knowledge distillation?
Some models are trained with no pre-processing
(configurations 1, 4, and 7), while others use a
teacher to pre-process the in-domain training data.
This teacher might be a baseline trained on in-
domain data only (configurations 2, 5, and 8) or
it can be trained on general-domain data and then
adapted to in-domain via continued training (con-
figurations 3, 6, and 9).

Initialization How are models initialized? A
model might be randomly initialized (configura-
tions 1, 2, and 3), or it might be adapted from
a model trained on general-domain data. This
general-domain model might be a baseline trained
directly on the general-domain data (configurations
4, 5, and 6) or it might be a student model trained
on the output of a general-domain teacher (config-
urations 7, 8, 9).

4 Experiments

4.1 Data

General-Domain Data We train models in mul-
tiple settings: 3 language pairs (German-English,
Russian-English, and Chinese-English) each with
1 general-domain dataset and 2 different in-domain
datasets. The general-domain datasets for each
language are a concatenation of data from Open-
Subtitles2018 (Tiedemann, 2016; Lison and Tiede-
mann, 2016) (which contains translated movie sub-
titles) and the WMT 2017 datasets (Ondrej et al.,
2017) (which includes a variety of sources, includ-
ing news commentary, parliamentary proceedings,
and web-crawled data).

In-Domain Data We use the World International
Property Organization (WIPO) COPPA-V2 dataset
(Junczys-Dowmunt et al., 2018) and the TED Talks
dataset (Duh, 2019a) as our two in-domain datasets.
The WIPO data contains parallel sentences from
international patent abstracts, while the TED Talks
dataset consists of translated transcripts of public
speeches.

Data Statistics The size of each training dataset
is presented in Table 1. General-domain datasets
contain tens of millions of sentences, while in-
domain datasets contain much less. German-
English WIPO has an exceptional amount of train-
ing data (4.5 times more than the next biggest in-
domain dataset) and helps qualify how our results

Language General-Domain WIPO TED
De-En 28.3 M 821 k 152 k
Ru-En 51.1 M 29 k 180 k
Zh-En 35.9 M 154 k 169 k

Table 1: The number of training sentences in each
dataset.

might change when more in-domain data is avail-
able.

Pre-processing All datasets are tokenized using
the Moses4 tokenizer. A BPE vocabulary (Sen-
nrich et al., 2016) of 30,000 tokens is constructed
for each language using the training set of the
general-domain data. This BPE vocabulary is
then applied to both in-domain and general-domain
datasets. This mimics the typical scenario of a sin-
gle, general-domain model being trained and then
adapted to new domains as they are encountered.
Note that re-training BPE on in-domain data to
produce a different vocabulary would force us to
re-build the model, making adaptation impossible.

Evaluation The general-domain development
set for each language contains newstest2016 con-
catenated with the last 2500 lines of OpenSubti-
tles2018. We reserve 3000 lines of WIPO to use as
the in-domain development set. TED talks develop-
ment sets are provided by the authors and contain
around 2000 lines each. Evaluations of each model
are performed by decoding the appropriate devel-
opment set with a beam-search size of 10 and com-
paring to the reference using multi-bleu.perl from
the Moses toolkit. The tokenization used during
multi-bleu.perl evaluation is the same as the one
provided in (Duh, 2019a).

4.2 Architectures and Training

A list of architecture sizes is provided in Table
2. Teachers are trained using the Large hyper-
parameter settings, while we experiment with
Medium, Small, and Tiny students for each config-
uration and language/domain setting.

All models are Transformers (Vaswani et al.,
2017). We use the same hyper-parameters (which
are based on a template from (Duh, 2019b)5) for
every model, except those that affect the size of
the model (Table 2). Models are trained either
for 300,000 updates, 100 epochs, or until the

4statmt.org/moses
5https://git.io/JvL85

112

Size Layers FF Size Hidden Size
Large 12 2048 512
Medium 6 2048 512
Small 6 1024 256
Tiny 2 1024 256

Table 2: Hyper-parameters of various model sizes used
in this work. For example, the Large Transformer
model architecture uses 6 encoder and 6 decoder layers,
a feed-forward hidden dimension of 2048 at each layer,
and a word-embedding / hidden dimension of 512.

model does not improve for 10 checkpoints (early-
stopping), whichever comes first.

Continued Training Work by (Gordon and Duh,
2019) suggests that students may benefit from train-
ing on some combination of the distilled and un-
distilled reference dataset. We experimented with
this by continuing to train each in-domain student
model on the original, un-distilled dataset, using
similar stopping criterion to the first round of train-
ing. This improved some models by up to 1 BLEU.
Because of this, we recommend that any distilled
model continue training on the original dataset as
long as development accuracy improves. When
continued training improves performance of a stu-
dent, we show that score instead of the score with-
out continued training.

5 Recommendations

5.1 Adapt Teachers
In this section, we compare training in-domain
models with no teacher (config 1), a teacher trained
on in-domain data only (config 2), and a teacher
adapted from the general domain (config 3). The
performance of the two teachers in each language-
pair and domain is listed in Table 3. It shows that
adaptation greatly improves the performance of
every in-domain teacher except German-English
WIPO.6

Table 4 shows the results of using these teach-
ers to distill the in-domain data before training
student models in various settings. We see that
in almost every case, using an adapted teacher
gives the best or close to the best results. This is
somewhat expected since models with better devel-
opment scores tend to make better teachers (Zhang

6German WIPO is also the largest in-domain dataset we
test, which might make adaptation unnecessary. Another ex-
planation might be that the German-English general-domain is
not similar enough to the patent domain in this case to improve
performance.

Domain Size Init de-en ru-en zh-en
ted Lrg Rand 29.25 19.38 14.79

GD Lrg 37.64 26.57 20.45
wipo Lrg Rand 48.31 21.36 31.02

GD Lrg 48.56 37.08 36.80

Table 3: BLEU development score of in-domain teach-
ers when either randomly initialized or initialized from
the weights of a large model trained on general-domain
data. Adaptation drastically improves performance on
every language pair and domain, except de-en WIPO.

et al., 2018). Although knowledge distillation is
typically seen as “simplifying” data for students,
in this case we suspect that the adapted teacher’s
knowledge about the general-domain is making its
way to students via the distilled in-domain data.

5.2 Adapt the Best Student

We also train small models directly on the general-
domain data and adapt them to in-domain data.
The possible configurations are random initializa-
tion (config 1), initializing from a baseline model
trained on general-domain data (config 4), or initial-
izing from a student model distilled from a general-
domain teacher (config 7). Table 5 shows the per-
formance of the models trained on the general-
domain datasets, and Table 6 shows their perfor-
mance after being fine-tuned on in-domain data.

Training small models directly on the general-
domain data and then fine-tuning on in-domain data
gives much more substantial gains (5-10 BLEU)
than providing indirect access to the general-
domain data through an adapted teacher (config 3).
We believe this is because a large amount of data
is required to fully reveal the teacher’s probabil-
ity distribution over translations (Fang et al., 2019).
While an adapted teacher might contain much infor-
mation from the general-domain, it is unable to ex-
press that knowledge to students just by translating
the smaller in-domain dataset. To get the full ben-
efit of general-domain data, the small models
must be directly pre-trained on general-domain
data.7 Indirect access to the general-domain data
through a general-domain teacher is insufficient.

We also observe that Medium-sized models are
not small enough to benefit from knowledge distil-
lation in the general-domain, and so their general-
domain scores do not improve with distillation.

7A reasonable alternative to this might include data-free
KD (Yin et al., 2019), which explores the teacher’s probability
distribution without any dependence on data.

113

Domain Size Cfg # de-en ru-en zh-en
1 27.73 19.34 15.17

ted med 2 29.11 20.31 15.71
3 29.54 20.56 15.90
1 27.89 18.42 14.87

small 2 28.93 19.65 14.95
3 29.52 19.88 15.79
1 25.78 17.48 13.03

tiny 2 27.20 17.87 13.39
3 27.58 19.27 13.74
1 48.89 24.45 30.13

wipo med 2 50.66 24.62 32.13
3 50.23 24.60 33.16
1 47.94 21.91 30.66

small 2 49.46 23.70 32.19
3 49.72 23.50 32.61
1 44.15 21.39 27.67

tiny 2 48.03 22.24 28.18
3 48.51 22.03 29.88

Table 4: BLEU development scores for in-domain stu-
dents with no teacher (config 1), an in-domain only
teacher (config 2), or an adapted teacher continued
from the general-domain (config 3). In almost every
case, using an adapted teacher gives the best or close to
the best results.

These distilled Medium-sized models (config 7)
also tend to do slightly worse than their baseline
counter-parts (config 4) on in-domain data. In-
deed, Figure 2 shows that in-domain performance
is roughly linearly related to general-domain perfor-
mance regardless of whether distillation is applied
before adaptation.

This implies that distillation does not interfere
with the adaptability of a model, so the model
with the best general-domain performance should
be adapted, regardless of whether distillation was
applied. Adapting a distilled model can improve
performance slightly over adapting the baseline
model without distillation.

5.3 Distill, Adapt, Distill

Finally, we test whether these two ways of improv-
ing small, in-domain models are orthogonal. We
might hypothesize that training small models di-
rectly on general-domain data eliminates the need
to adapt teachers or use an in-domain teacher at all.
To test this, we also train adapted student models
using a baseline teacher (config 8) and an adapted
teacher (config 9).

Table 7 shows that distilling a second time us-

Model de-en ru-en zh-en
Teacher 41.08 32.25 47.17
Medium Baseline 39.86 30.81 45.40
Medium Student 39.40 30.65 45.11
Small Baseline 36.78 27.54 42.09
Small Student 38.51 28.88 42.73
Tiny Baseline 31.27 23.63 34.71
Tiny Student 34.58 25.86 36.09

Table 5: General-domain models, teachers and students.
While knowledge distillation improves small and tiny
models, it appears medium-sized models are not under-
parameterized enough for knowledge distillation to im-
prove performance.

Domain Size Cfg # de-en ru-en zh-en
1 27.73 19.34 15.17

ted med 4 36.94 25.82 20.13
7 35.93 25.43 20.18
1 27.89 18.42 14.87

small 4 34.78 24.10 18.84
7 35.33 24.30 19.32
1 25.78 17.48 13.03

tiny 4 31.52 21.30 16.51
7 32.30 21.65 17.06
1 48.89 24.45 30.13

wipo med 4 48.58 35.98 35.33
7 48.53 35.55 35.27
1 47.94 21.91 30.66

small 4 48.13 35.30 34.90
7 48.31 35.18 34.52
1 44.15 21.39 27.67

tiny 4 46.06 31.13 28.45
7 46.54 31.74 29.07

Table 6: In-domain models that are initialized ran-
domly (config 1), initialized from a baseline trained on
general-domain data directly (config 4), or initialized
from a general-domain student trained using a general-
domain teacher (config 7).

114

Figure 2: The BLEU of general-domain models vs. their corresponding in-domain scores when adapted to a
different domain. We see that in-domain performance is roughly linearly related to general-domain performance
regardless of whether distillation is applied before adaptation.

Domain Size Cfg # de-en ru-en zh-en
7 35.93 25.43 20.18

ted med 8 35.23 25.18 19.96
9 36.65 25.91 20.13
7 35.33 24.30 19.32

small 8 35.11 23.97 19.17
9 35.57 24.95 19.48
7 32.30 21.65 17.06

tiny 8 32.21 21.45 16.72
9 33.12 22.49 17.54
7 48.53 35.55 35.27

wipo med 8 49.07 34.71 35.09
9 49.82 35.83 36.48
7 48.31 35.18 34.52

small 8 48.79 34.27 34.89
9 48.35 35.10 35.55
7 46.54 31.74 29.07

tiny 8 49.90 31.12 30.05
9 49.70 31.75 31.82

Table 7: In-domain models which are initialized from a
general-domain student and trained on in-domain data
which is pre-processed either with no teacher (config
7), an in-domain only teacher (config 8), or an adapted
teacher continued from general-domain data (config 9).

ing in-domain data with an adapted teacher can
further boost performance of an already dis-
tilled model, while using a teacher trained only on
in-domain data can sometimes hurt performance.

These results lead us to a general recipe for train-
ing small, in-domain models using knowledge dis-
tillation and domain adaptation in combination:

1. Distill general-domain data to improve
general-domain student performance.

2. Adapt the best model from Step 1 to in-
domain data.
(2-10 BLEU better than no adaptation)

3. Adapt the teacher and distill again in-domain.
(0-2 BLEU better than no or non-adapted
teacher)

Following this procedure will result in either
configuration 6 or 9 as described in Figure 1. And
indeed, configuration 9 performs the best or near
best (within 0.1 BLEU) in almost every case, as
shown in Table 9. For those Medium sized mod-
els which were not improved by distillation in the
general-domain, configuration 6 performs the best.

Models trained on German-English WIPO are
an exception, with adaptation from the general-
domain not improving performance. This is in line

115

Domain Size Cfg # de-en ru-en zh-en
med 6 36.80 26.26 20.13

ted small 6 35.50 24.68 19.31
tiny 6 32.09 22.20 17.25
med 6 48.31 35.82 36.58

wipo small 6 49.04 35.30 35.40
tiny 6 48.02 31.57 30.53

Table 8: Development scores for models initialized
from a model trained on general-domain data. The in-
domain data is pre-processed with a teacher adapted
from the general-domain (config 6).

Domain Size de-en ru-en zh-en
med 4/6 6 4/6/7/9

ted small 6/9 9 9
tiny 9 9 9
med 2 4/6/9 6

wipo small 3 4/6 9
tiny 8 7/9 9

Table 9: Best configurations for each setting. Scores
within 0.1 BLEU of the best are also listed. Configu-
ration 9 generally performs best, while configuration 6
is best for those medium-sized models which were not
improved by distillation in the general-domain.

with the results from Table 3 which shows adapta-
tion does not improve teachers, either. We suspect
this is because the German-English WIPO dataset
is the biggest out of any in-domain dataset, making
adaptation unnecessary. Future work might also
benefit from a quantification of domain similarity
between datasets (Britz et al., 2017), which would
guide the use of domain adaptation in cases like
these.

5.4 Training Times
The models trained in this work collectively re-
quired 10 months of single-GPU compute time. Ta-
ble 10 breaks this down by model size and dataset.

While distilling twice might give the best perfor-
mance, it also increases the amount of computation
time required. Rather than training a single in-
domain model, configuration 9 requires training a
general-domain teacher, a general-domain student,
and then adapting both. This can increase compute
required to train models by 2-4x.

A huge portion of computation was also spent on
decoding the general-domain data using a teacher
model for sequence-level knowledge distillation,
which could take up to 24 days of GPU time (using
a beam size of 10 and a batch size of 10). This

Model Gen-Domain In-Domain Adapting
Large 2-4 days 2-4 days 7-48 hrs
Med 2-4 days 2-4 days 1-48 hrs
Small 1-2 days 1-2 days 2-14 hrs
Tiny 1 days 1-24 hrs 2-24 hrs
Distill 10-24 days 1-2 days

Table 10: Estimates of the computation time required
for training randomly initialized models on just general-
domain data or just in-domain data. We also show the
time required for adapting general-domain models and
distilling data using teachers.

can be arbitrarily sped up using multiple GPUs
in parallel, but future work might explore how to
distill teachers in a less expensive way.

6 Related Work

Our work is one the few that focuses specifically
on training small, under-parameterized in-domain
models. There is, however, similar work which is
not directly comparable but uses knowledge distil-
lation to adapt to new domains.

Knowledge Adaptation uses knowledge distil-
lation to transfer knowledge from multiple, labeled
source domains to un-labeled target domains. This
is in contrast to our setting, which has labels for
both general-domain and in-domain data. Ruder
et al. (2017) introduced this idea as “Knowledge
Adaptation,” using multi-layer perceptrons to pro-
vide sentiment analysis labels for unlabeled in-
domain data. Similar work includes Iterative Dual
Domain Adaptation (Zeng et al., 2019) and Do-
main Transformation Networks (Wang et al., 2019).
These ideas are not limited to machine translation;
recent work by Meng et al. (2020) trains in-domain
speech recognition systems with knowledge dis-
tillation, while Orbes-Arteaga et al. (2019) does
similar work on segmentation of magnetic reso-
nance imaging scans.

Compressing Pre-trained Language Models
Domain adaptation via continued training in NMT
is closely related to the idea of pre-training a lan-
guage model and fine-tuning to different tasks,
which might come from different data distributions
than the pre-training data. Because language mod-
els tend to be extremely cumbersome to train and
evaluate, more focus is given to the compression
aspect of knowledge distillation. Sanh et al. (2019),
Sun et al. (2019), and Liu et al. (2019) indepen-
dently showed that knowledge distillation could

116

be used to compress pre-trained models without
affecting downstream tasks. Tang et al. (2019)
showed that task-specific information could be dis-
tilled from a large Transformer into a much smaller
Bi-directional RNN. These methods might reason-
ably be extended to domain adaptation for NMT.

7 Conclusion

In this work, we conducted a large-scale empiri-
cal investigation to determine best practices when
using sequence-level knowledge distillation and
domain adaptation in combination. We found
that adapting models from the general-domain
makes them better teachers and that distilling us-
ing general-domain data does not impact a model’s
adaptability. This leads us to recommend distilling
twice for best results: once in the general-domain
to possibly improve student performance, and again
using an adapted in-domain teacher. The results
are robust among multiple language pairs, student
sizes, in-domain settings.

References
Denny Britz, Quoc Le, and Reid Pryzant. 2017. Ef-

fective domain mixing for neural machine transla-
tion. In Proceedings of the Second Conference on
Machine Translation, pages 118–126.

Boxing Chen, Colin Cherry, George Foster, and
Samuel Larkin. 2017. Cost weighting for neural ma-
chine translation domain adaptation. In Proceedings
of the First Workshop on Neural Machine Transla-
tion, pages 40–46, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of domain adaptation
methods for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 385–391, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Bin Dong, Jikai Hou, Yiping Lu, and Zhihua Zhang.
2019. Distillation ≈ early stopping? harvesting
dark knowledge utilizing anisotropic information re-
trieval for overparameterized neural network.

Kevin Duh. 2019a. The multitarget TED talks
task (MTTT). http://www.cs.jhu.edu/

˜kevinduh/a/multitarget-tedtalks/.

Kevin Duh. 2019b. sockeye-recipes.

Gongfan Fang, Jie Song, Chengchao Shen, Xinchao
Wang, Da Chen, and Mingli Song. 2019. Data-Free
adversarial distillation.

Tommaso Furlanello, Zachary C Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
2018. Born again neural networks.

Mitchell A. Gordon. 2019. All the ways you can com-
press bert.

Mitchell A Gordon and Kevin Duh. 2019. Explain-
ing Sequence-Level knowledge distillation as Data-
Augmentation for neural machine translation.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Marcin Junczys-Dowmunt, Bruno Pouliquen, and
Christophe Mazenc. 2018. COPPA v2. 0: Corpus
of parallel patent applications building large parallel
corpora with GNU make.

Yoon Kim and Alexander M Rush. 2016. Sequence-
Level knowledge distillation.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from
movie and tv subtitles.

Linqing Liu, Huan Wang, Jimmy Lin, Richard Socher,
and Caiming Xiong. 2019. Attentive student meets
Multi-Task teacher: Improved knowledge distilla-
tion for pretrained models.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion, pages 76–79.

Zhong Meng, Jinyu Li, Yashesh Gaur, and Yifan Gong.
2020. Domain adaptation via Teacher-Student learn-
ing for End-to-End speech recognition.

Bojar Ondrej, Rajen Chatterjee, Federmann Christian,
Graham Yvette, Haddow Barry, Huck Matthias,
Koehn Philipp, Liu Qun, Logacheva Varvara, Monz
Christof, and Others. 2017. Findings of the 2017
conference on machine translation (wmt17). In Sec-
ond Conference onMachine Translation, pages 169–
214.

Mauricio Orbes-Arteaga, Jorge Cardoso, Lauge
Sørensen, Christian Igel, Sebastien Ourselin, Marc
Modat, Mads Nielsen, and Akshay Pai. 2019.
Knowledge distillation for semi-supervised domain
adaptation.

Sebastian Ruder, Parsa Ghaffari, and John G Breslin.
2017. Knowledge adaptation: Teaching to adapt.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,

117

Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4314–4323, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling Task-
Specific knowledge from BERT into simple neural
networks.

Jörg Tiedemann. 2016. Finding alternative translations
in a large corpus of movie subtitle. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3518–
3522.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Yong Wang, Longyue Wang, Shuming Shi, Victor O K
Li, and Zhaopeng Tu. 2019. Go from the general
to the particular: Multi-Domain translation with do-
main transformation networks.

Yingce Xia, Xu Tan, Fei Tian, Fei Gao, Weicong Chen,
Yang Fan, Linyuan Gong, Yichong Leng, Renqian
Luo, Yiren Wang, and Others. 2019. Microsoft re-
search asia’s systems for WMT19. In Proceedings
of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pages 424–
433.

Hongxu Yin, Pavlo Molchanov, Zhizhong Li, Jose M
Alvarez, Arun Mallya, Derek Hoiem, Niraj K Jha,
and Jan Kautz. 2019. Dreaming to distill: Data-free
knowledge transfer via DeepInversion.

Jiali Zeng, Yang Liu, Jinsong Su, Yubin Ge, Yaojie Lu,
Yongjing Yin, and Jiebo Luo. 2019. Iterative dual
domain adaptation for neural machine translation.

Dakun Zhang, Josep Crego, and Jean Senellart. 2018.
Analyzing knowledge distillation in neural machine
translation. In 2018 International Workshop on Spo-
ken Language Translation, IWSLT 2005, Pittsburgh,
PA, USA, October 24-25, 2005, pages 68–75.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2019. Understanding knowledge distillation in non-
autoregressive machine translation.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for Low-Resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1568–1575, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

118

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 119–128
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Training and Inference Methods for High-Coverage Neural Machine
Translation

Michael Yang Yixin Liu

Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, U.S.A.
{myang2,yixinl2,rmayuran}@cs.cmu.edu

Rahul Mayuranath

Abstract

In this paper, we introduce a system built
for the Duolingo Simultaneous Translation
And Paraphrase for Language Education (STA-
PLE) shared task at the 4th Workshop on
Neural Generation and Translation (WNGT
2020). We participated in the English-to-
Japanese track with a Transformer model pre-
trained on the JParaCrawl corpus and fine-
tuned in two steps on the JESC corpus and then
the (smaller) Duolingo training corpus. First,
during training, we find it is essential to de-
liberately expose the model to higher-quality
translations more often during training for op-
timal translation performance. For inference,
encouraging a small amount of diversity with
Diverse Beam Search to improve translation
coverage yielded marginal improvement over
regular Beam Search. Finally, using an auxil-
iary filtering model to filter out unlikely can-
didates from Beam Search improves perfor-
mance further. We achieve a weighted F1
score of 27.56% on our own test set, outper-
forming the STAPLE AWS translations base-
line score of 4.31%.

1 Introduction

Currently, state of the art machine translation sys-
tems generally produce a single output translation.
However, human evaluators of translation tasks will
often accept multiple translations as correct. We
introduce a neural machine translation (NMT) sys-
tem that generates high-coverage translation sets
for a single given prompt in the source language.

Our system was prepared for the English-to-
Japanese track1 of the Duolingo Simultaneous
Translation And Paraphrase for Language Educa-
tion (STAPLE) shared task (Mayhew et al., 2020) at
the 4th Workshop on Neural Generation and Trans-
lation (WNGT 2020). The shared task datasets

1There were five tracks of target languages in total, the
others being Hungarian, Korean, Portuguese and Vietnamese.

consist of English prompts and a weighted set of
target language translations for each prompt. The
task requires systems to produce translation sets
for given English prompts that are evaluated on
weighted F1 score, defined in Appendix A. We
have made our code publicly available.2

We experimented with models trained and fine-
tuned on the provided Duolingo English-Japanese
prompt-translation data (Mayhew et al., 2020), the
JParaCrawl web-crawled corpus (Morishita et al.,
2019), as well as the Japanese-English Subtitle
Corpus (JESC) (Pryzant et al., 2018). The sizes of
each dataset are summarized in Table 1.

Our system uses a Transformer-based (Vaswani
et al., 2017) NMT model and we began with
weights pretrained on the large JParaCrawl cor-
pus (Morishita et al., 2019). Section 4 describes in
detail how the model was pretrained. Our system’s
NMT model was then obtained by fine-tuning first
on the Japanese-English Subtitle Corpus (JESC)
(Pryzant et al., 2018) before further fine-tuning on
the Duolingo training set (Mayhew et al., 2020).
We outline these datasets in more detail in Section
2.

Given the small size of the Duolingo data, this
multi-step fine-tuning helped the model generalize
and outperformed single-step fine-tuning and no
fine-tuning. High-coverage translation bitext data
is not easy to mine or create, so we expect that in
other settings, the size of such available training
data will also be small. Therefore, it is very likely
that adopting a multi-step fine-tuning method may
be advantageous more generally. The fine-tuning
procedure is described in Section 6.

Outputting the entire beam of candidates from
150-width Beam Search, scored on per token log
likelihood, this two-step fine-tuned system pro-
duced the translations that we submitted to the

2Our code can be found at https://github.com/
michaelzyang/high-coverage-translation.

119

https://www.aclweb.org/anthology/D19-56%2d

Dataset English Sentences Japanese Sentences

JParaCrawl 8,763,995 8,763,995
JESC 2,801,388 2,801,388
Duolingo 2,500 855,940

Table 1: Number of sentence-pairs in the datasets (Duolingo pairs have a one-to-many correspondence)

shared task leaderboard. It achieved 25.69 %
weighted F1 score on the shared task blind devel-
opment set and 26.0% on the blind test set.

After the leaderboard closed, we conducted fur-
ther experiments and discovered several notable
optimizations.

The most effective optimization was using the
ground truth weights that indicate variations in
translation quality during training. We find that
it is essential to deliberately expose the model to
higher-quality translations more often during train-
ing. Otherwise, overexposure to low-quality trans-
lations harms the model’s translation performance.

Secondly, Diverse Beam Search with a very
small penalty outperformed Beam Search. How-
ever, too much diversity begins to introduce minor
semantic shifts that deviate from correct transla-
tions.

We also explored introducing an auxiliary fil-
tering model for post-processing candidates. Our
proposed filtering model is able to refine the can-
didates generated by the NMT model, which im-
proved the system’s performance with respect to
the weighted F1 score.

We share our results in Section 7. Our best result
was a weighted F1 score of 27.56% on our own
test set of 200 prompts randomly selected from the
training data.

2 Corpora

2.1 Duolingo High-coverage Translations

Duolingo provided training, development and test
sets (Mayhew et al., 2020). However, the devel-
opment and test datasets were ‘blind’ and did not
contain ground truth translations, so we did not use
these for training or development.

The training set consists of 2,500 English
prompts, each of which are paired with a vari-
able number of Japanese translations (Table 1).
Duolingo provides weights for each translation,
which can be interpreted as a quality score. For
our experiments, we randomly split the the 2,500
prompts into 2,100, 200 and 200-prompt training,

development and test sets respectively. For the
shared task submission, we retrained a model over
all 2,500 prompts with our best hyperparameters.

2.2 JParaCrawl

As our base model, we use a model pre-trained
on the JParaCrawl corpus (Morishita et al., 2019).
This corpus contains over 8.7 million sentence pairs
which were crawled from the web and then auto-
matically aligned, similar to European corpora in
the ParaCrawl project3. Though noisy due to an
imperfect alignment method, this is currently the
largest publicly-available English-Japanese bitext
corpus.

2.3 Japanese-English Subtitle Corpus

The Japanese-English Subtitle Corpus (JESC)
(Pryzant et al., 2018), is a large parallel training
corpus that contains 2.8 million pairs of TV and
movie subtitles. With an average length of 8, the
corpus mostly consists of short sentences, which is
similar to the data present in the Duolingo training
corpus. Even though JESC contains some noise,
it captures sufficient information that is useful for
downstream NMT tasks.

3 Related work

Machine Translation Machine translation (MT)
involves finding a target sentence y = y1, ...ym
with the maximum probability conditioned on a
source sentence x = x1, ...xn, i.e argmax

y
P (y|x).

There are various neural approaches to tackle ma-
chine translation. These include utilizing recur-
rent neural networks (Cho et al., 2014b), con-
volutional neural networks (Kalchbrenner et al.,
2016), attention-based models (Luong et al., 2014;
Bahdanau et al., 2015) and transformer networks
(Vaswani et al., 2017). Sequence to sequence mod-
els deal with the task of mapping an input sequence
to an output sequence. These were first introduced
by Sutskever et al. (2014) and typically use an RNN

3https://paracrawl.eu/

120

based encoder-decoder architecture, where the en-
coder outputs a fixed length representation of the
input which is fed into the decoder to get a target
translation. RNN and LSTM based approaches
struggle to handle long sequences and long-range
dependencies since the encoder network is tasked
with encoding all relevant information in a fixed-
length hidden state vector. Bahdanau et al. (2015)
overcome this by utilizing attention, an alignment
model that can attend to important parts of the input
during translation. Luong et al. (2014) used the at-
tention mechanism to great effect, observing gains
of 5.0 BLEU over non-attention based techniques
for NMT.

The Transformer Architecture For our experi-
ments, we used the the Transformer architecture
proposed by Vaswani et al. (2017). It is a self-
attention based model that produces superior re-
sults for machine translation tasks compared to
CNN and LSTM based models. By stacking multi-
ple layers of multi-head self-attention blocks, they
demonstrate that the attention mechanism by itself
is very powerful for sequence encoding and decod-
ing. Recently, Transformer-based models that are
pre-trained on large-scale datasets have produced
superior performance on various Natural Language
Processing (NLP) tasks (Rajpurkar et al., 2016;
Talmor and Berant, 2019; Mayhew et al., 2019).
In Section 4 we further describe the transformer
architecture and our pretraining procedure.

Domain Adaptation Domain adaptation in-
volves making use of out-of-domain data in situa-
tions where high quality in-domain data are scarce.
This fine tuning approach has been shown to be ef-
fective for NMT (Luong and Manning, 2015; Sen-
nrich et al., 2015; Freitag and Al-Onaizan, 2016).
Morishita et al. (2019) show that pre-training
with JParaCrawl vastly improves in-domain perfor-
mance for English-Japanese translations. We make
use of these ideas in our multi-step fine-tuning ex-
periments.

Inference with Beam Search Beam Search is an
approximate search algorithm used for finding high
likelihood sequences from sequential decoders. At
every time step, the top k outputs are traversed
and the rest are discarded. A common issue with
beam search is that it generates similar outputs that
only differ by a few words or minor morphologi-
cal variations (Li and Jurafsky, 2016). Vijayaku-
mar et al. (2016) propose Diverse Beam Search, a

method that reduces redundancy during decoding
in NMT models to generate a wider range of can-
didate outputs. This is achieved by splitting the
beam width into evenly-sized groups and adding
a penalty term for the presence of similar candi-
dates across groups. The authors find most success
with the Hamming Diversity penalty term, which
penalizes the selection of tokens used in previous
groups proportionally to the number of times it was
selected before. We detail our experiments using
both search strategies in Section 6.

Post-processing in NLP For tasks that require
sets of outputs rather than single outputs, post-
processing or reranking methods are often used as a
downstream step after a model generates an initial
set. They have proven to be useful techniques for
various NLP tasks, such as Question Answering
(Kratzwald et al., 2019), Named Entity Recogni-
tion (Yang et al., 2017) and Neural Summarization
(Cao et al., 2018). The basic methodology is to first
generate an initial candidate set and rerank or prune
these candidates to generate the final set. This set
up reduces reliance on generators by introducing
an auxiliary discriminator to refine the outputs of
the generator. Section 6 describes our experiments
with pruning or filtering Beam Search candidates
during decoding.

4 Pretrained Base Model

As our base model, we used a model pretrained
by Morishita et al. (2019) on the JParaCrawl data
using the fairseq framework (Ott et al., 2019).

Data Preprocessing Morishita et al. (2019) pre-
processed the JParaCrawl English and Japanese
text using sentencepiece (Kudo and Richard-
son, 2018) to obtain 32,000-token vocabularies on
both the English and Japanese sides.

Architecture The pretrained model follows the
Transformer ‘base’ architecture (Vaswani et al.,
2017), with a dropout probability of 0.3 (Srivas-
tava et al., 2014).

Transformer is a multi-layer self-attention model.
Both its encoder and its decoder contain multiple
similar sub-modules which include a multi-head
attention layer (MultiHead) and a position-wise
feed-forward network (FFN).

121

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i) (2)

MultiHead(Q,K, V)

= Concat(head1, ..., headh)WO (3)

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Here, Q, K, V are the matrix representation
of the query, key, and value separately. W and b
denote the weights and biases of the linear layers.
dk denotes the dimension of the key matrix.

Optimizer The pretrained model was trained us-
ing the Adam optimizer (Kingma and Ba, 2014)
with the hyperparameters β1 = 0.9, β2 = 0.98,
α = 10−3 and ε = 10−9. The loss function used
was cross entropy loss with εls = 0.1 loss smooth-
ing (Szegedy et al., 2016). To improve update sta-
bility, gradients were clipped to a maximum norm
of 1.0 (Pascanu et al., 2013).

Learning rate scheduling The learning rate
schedule adopted for the pretrained model was the
so-called ‘Noam’ schedule (Vaswani et al., 2017).
This schedule linearly increases the learning rate
for 4000 ‘warm-up’ steps from a starting learning
rate of 10−7 to the target learning rate of 10−3, then
decreases it from that point proportionally to the
inverse square root of the step number.

5 Filtering Model

Apart from the NMT model, we additionally intro-
duce a neural filtering model to post-process the
NMT model’s candidates. Instead of designing a
model that will assign a real-value score to each of
the candidates, we simplify the task by formulat-
ing it as a binary classification problem. Namely,
the filtering model is trained to classify a given
candidate sentence as a valid sample (in the gold-
standard list) or an invalid sample. The intuition
is that the gold-standard candidate list contains a
small number of high-quality sentences (with larger
weights) and a large number of lower-quality sen-
tences. Thus it is more important to distinguish
the hits from misses than high-quality hits from
low-quality hits.

To construct the dataset for the filtering model,
we augmented the Duolinguo dataset with the re-
sults of NMT model. Specifically, we labeled those

result sentences that appear in the gold-standard
list as True and labeled others as False.

As for the model architecture, we encode the
source sentence and the candidate sentence sepa-
rately with a one-layer bidirectional LSTM model.
The encoding is the concatenation of the hidden
vectors in both directions after complete traversal
of the sequence, along with a (learned) positional
embedding vector. This embedding encodes the
position of the candidate sentence in the candidate
list generated by the NMT model, which is sorted
by descending score order.4 Lastly, we use a multi-
layer perception (MLP) to classify the concatenated
vector.

vs = LSTMs(s) (5)

vci = LSTMc(ci) (6)

pi = MLP(Dropout([vs : vci : vi])) (7)

Here, s denotes the source sentence, ci denoted
the i-th candidate, vi denotes the positional encod-
ing, and pi denotes the predicted likelihood. The fil-
tering model is optimized with binary cross-entropy
loss.

6 Experiments

6.1 Multi-step Fine-tuning

We experiment with several different fine-tuning
scenarios, each time evaluating the models us-
ing the Weighted F1 metric on our 200-prompt
Duolingo test set. First as a baseline, we directly
evaluate the JParaCrawl pretrained model without
fine-tuning. Then we evaluate the performance of
models fine-tuned on either JESC or on all English-
Japanese pairs in our 2,100-prompt Duolingo train-
ing set.5 Finally, we experiment with first fine-
tuning on the JESC data and then on the Duolingo
training set.

Before training, we preprocessed the JESC and
Duolingo data using the same 32,000-token En-
glish and Japanese sentencepiece models as
Morishita et al. (2019) used on the JParaCrawl data.

4In our experiments, we scored candidates using per token
log likelihood (see Section 6.2 for further details.)

5The given English and Japanese sentences are unbalanced
as there are multiple reference Japanese translations per En-
glish prompt. We balanced the training data by repeating the
corresponding prompts over all reference translations to create
English-Japanese pairs.

122

Training procedure We adopted the same opti-
mizer settings as they used for the pretrained model,
described in Section 4. Using mini-batches of up
to 5,000 tokens, we made an update step every 16
mini-batches with mixed precision computation for
increased training speed (Micikevicius et al., 2018).
While the pretrained model was trained for 24,000
steps, each time we fine-tuned the model, we did so
for 2,000 steps, continuing the inverse square root
learning rate schedule from the pretraining. We
saved the model parameters every 100 steps and
for each fine-tuning experiment, we averaged the
last eight parameter checkpoints to obtain our final
model weights. For the model with two-step fine-
tuning, we use the averaged checkpoint from the
JESC fine-tuning experiment as the starting point
for further fine-tuning on the Duolingo dataset.

6.2 Decoding Strategies

For producing multiple translations for each
prompt, we output the entire beam width of can-
didates from the Beam Search or Diverse Beam
Search (Vijayakumar et al., 2016) algorithms. Our
motivation for experimenting with using Diverse
Beam Search is to improve the coverage of our
translation sets. In all our experiments, we capped
the generated sequence length at 200 tokens.

Beam Search scoring Beam Search using se-
quence log likelihood (or likelihood) as scores re-
sults in a well-known length bias towards shorter
sequences, with worsening bias for wider beams
(Murray and Chiang, 2018). To address this, we
scored beam candidates based on the mean log like-
lihood per token (Cho et al., 2014a). Further work
could involve the use of more complex adjustments
for length bias and including a coverage penalty
over the source prompt (Wu et al., 2016).

6.3 Training Data Augmentation

Aligning data distributions The ground truth
weights of the Duolingo reference translations in-
variably follow skewed distributions, with long
tails of low weight translations (Figure 1). Conse-
quently, one drawback of training with all English-
Japanese pairs in the Duolingo data is that each
pair is essentially provided to the model with equal
weight. In other words, the distribution over ref-
erence translations at training time is uniform,
whereas the distribution when evaluating weighted
F1 score is skewed.

To address this, we sampled the training data

0 4 8 12 16 20 24

0.04

0.08

0.12

0.16

0.20

Reference translations (ordered by weight)

R
ef

er
en

ce
w

ei
gh

ts

Figure 1: Typical distribution of ground truth weights

such that the model was trained on prompts with
equal probability but for each prompt, reference
translations were sampled according to the distri-
bution given by the ground truth weights. In effect,
this aligns the distribution over reference transla-
tions during training time and evaluation time.

Loss smoothing to improve coverage Aside
from helping NMT models generalize, Müller et al.
(2019) show that use of loss smoothing also bet-
ter calibrates NMT models, preventing them from
becoming over-confident. To encourage our NMT
model to produce high-coverage translations, we
hypothesize that increasing loss smoothing to de-
crease the model’s confidence will improve its per-
formance in producing a wider variety of correct
translation candidates.

6.4 Filtering Model

Since our filtering model is trained with the results
of the NMT model, we trained two filtering mod-
els with two different decoding strategies of the
NMT model, namely, Regular and Diverse Beam
Search with beam widths set such that approxi-
mately 100 unique candidates are output for each
prompt. The NMT model is trained with the best
hyper-parameters we found with the weighted sam-
pling technique. We use the same train/dev/test
splits as the NMT model and select the checkpoint
with the best classification accuracy on the devel-
opment set.

We used the Adam optimizer with initial learning
rate 0.0001 and halved the learning rate when the
validation accuracy plateaued for 2 epochs. The
word embedding dimension, positional embedding
dimension, the hidden dimension of the LSTM and
MLP are all set to 128. The dropout rate was 0.2.

123

Fine-tuning Precision Recall Weighted Recall Weighted F1

None (JParaCrawl only) 18.57% 4.62% 16.97% 14.23%
JESC 13.37% 3.49% 13.12% 10.69%
Duolingo 34.59% 10.48% 26.90% 24.96%
JESC + Duolingo 35.98% 10.89% 27.85% 25.92%

Table 2: Results of different fine-tuning methods. Metrics evaluated on Beam Search beams of width 100 on our
200-prompt test set.

Beam Mean # Cands Precision Recall Weighted Recall Weighted F1

50 49.6 46.27% 7.04% 21.29% 24.75%
100 98.6 35.98% 10.89% 27.85% 25.92%
150 147.1 29.98% 13.54% 31.33% 24.98%
200 195.4 26.01% 15.61% 33.92% 23.98%

Table 3: Results of tuning Beam (beam width). Mean # Cands refers to the mean number of unique candidates
remaining after detokenizing subword tokens back into raw text and then removing duplicates. Metrics evaluated
on our 200-prompt test set.

The post-processing procedure involved pruning
all candidates with predicted likelihood less than
0.5.

7 Results

We conducted our experiments sequentially and
generally used the best results so far as a baseline
for subsequent experiments.

7.1 Multi-step Fine-tuning Results

Our best performing model was the one trained
using multi-step fine-tuning, as shown in Table
2. The performance of this model was superior
to the other fine-tuning settings on every metric,
suggesting this result was not simply a matter of
imbalance between precision and recall. This result
provides strong evidence that the first fine-tuning
step on the JESC data helped the model generalize
to the Duolingo test set. In contrast, the model only
fine-tuned on the Duolingo training set may not
have generalized as well due to the training set’s
small size.

In order to balance precision and (weighted) re-
call appropriately to maximize the weighted F1
metric, we experimented with tuning the number
of Beam Search candidates to output and found
that 100 was optimal (Table 3). Note that the num-
ber of unique candidates returned can be fewer
than the beam width as Beam Search searches over
sequences of subword tokens and sometimes deto-
kenization results in duplicates.

7.2 Diverse Beam Search Results

Our experiments with Diverse Beam Search show
that using 3 beam groups with a very low Ham-
ming diversity penalty can result in marginal per-
formance improvement (Table 4). The algorithm
evenly divides the total beam width between the
groups and although the algorithm penalizes du-
plicate sequences, high scoring candidates are still
often duplicated across groups. As such, we var-
ied the total beam widths so that the mean num-
ber of unique candidates per prompt were approxi-
mately 100.6 We conclude that encouraging a small
amount diversity can allow the model to capture
a wider range of variations without sacrificing too
much precision.

We found that performance deteriorates when
increasing the diversity penalty or the number of
groups further. These results suggest that standard
beam search by itself is relatively good at produc-
ing high-coverage translations and that acceptable
variations of translations are rather homogeneous
rather than diverse. To illustrate, Table 5 contains
some examples of error candidates produced by Di-
verse Beam Search. Even though they would back-
trackslate to the English prompt correctly, they nev-
ertheless introduce a minor semantic variation that

6This duplication makes the number of outputs from Di-
verse Beam Search more variable. Our result with beam width
225 outputted 62-182 unique results per prompt with a stan-
dard deviation of 19.6, compared to 72-100 unique results
with standard deviation of 4.0 from 100-width Regular Beam
Search.

124

Groups Penalty Beam Mean # Cands Precision Recall Weighted Recall Weighted F1

1 - 100 98.6 35.98% 10.89% 27.85% 25.92%
2 0.01 170 99.4 36.04% 11.00% 27.57% 26.18%
3 0.01 225 99.2 35.72% 10.88% 27.18% 26.29%
4 0.01 276 100.6 35.26% 10.90% 27.02% 26.23%
5 0.01 315 100.0 35.04% 10.76% 26.76% 26.21%
2 0.1 116 99.6 32.76% 10.03% 16.00% 24.42%
3 0.1 129 100.3 29.52% 9.10% 23.77% 22.59%

Table 4: Results of Diverse Beam Search on the test set. Beam refers to the beam width. Groups refers to the
number of Diverse Groups (use of 1 group is equivalent to regular Beam Search). Penalty refers to the Hamming
Diversity penalty in the Diverse Beam Search algorithm. Mean # Cands refers to the mean number of unique
candidates remaining after detokenizing subword tokens back into raw text and then removing duplicates. Metrics
evaluated on our 200-prompt test set.

Prompt my parents have money

Incorrect 僕の両親はお金を持ってる
Diverse 僕の両親はお金を持ってます
Candidates 僕の両親には金があります

Table 5: Example incorrect candidates from Diverse Beam Search with 3 groups and 0.1 Hamming Diversity
penalty. While the candidates would correctly back-translate to ‘my parents have money’, the first character of
each candidate sentence indicates that the speaker / subject must be male (a restriction that is absent in the prompt).

Sampling Smoothing 1-best BLEU Precision Recall Weighted Recall Weighted F1

Weighted 0 43.2 36.28% 10.95% 27.88% 26.88%
Weighted 0.05 42.5 37.41% 11.30% 28.31% 27.43%
Weighted 0.10 43.2 37.00% 11.27% 28.14% 27.21%
Unweighted 0.10 27.0 35.72% 10.88% 27.18% 26.29%
Weighted 0.15 41.8 36.84% 11.07% 28.01% 27.06%
Weighted 0.20 42.3 36.86% 11.09% 27.96% 27.04%

Table 6: Results of weighted sampling of input translation pairs and different loss smoothing rates on the test set.
1-best BLEU refers to corpus BLEU-4 score between the single highest-scoring Diverse Beam Search candidate
and the single highest weighted reference translation for each prompt, smoothed with the NIST method (Chen and
Cherry, 2014). The other metrics were evaluated over Diverse Beam Search with 225-width beams split across 3
groups and Hamming diversity penalty of 0.01. Metrics evaluated on our 200-prompt test set.

makes them unacceptable translations.

7.3 Training Data Augmentation Results

Sampling training data according to the ground
truth weights meaningfully improves performance,
as shown in Table 6. Our previous best weighted
F1 score using Diverse Beam Search was 26.29%,
and this improved to 27.21%. Moreover, evaluat-
ing the model on the standard machine translation
metric of BLEU-4 score between the single best
candidates and the single best ground truth transla-
tions, we observe a remarkable increase in BLEU
score if weighted sampling is used during train-

ing. From this result, we conclude that unweighted
sampling of training data overexposes the model to
poorer translations, which significantly reduces the
model’s effectiveness as a general-purpose NMT
model.

As for loss smoothing, contrary to our hypoth-
esis, increasing the loss smoothing rate was detri-
mental. and, in fact, decreasing the rate from 0.1 to
0.05 even improved the weighted F1 score slightly
from 27.21% to 27.43%. This suggests that the
effect of loss smoothing on the high-coverage trans-
lation task is not necessarily different to the usual
machine translation task.

125

Filtering Decoding method Precision Recall Weighted Recall Weighted F1

None Regular Beam Search 37.49% 11.35% 28.93% 27.00%
Filtered Regular Beam Search 38.89% 10.87% 27.67% 27.43%
None Diverse Beam Search 37.41% 11.30% 28.31% 27.43%
Filtered Diverse Beam Search 38.08% 10.86% 26.94% 27.56%

Table 7: Results of filtering methods on our 200-prompt test set. Candidates were generated by the NMT models
fine-tuned on JESC then Duolingo data with weighted sampling technique. Regular Beam Search used beam width
100 and Diverse Beam Search used beam width 225 over 3 groups with Hamming diversity penalty of 0.01 to yield
approximately 100 candidates per prompt after deduplication. Candidates that have likelihoods greater than 0.5
assigned by the filtering model are selected as the results.

7.4 Beam Filtering Results

Table 7 shows the results of the filtering algorithm.
The filtering model can improve the weighted F1
score with both the diverse beam search and regu-
lar beam search, especially with the regular beam
search. This improvement results from a larger gain
in precision from filtering than the loss in recall.

One thing to note is that our filtering model suf-
fers from over-fitting. For example, with Regu-
lar Beam Search, our filtering model improves the
weighted F1 score by 0.43% on the test set (Ta-
ble 7). However, using the same technique on the
training set results in an improvement of 6.25%.7

This may result from the limited size of Duolinguo
dataset, and the fact that over-fitting introduced by
the NMT model would be amplified since the fil-
tering model is trained on the results of the NMT
model.

8 Conclusions and Future Work

Our machine translation system produces high-
coverage sets of target language translations from
single source language prompts.

We used multi-step fine-tuning to train a robust
NMT model. This involved first training or fine-
tuning a model on a large bitext dataset, then fine-
tuning on the bitext dataset with high coverage sets
of target language translations, which is likely to be
small. In our experiments, we find that fine-tuning
a pretrained model first on a corpus similar to our
intended domain and then fine-tuning further on
our smaller in-domain dataset produced the best
results.

During training, we find that if the ground truth
translations come with weights that indicate vari-
ations in their quality / likelihood, it is essential

7On the training set, the filtering algorithm improves the
weighted F1 score from 56.78% to 63.03%.

to expose the model to higher-quality translations
more often during training. One way to do this
is to to sample the training data with probabilities
commensurate to the ground truth weights. Doing
so will prevent overexposure to low-quality transla-
tions that ultimately harm the model’s translation
performance.

For decoding, we find that Beam Search scored
on per token log likelihood finds very good transla-
tion candidates on its own. Nevertheless, instead us-
ing Diverse Beam Search with a very small penalty
improves coverage.

We observed a further performance boost from
post-processing the translation candidates. This
was achieved by training an auxiliary filtering
model on the results of the NMT model to prune
unlikely candidates as a final step.

One idea for future work is to directly optimize
the weighted F1 score during training using rein-
forcement learning. As the weighted F1 score is not
a differentiable function, it is impossible to train
directly on this metric using maximum likelihood
estimation. Instead, one may use policy gradients
under a reinforcement learning paradigm to do so.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei.
2018. Retrieve, rerank and rewrite: Soft template
based neural summarization. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 152–161, Melbourne, Australia. Association
for Computational Linguistics.

126

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level bleu. In WMT@ACL.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation, pages 103–111, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014b. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
domain adaptation for neural machine translation.
CoRR, abs/1612.06897.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aäron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. CoRR, abs/1610.10099.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Bernhard Kratzwald, Anna Eigenmann, and Stefan
Feuerriegel. 2019. Rankqa: Neural question answer-
ing with answer re-ranking. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6076–6085.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Jiwei Li and Dan Jurafsky. 2016. Mutual information
and diverse decoding improve neural machine trans-
lation. CoRR, abs/1601.00372.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domain. In International Workshop on
Spoken Language Translation, Da Nang, Vietnam.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2014. Addressing
the rare word problem in neural machine translation.
arXiv preprint arXiv:1410.8206.

S. Mayhew, K. Bicknell, C. Brust, B. McDowell,
W. Monroe, and B. Settles. 2020. Simultaneous
translation and paraphrase for language education.
In Proceedings of the ACL Workshop on Neural Gen-
eration and Translation (WNGT). ACL.

Stephen Mayhew, Nitish Gupta, and Dan Roth. 2019.
Robust named entity recognition with truecasing pre-
training.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed preci-
sion training. In International Conference on Learn-
ing Representations.

Makoto Morishita, Jun Suzuki, and Masaaki Na-
gata. 2019. JParaCrawl: A large scale web-based
japanese-english parallel corpus. arXiv preprint
arXiv:1911.10668.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help?
In H. Wallach, H. Larochelle, A. Beygelzimer,
F. dAlché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
32, pages 4694–4703. Curran Associates, Inc.

Kenton Murray and David Chiang. 2018. Correct-
ing length bias in neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 212–223, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th In-
ternational Conference on International Conference
on Machine Learning - Volume 28, ICML’13, page
III–1310–III–1318. JMLR.org.

R. Pryzant, Y. Chung, D. Jurafsky, and D. Britz. 2018.
JESC: Japanese-English Subtitle Corpus. Language
Resources and Evaluation Conference (LREC).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation models
with monolingual data.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,
15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

127

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Alon Talmor and Jonathan Berant. 2019. Multiqa: An
empirical investigation of generalization and transfer
in reading comprehension. CoRR, abs/1905.13453.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. CoRR, abs/1610.02424.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural
reranking for named entity recognition. In Pro-
ceedings of the International Conference Recent Ad-
vances in Natural Language Processing, RANLP
2017, pages 784–792, Varna, Bulgaria. INCOMA
Ltd.

A Appendices

To evaluate the result, the weighted macroF1 (equa-
tion 8) with respect to the accepted translations is
the metric of interest. This is the average weighted
F1 score (equation 12) over all prompts s in the
corpus, where weighted F1 is calculated with (un-
weighted) precision and weighted recall.

WeightedMacro F1 =
∑

s∈S

Weighted F1(s)

|S|
(8)

Calculating the weighted recall requires the use
of weights included in the dataset. These weights
are associated with each human-curated acceptable
translation, which represent the likelihood that an
English learner would respond with that translation.

For each prompt s, the weighted true positives
(WTP) and weighted false negatives (WFN) are:

WTPs =
∑

t∈TPs

weight(t) (9)

WFNs =
∑

t∈FNs

weight(t) (10)

With these, the weighted recall for each s can be
calculated as follows

Weighted Recall(s) =
WTPs

WTPs +WFNs
(11)

Precision is calculated in the usual way, so the
weighted F1 score, Weighted F1(s), for a partic-
ular input s is given by

2 · Precision(s) ·WeightedRecall(s)

Precision(s) +WeightedRecall(s)
(12)

128

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 129–133
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Meeting the 2020 Duolingo Challenge on a Shoestring

Tadashi Nomoto
National Institute of Japanese Literature
10-3 Midori Tachikawa 190-0014 Japan

nomoto@acm.org

Abstract

What is given below is a brief description
of the two systems, called gFCONV and c-
VAE, which we built in a response to the 2020
Duolingo Challenge. Both are neural models
that aim at disrupting a sentence representa-
tion the encoder generates with an eye on in-
creasing the diversity of sentences that emerge
out of the process. Importantly, we decided
not to turn to external sources for extra am-
munition, curious to know how far we can go
while confining ourselves to the data released
by Duolingo (Mayhew et al., 2020). gFCONV
works by taking over a pre-trained sequence
model, intercepting the output its encoder pro-
duces on its way to the decoder. c-VAE is a
conditional variational auto-encoder, seeking
the diversity by blurring the representation that
the encoder derives. Experiments on a cor-
pus constructed out of the public dataset from
Duolingo, containing some 4 million pairs of
sentences, found that gFCONV is a consistent
winner over c-VAE though both suffered heav-
ily from a low recall.

1 Introduction

A major driver for our participating in the chal-
lenge was the curiosity to see whether recent ap-
proaches to sentence encoding with the variational
auto-encoder (VAE) have any relevance to the gen-
eration of diverse sentences. (Bowman et al.,
2016) were the first to explore the use of VAE in
language generation. The work demonstrated that
VAE provides a continuous code space for sen-
tences, where any randomly picked data point in
the space can be decoded to yield a coherent sen-
tence, which is significant given that the conven-
tional RNNs do not provide such a capability. The
problem with VAE however, is that it has no mech-
anism to ensure that the meaning of the source
sentence is passed over to the output, which of-
ten causes a sentence to be altered, or deformed

beyond recognition. While VAE is a popular ap-
proach people turn to as a way to diversify sen-
tences the model generates, no definitive answer
has been found on how to control or tame what
it spews out. A typical solution is to fuse a VAE
code with the output of a regular sentence encoder,
in order to encourage the decoder to output a sen-
tence that retains some semantic features present
in the source sentence (Gupta et al., 2017). Also
noteworthy is a recent work by (Guu et al., 2018),
who building on an idea similar to VAE, talk about
modeling the distribution of cosine similarities be-
tween word vectors for the input and target. (Li
et al., 2015) is something of an odd ball in the pur-
suit of the diversity in sentence generation. The
authors argued that we could achieve the diversity
by discouraging the decoder to select candidates
that are similar to the input. A clear advantage
they have over others is that their scheme does not
involve any learning and is straightforward to im-
plement.

The idea that one can view a latent represen-
tation as a sample drawn from some probabilistic
distribution inspired people to explore its potential
in a wide range of tasks and domains. (Miao et al.,
2015), while working on document modeling, sug-
gested that we use VAE as a way to get a compact
representation for a document. (Fang et al., 2019)
argued for using a sample based distribution over
Gaussian distribution for a latent code to better ex-
press the holistic property of the source sentence.

In this work, we focus on two approaches, both
based on VAE: one that attempts to achieve the
diversity by generalizing the sentence representa-
tion produced by the encoder; and another which
randomly perturbs the encoder’s output during the
sentence generation. We report here their respec-
tive performance on a test corpus we carved out of
the official training data. For the final submission,
we went along with the latter approach.

129

https://www.aclweb.org/anthology/D19-56%2d

prompt + translation

N
-best paraphrases

Model

Figure 1: Translation as Paraphrase

2 Translation as Paraphrase

Our effort revolved around two questions: (1)
how best to incorporate likelihood scores of tar-
get translations that were provided as part of the
training data, and (2) how not to rely on an exter-
nal resource while building a solution. We wanted
to know how far we can go using only the data
made available to us at the competition, and noth-
ing more. Our answer to the first question takes
advantage of the fact that a set of translations as-
sociated with each English prompt are considered
an equivalence class in the sense that if we take
any pair from the set, we can substitute one for the
other without significantly affecting its meaning.
We may take the likelihood that a human picks a
particular sentence (call it X) as a good translation
for some prompt (P) as the probability of its be-
ing a paraphrase of some other sentence (say Y)
from a group of possible translations of which X
is part. The intuition here is that if X is more typi-
cal as a translation of P, it is more likely to serve as
a paraphrase of whatever other way we may have
to express P in the target language. Following this
idea, we created training data by randomly sam-
pling a pair of sentences (both in the same lan-
guage) that appear as alternate translations for a
given prompt in accordance with their popular rat-
ing. For each prompt, we sampled 2,000 pairs
of translations (which may include pairs consist-
ing of identical sentences), resulting in 4,601,000
training instances (which amount to 2,300 prompts
plus those provided in the development and test
set) (Mayhew et al., 2020).1 We set aside 100

1 For this year’s challenge, we worked only on the
English-Japanese track. We included both test and develop-
ment sets as part of training data, as a way to prevent the al-
gorithm from stumbling upon unknown tokens in the test set.
We don’t see this as much of a problem because each prompt
in development and test sets carries no more than one transla-
tion, i.e. a training pair we get from the development and test
set has a same sentence for both source and target. We made
use of MeCab for tokenizing sentences in Japanese.

Encoder Decoder

Figure 2: gFCONV

prompts as a private development set and another
100 for testing. We included in each training in-
stance an English prompt as well as its transla-
tion in order to prevent paraphrases the algorithm
generates from diverging from the meaning of the
prompt (Table 1).

Figure 1 shows a schematic picture of how
our approach works. We feed into the sys-
tem a prompt and its translation which we as-
sume to be given (via AWS, for example). Out
comes its paraphrases (or translations in varied
styles). The model we built is essentially one
based on Fairseq’s convolution to sequence archi-
tecture of the type called ‘fconv iwslt de en’ (call
it FCONV) which features 4 convolutional layers
for the encoder and 3 for the decoder.2 The em-
bedding dimension for the input and output token
was set to 256. We did not use pre-trained em-
beddings for either of the languages we dealt with.
Neither did we make any architectural change to
FCONV. We simply trained it as it was given. A
departure comes in the testing phase. Following
(Guu et al., 2018), we applied a Gaussian noise
on the output of the encoder as it was sent to the
decoder (Fig. 2).

u = E(x) + ϵ, ϵ ∼ N (0, k) (1)

where x is an input and E(x) is an output from ap-
plying an encoder E on x. u denotes an input to a
decoder. A larger noise means a greater disruption
in the latent representation coming from the en-
coder, which we hoped would lead to an increase
in the diversity of sentences being generated. We
randomly sampled a noise from a normal distribu-
tion with the mean set to 0 and the variance rang-

2https://github.com/pytorch/fairseq

130

Table 1: Training Instances. The source part of each input consists of two sections: the first section contains
a sentence in an original language, followed by a translation in a target language, demarcated by a separator
‘@@@@.‘

SOURCE

that apple is very big . @@@@その林檎は非常にでかいです。
i like to work . @@@@ボクは仕事は好きです。
he drinks milk . @@@@彼は牛乳を飲みます。
what are her strengths ? @@@@彼女の長所はなんでしょう？
what has she done ? @@@@彼女は何をやり終わったんですか？

TARGET

そのりんごがとてもでかい。
私は働くのが好き。
かれはぎゅうにゅうを飲みます。
何が彼女の強い所なの？
何を彼女は終わったの？

Encoder Decoder

1

E(x)
<latexit sha1_base64="9O9xWXXALpAo6XyruX3RGWEFewE=">AAACvXichVG5SgNRFD2OW4xLojaCjRgisQlvXFBsFESwdIsKGsLM+IyDszEzWTT4Axa2ClYKFuJn2FgLFvkEsYxgY+F9kwGXkHgH5t173jn3nctVHUP3fMaqbVJ7R2dXd6Qn2tvXPxCLDw5te3bB1XhGsw3b3VUVjxu6xTO+7ht813G5YqoG31GPl8X9TpG7nm5bW/6Jw7Omkrf0Q11TfAGtpMqTuXiCpVkQY42JHCYJhLFmx5+xjwPY0FCACQ4LPuUGFHj07UEGg0NYFhXCXMr04J7jDFHSFojFiaEQekz/PFUV6lQgjuC61LvUklumyia2TVzBSzZh7oWoRbVw6gWefmrHkGQv7J7V2BN7YK/ss8WrooeY8IROta7lTi52PrL58a/KpNPH0beqqUJ49nGI+cCrTt6dABFTaHV98fSytrmwkaxMsFv2Rv5vWJU90gRW8V27W+cb14jSWuW/S2xMtqfS8nR6dn0msbQcLjiCUYwjRVucwxJWsYYMvXuEC1ziSlqUuGRIVp0qtYWaYfwKqfQFaamcuw==</latexit>

z
<latexit sha1_base64="xe0heDbnEuWAVaMCu3QEu5xZxOc=">AAACunichVG7SgNBFD1Z3/GRqI1gI4aIVZj4QBGLgAiWiTEqqMjuOuqQfbE7GzXBH9BWsbBSsBA/w8ZasMgniKWCjYV3Nwu+UO/Czr1nzrlzLldzDOFJxuoxpam5pbWtvSPe2dXdk0j29i17tu/qvKTbhu2uaqrHDWHxkhTS4KuOy1VTM/iKVp4L7lcq3PWEbS3JA4dvmOqOJbaFrkqCCtXNZIplWBhDP5NslKQQRd5O3mMdW7Chw4cJDguScgMqPPrWkAWDQ9gGaoS5lInwnuMQcdL6xOLEUAkt03+Hqhp18okTcF3qvfcnd58qm9g2cQNe+hfmWoRaVAdOvdDTZ+0Q0uyBXbNndsdu2CN7++PVoEcw4QGdWkPLnc3E0UDx9V+VSafE7ofqV0XgWWIb06FXQd6dEAmm0Bv6SvXsuTizmK6NsEv2RP4vWJ3d0gRW5UW/KvDFc8RprdnvS/yZLI9lsuOZycJEKjcfLbgdgxjGKG1xCjksII8SvctxjBOcKrOKpgil3KAqsUjTjy+hyHedrpwL</latexit>

Figure 3: Conditional VAE

ing from 0 to 0.6. In what follows, we refer to the
scheme as gFCONV.

We also looked at a conditional variational auto-
encoder (c-VAE), a close cousin of gFCONV for
the sake of comparison. While both aim at build-
ing a latent representation that embraces the no-
tion of uncertainty, c-VAE differs from the vari-
ance based approach in that it seeks to find a prob-
abilistic distribution that defines a range of repre-
sentations that the encoder churns out. In terms
of formulae, this comes to the following (also see
Fig. 3 for a visual intuition).

u = E(x) + r ∗ z, (2)

Here z = µ + ϵ ∗ υ with ϵ ∼ Unif[0, 1). µ and υ
are a mean and variance, defined as µ = g(x), and
υ = f(x), respectively. x is an input, g and f are
some arbitrary functions over x. E(x) again de-
notes the output of an encoder. µ and υ are learn-
able parameters, which means that they need to be
trained to have them work. It is worth noting that
gFCONV has no extra ‘learnable’ parameters. r
is a hyper-parameter to be set manually, which de-
termines the degree of contribution of z to a latent
representation of x. We combine E(x) and a rep-
resentation sampled from a Gaussian distribution
to build a final encoder output. Our decision to

condition VAE on E(x) is motivated by a frequent
observation in the past literature that VAE is poor
at preserving the meaning of the source sentence,
often transforming it beyond recognition. Condi-
tioning VAE on the input is a popular trick to dis-
courage the algorithm from straying too far away
from the source.

Implementation-wise, c-VAE was based on
FCONV, from which we also built gFCONV. We
kept all the hyper-parameter settings intact, e.g.
the number of layers, the size and the number of
filters, etc. We did not apply any scheduled an-
nealing weight to the KL term in the loss function.

For gFCONV, we varied the variance parameter
k (Eqn. 1) from 0.00 to 0.60 in increments of 0.05.
For each value of k, we ran gFCONV on the test
set 100 times, letting the model output 80 alter-
native translations for each prompt (Setting k to 0
reduces gFCONV to a vanilla FCONV). This had
resulted in a pool of 8,000 candidates for a given
prompt under a particular value of k. Out of which
we retained only those that had a non zero similar-
ity to gold translations by AWS.3 We measured the
similarity using LASER,4 along with pre-trained
word embeddings from FastText,5 which LASER
requires. We were interested to know how vari-
ance affected the performance, in particular how it
contributed to improving the diversity.

3i.e. those found in the ‘test.en ja.aws baseline.pred.txt’
in the ‘staple-2020-test-blind’ directory.

4https://github.com/facebookresearch/
LASER

5https://fasttext.cc/docs/en/
crawl-vectors.html

131

Table 2: Variance vs. Performance. ‘P’ denotes precision, ‘R’ recall, and ’k’ variance. Numbers in red represent
the baseline and those in blue the best performing system where we have a minimum divergence between Micro
and Macro F1.

UNWEIGHTED WEIGHTED

k P R Micro F1 Macro F1 R Micro F1 Macro F1
0.00 39.16 3.83 6.97 11.37 13.62 20.21 16.35
0.05 33.24 5.09 8.83 12.77 15.60 21.23 17.13
0.10 28.10 6.18 10.14 13.46 17.47 21.54 17.38
0.15 23.41 7.45 11.30 13.66 19.34 21.18 16.92
0.20 20.08 8.62 12.06 13.73 21.10 20.58 16.48
0.25 16.93 9.57 12.22 13.18 22.37 19.27 15.40
0.30 14.17 10.24 11.89 12.27 23.36 17.64 14.13
0.35 12.02 10.69 11.31 11.22 24.16 16.05 12.74
0.40 10.92 11.49 11.20 10.70 24.70 15.14 12.03
0.45 9.15 11.23 10.08 9.67 24.38 13.30 10.73
0.50 8.21 10.81 9.33 8.72 23.24 12.14 9.72
0.55 7.24 9.99 8.40 7.90 22.84 11.00 8.78
0.60 6.92 9.30 7.94 7.54 22.25 10.56 8.38

Table 3: Conditional VAE

UNWEIGHTED WEIGHTED

r P R Micro F1 Macro F1 R Micro F1 Macro F1
0.0 39.16 3.83 6.97 11.37 13.62 20.21 16.35
0.1 24.06 7.11 10.97 14.84 19.41 21.49 18.08
0.2 22.55 7.98 11.78 14.81 20.16 21.29 17.87
0.3 18.28 7.72 10.86 14.28 20.09 19.15 17.10
0.4 17.09 7.58 10.50 13.12 20.21 18.52 15.69
0.5 15.68 7.70 10.33 12.73 20.08 17.61 15.31

3 Results and Discussion

Results are provided in Table 2. The numbers
shown were produced using the official scorer. In
the following discussion, we concentrate on un-
weighted scores as our interest here is in know-
ing how much we improved the raw recall under
the current setup. Note that weighted scores do
not shed light on the true diversity of sentences we
have garnered.

Looking at Table 2, we see gFCONV gaining
on a vanilla FCONV, whose performance is repre-
sented by the numbers at k = 0.00. At k = 0.25,
we see the raw recall jumping from 3.83 to 9.57,
Micro F1 from 6.97 to 12.22, and Macro F1 from
11.37 to 13.18. Compare the difference between
Micro and Macro F1 at k = 0.00 and that we have
at k = 0.25. The difference for the latter is much
smaller. This suggests that under gFCONV, the
performance is more stable across test items com-
pared to the vanilla FCONV. A large divergence at

k = 0.00 indicates wild ups and downs in perfor-
mance, suggesting that the model is doing beau-
tifully well on some but failing miserably on oth-
ers. In contrast to Micro F1, Macro F1 is blind to
how many candidate translations there are for each
prompt, so may not give us an accurate picture of
how the model is doing on each prompt.

As with gFCONV, we ran c-VAE on the test set
100 times, obtaining 100 distinct pools of candi-
date translations for each prompt.6 We report in
Table 3, figures that represent performance on all
the results combined in the manner we described
for gFCONV. We varied r (in Eqn. 2) from 0.1
to 0.5 in 0.1 increments. We observe that c-VAE
is somewhat behind gFCONV (in terms of diver-
gence between Micro and Macro F1), though per-
forming well over the baseline (numbers in red). A
large gap between (unweighted) Micro and Macro

6 We generated 8,000 hypotheses for each prompt under a
particular value of r, 80 at each round.

132

Table 4: Official Results. By W. Recall and W. F1, we
mean Weighted Recall and F1.

Phase Rank Precision W. Recall W. F1
DEV 6/6 0.369 0.183 0.181
TEST 6/6 0.349 0.212 0.194

F1 again shows that the model suffers from a fluc-
tuating performance, swinging wildly from one
test item to another. The final submission for the
official evaluation was prepared using gFCONV at
k = 0.10, under the pseudonym ‘darkside,’ with
the official results shown in Table 4.7

4 Conclusions

We discussed two approaches as a way to tackle
the Duolingo Challenge. One is gFCONV, which
takes over a pre-trained sequence model, inter-
cepts and perturbs the output its encoder produces
on its way to the decoder. Another is c-VAE, a
conditional variational auto-encoder, which seeks
the diversity by blurring the representation that the
encoder derives. Either approach, it was found,
outperformed the vanilla FCONV. We also noted
a large discrepancy between Micro and Macro
F1, suggesting that the models’ performance is
not even and fluctuates wildly from item to item.
Moreover, there were some test prompts for which
the models were not able to find any translations.
We recognize that this is an area we need to scru-
tinize to further improve the performance. In the
long run, it would be interesting to see if we can
bring to the task recent developments in VAE such
as (Bouchacourt et al., 2018).

References
Diane Bouchacourt, Ryota Tomioka, and Sebastian

Nowozin. 2018. Multi-level variational autoen-
coder: Learning disentangled representations from
grouped observations. In AAAI 2018.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating sentences from a continuous
space. In Proceedings of The 20th SIGNLL Con-
ference on Computational Natural Language Learn-
ing, pages 10–21, Berlin, Germany. Association for
Computational Linguistics.

Le Fang, Chunyuan Li, Jianfeng Gao, Wen Jun
Dong, and Changyou Chen. 2019. Implicit deep
7We did not submit the version at 0.25 which turned out

to be the best, due to its late discovery, which came well past
the deadline.

latent variable models for text generation. In
EMNLP/IJCNLP.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2017. A deep generative framework for
paraphrase generation. CoRR, abs/1709.05074.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
for Computational Linguistics, 6:437–450.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. CoRR,
abs/1510.03055.

S. Mayhew, K. Bicknell, C. Brust, B. McDowell,
W. Monroe, and B. Settles. 2020. Simultaneous
translation and paraphrase for language education.
In Proceedings of the ACL Workshop on Neural
Generation and Translation (WNGT). ACL.

Yishu Miao, Lei Yu, and Phil Blunsom. 2015. Neu-
ral variational inference for text processing. CoRR,
abs/1511.06038.

133

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 134–138
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

English-to-Japanese Diverse Translation by Combining
Forward and Backward Outputs

Masahiro Kaneko Aizhan Imankulova Tosho Hirasawa Mamoru Komachi
Tokyo Metropolitan University

6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan
{kaneko-masahiro, imankulova-aizhan, hirasawa-tosho}@ed.tmu.ac.jp

komachi@tmu.ac.jp

Abstract

We introduce our TMU system that is submit-
ted to The 4th Workshop on Neural Genera-
tion and Translation (WNGT2020) to English-
to-Japanese (En→Ja) track on Simultaneous
Translation And Paraphrase for Language Ed-
ucation (STAPLE) shared task. In most cases
machine translation systems generate a single
output from the input sentence, however, in
order to assist language learners in their jour-
ney with better and more diverse feedback, it is
helpful to create a machine translation system
that is able to produce diverse translations of
each input sentence. However, creating such
systems would require complex modifications
in a model to ensure the diversity of outputs.
In this paper, we investigated if it is possible
to create such systems in a simple way and
whether it can produce desired diverse outputs.
In particular, we combined the outputs from
forward and backward neural translation mod-
els (NMT). Our system achieved third place in
En→Ja track, despite adopting only a simple
approach.

1 Introduction

WNGT20201 on STAPLE2 (Mayhew et al., 2020)
addresses generating high-coverage sets of plau-
sible translations which can be useful in ma-
chine translation (MT), MT evaluation, multilin-
gual paraphrase, and language education technol-
ogy fields. In Duolingo (the world’s largest lan-
guage learning platform), some learning takes
place via translation-based exercises and assess-
ment is done by comparing the learners’ responses
to a large set of acceptable human-generated trans-
lations. Therefore, retaining richer paraphrases of
the translation results would help to generate more
accurate feedback to the learners.

1https://sharedtask.duolingo.cites.google.
com/view/wngt20/home

2https://sharedtask.duolingo.com/

Figure 1: Architecture of TMU system.

Several studies have been conducted on the di-
versity of translation results (Vijayakumar et al.,
2018; Xu et al., 2018; Shu et al., 2019; Ippolito
et al., 2019). On the other hand, these methods rely
on complex approaches. For example, modifying
beam-search (Vijayakumar et al., 2018), introduc-
ing rewriting patterns or sentence codes (Xu et al.,
2018; Shu et al., 2019) or using post-decoding clus-
tering (Ippolito et al., 2019). However, we were
curious if we can produce diverse outputs only us-
ing a simple approach.
Therefore, we aim to generate a variety of trans-

lations simply using generally adopted neural MT
(NMT)methods. For that purpose, we use themod-
els trained on the left-to-right (L2R) and right-to-
left (R2L) directions, where L2R produces target
sentences in a forward way and R2L will produce
target sentences in a backward way as shown in
Figure 1. We then combine the output of L2R and
back-reversed output of R2L to produce diverse
translations. We adopt this approach based on the
following reasons:

• No need to modify the NMT model.

• Reversing only the target sentences is suffi-
cient.

134

https://www.aclweb.org/anthology/D19-56%2d

• It is known that L2R translates prefixes and
R2L translates suffixes better (Liu et al.,
2016). This indicates that L2R and R2L pro-
duce different translation results, which may
have an impact on the diversity of generated
translations.

In our experiments, we show that even the com-
bination of L2R and R2L translation results can
produce a sufficiently diverse set of translations.
In addition, we demonstrate that even though we
use a simple approach, it is possible to generate var-
ied paraphrased transcriptions which do not simply
replace one word with another, contrarily, it uti-
lizes different styles, opposition, word order etc.
Our TMU system achieved the third place using
only the simple approach.

2 Related Work

Several models have been proposed to generate
diverse decoding outputs for different tasks. For
example, Xu et al. (2018) proposed diverse para-
phrase generation by introducing rewriting pat-
terns into the decoder of the encoder-decoder
model. Vijayakumar et al. (2018) proposed di-
verse beam search algorithm for decoding diverse
sequences. They describe beam search as an opti-
mization problem and augment the objective with
a diversity term. They encouraged diversity be-
tween beams at each step by rewarding each group
for spending its beam budget to explore differ-
ent parts of the output space rather than repeat-
edly chasing sub-optimal beams from prior groups.
They report their results on image captioning, vi-
sual question generation, and MT tasks. Shu et al.
(2019) generated diverse translations by condition-
ing sentence generation with the sentence codes.
They explored two methods: (a) semantic cod-
ing model which extracted sentence codes from
unsupervisedly learned semantic information and
(b) syntactic coding model which derived the sen-
tence codes from the parse trees produced by a
constituency parser. Ippolito et al. (2019) pro-
posed the use of over-sampling followed by post-
decoding clustering to remove similar sequences.
They evaluated several techniques on an open-
ended dialog task and image captioning task.
These works introduce different complex modi-

fications to the model in order to achieve diversity
while generating the output. However, in this pa-
per, we show how to simply generate diverse out-
puts.

Pre-train

Model Architecture Transformer-big
Number of epochs 20
Max tokens 4,096
Optimizer Adam

(β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8)

Learning rate 5× 10−4

Learning rate schedule inverse sqrt
Warmup updates 4,000
Min learning rate 1× 10−9

Loss function label smoothed cross-entropy
(ϵls = 0.1)

(Szegedy et al., 2016)
Dropout 0.3
Gradient Clipping 0.1

Fine-tuning

Number of epochs 10
Learning rate 3× 10−5

Learning rate schedule fixed

Translation

Beam size 64
Ensemble 4

Table 1: Hyperparameter values of NMT model.

3 Experiments

3.1 System

We used the open-source fairseq3 (Ott et al.,
2019) for training NMT models. We adopt the
Transformer (Vaswani et al., 2017) as our transla-
tionmodel. We train two types of models, L2R and
R2L for decoding. For L2R, we train a forward
model in a traditional way. For R2L model, we
first reverse the target sentences and train a model
so it will produce the output from backward. Then
the output of R2L is reversed again to forward di-
rection. We exclude sentences from the translation
results by normalizing the log probabilities of the
hypothesis sentences by sentence length with less
than -1.55 score. Then, the n-best translation re-
sults of each L2R and R2L are combined and if
there is a duplication, one of the translations is re-
moved.
In our preliminary experiments, we found that

the NMT model cannot produce sufficient quality
translations using only the official data set. There-
fore, we pre-train the NMTmodels with additional
datasets, followed by fine-tuning with the STA-
PLE dataset. Thus, we expect that a model learns

3https://github.com/pytorch/fairseq

135

Data Size

Official STAPLE-train 2,500 / 855,941
Official STAPLE-dev 500 / 172,817
Official STAPLE-test 500 / 165,095

STAPLE-train 2,450 / 837,879
STAPLE-dev 50 / 18,062

OpenSubtitles 2,083,600
Tatoeba 202,167
TED-train 152,115
TED-dev 1,958
TED-test 1,982

Table 2: Statistics on official STAPLE data and data
used in our experiments. For STAPLE data, the left side
indicates the number of prompts and the right side indi-
cates the total number of sentences contained in each
prompt.

general translation ability during pre-training and
further learns to produce more diverse translation
during fine-tuning.

3.2 Hyperparameters
Table 1 lists some specific hyperparameters used
in our experiments. For fine-tuning, we used the
same values as we used for pre-training regard-
ing the values that are not listed in the table. We
trained four L2Rmodels and four R2Lmodels with
different seeds on the same data, then ensembled
all of them by taking the union of their outputs.
We adjusted the hyperparameters using the devel-
opment set, described in the next subsection.

3.3 Data
Table 2 summarizes the size of data used in our ex-
periments for En→Ja track. The official dataset of
STAPLE contains multiple translations for a sin-
gle prompt. We did not use the official develop-
ment and test data in our experiments because the
correct data with answers were not available to
the public. Therefore, we randomly divided the
official training data into training data and devel-
opment data in prompt units as shown in Table
2. We use OpenSubtitles4 (Lison and Tiedemann,
2016), Tatoeba5 (Tiedemann, 2012), TED6 train
and dev (Cettolo et al., 2012) corpora as additional
dataset which are similar to the STAPLE data in

4http://opus.nlpl.eu/OpenSubtitles-v2018.
php

5http://opus.nlpl.eu/Tatoeba.php
6https://wit3.fbk.eu

System F1

jbrem 31.8
sweagraw 29.4
TMU 28.3
mzy 26.0
hzguo 23.9
jindra.helcl 21.3
darkside 19.4
STAPLE_aws_baseline 4.3
STAPLE_fairseq_baseline 3.3

Table 3: The official results on the test set for En→Ja
in terms of weighted F1.

Model F1

Single seed 1 23.7
Single seed 2 23.4
Multi seed 23.9

L2R 23.7
R2L 23.2
L2R & R2L 24.7

Table 4: The result for each model in terms of weighted
F1 on the development set.

terms of sentence length and data domain. We
used STAPLE-train, OpenSubtitles, Tatoeba and
TED-train as training data and STAPLE-dev, TED-
dev and TED-test as development data for the pre-
training. In fine-tuning, we used STAPLE-train
as training data and STAPLE-dev as development
data.

We lowercased all the English data. English was
tokenized using tokenizer.perl of Moses7 (Koehn
et al., 2007) and Japanese was tokenized using
MeCab8 with the IPA dictionary. After tokeniza-
tion, we adopted sub-word segmentation mecha-
nism (Sennrich et al., 2016)9. Note that, for the
training of R2L, we first applied tokenization for
the target sentences, then applied sub-word seg-
mentation and then performed the reversing. The
size of the sub-word vocabularies was set to 8,000.
The sub-word vocabularies were constructed using
pre-train training data.

7https://github.com/moses-smt/mosesdecoder
8http://taku910.github.io/mecab
9https://github.com/rsennrich/subword-nmt

136

Source your skirt is out of fashion.
Output 1 あなたのスカートは時代遅れである。 (Your skirt is outdated.)
Output 2 あなたのスカートは流行していない。 (Your skirt is not in fashion.)

Source they give me water.
Output 1 彼女らは私に水をくれる。 (They give me water.)
Output 2 私は彼らから水をもらいます。 (I get water from them.)

Source she found another path.
Output 1 彼女は違う道を見つけた。 (She found a different path.)
Output 2 彼女は別の道を見つけたわ (She found another way)
Output 3 彼女は別の道を見つけたよ (She found another way)

Table 5: Examples generated by the combination of four ensemble L2R and four ensemble R2L models’ outputs
using the development set. () indicate their English translation. The English translation of the third example can
not fully represent the change of styles used in Japanese language output.

3.4 Results

We used weighted macro F1 as the main scor-
ing metric (Mayhew et al., 2020). The system is
scored based on its ability to return all acceptable
human-made translations, weighted by the likeli-
hood that the learner will respond to each transla-
tion. Theweightedmacro F1 calculates a weighted
F1 for each prompt and takes the average of all the
prompts in the corpus.
Table 3 lists the F1 scores of participating sys-

tems in En→Ja track. Our TMU system was
ranked the third.

4 Discussion

4.1 Does translation in opposite directions
contribute to a diverse translation?

We investigate whether decoding in opposite direc-
tions contribute to diversity in translation outputs.
We compare the results for development set gen-
erated with beam size of 64 in one model (L2R,
R2L, Single seed 1, Single seed 2) to those gener-
ated and combined twomodels (L2R&R2L,Multi
seed) with beam size of 32. As a baseline, we also
experiment with different seeds and examine their
efficiency. This allows us to see how the direction
or seed contribute to the diversity of translation.
Table 4 shows the results for top-2 single seeds

models in terms of performance and multi seed
model, and the best L2R, R2L, and L2R & R2L
models. The results show that using multiple seeds
leads to higher F1 scores, however, the improve-
ment is not critical. On the other hand, L2R &
R2L improved weighted F1 scores for 1.0 points.
Therefore, we show that it is important to combine

the outputs of the two directions.

4.2 Examples of Translations

Table 5 demonstrates the example of diverse trans-
lations generated by the combination of four en-
semble L2R and four ensemble R2L models’ out-
puts. Here we sampled the outputs from develop-
ment set. The first example illustrates how our
system uses negation to express the same mean-
ing translations of the source sentence. The sec-
ond example changed the syntax by using benefac-
tive verbs for the output while preserving the same
meaning and grammatical correctness. The third
example uses different styles, which are specific
for Japanese language, to introduce diversity.
Therefore, we can conclude that even using sim-

ple approach we can achieve diverse, grammat-
ically correct translations without changing the
meaning of the input sentence.

5 Conclusion

In this paper, we introduced our system submit-
ted to WNGT2020 shared task to En→Ja track
on STAPLE. We have shown that even a simple
method which uses only forward and backward
models’ outputs can generate a variety of trans-
lations while maintaining original meaning and
grammaticality.
In future, we plan to compare our system with

existing systems that perform different types of lan-
guage generation. In addition, we will investigate
the impact of L2R and R2L models to the diverse
output in depth.

137

References
Mauro Cettolo, Christian Girardi, and Marcello Fed-

erico. 2012. WIT3: Web Inventory of Transcribed
and Translated Talks. In EAMT.

Daphne Ippolito, Reno Kriz, Maria Kustikova, João Se-
doc, and Chris Callison-Burch. 2019. Comparison
of Diverse DecodingMethods fromConditional Lan-
guage Models. In ACL.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In ACL.

Pierre Lison and Jörg Tiedemann. 2016. OpenSubti-
tles2016: Extracting Large Parallel Corpora from
Movie and TV Subtitles. In LREC.

Lemao Liu, Masao Utiyama, Andrew M. Finch, and
Eiichiro Sumita. 2016. Agreement on Target-
bidirectional Neural Machine Translation. In HLT-
NAACL.

S. Mayhew, K. Bicknell, C. Brust, B. McDowell,
W. Monroe, and B. Settles. 2020. Simultaneous
Translation And Paraphrase for Language Educa-
tion. InWNGT@ACL.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A Fast, Extensible
Toolkit for Sequence Modeling. In NAACL-HLT:
Demonstrations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In ACL.

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2019. Generating Diverse Translations with Sen-
tence Codes. In ACL.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the Inception Architecture for Computer Vision. In
CVPR.

Jorg Tiedemann. 2012. Parallel Data, Tools and Inter-
faces in OPUS. In LREC.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing He Sun, Stefan Lee,
David J. Crandall, and Dhruv Batra. 2018. Diverse
beam search for improved description of complex
scenes. In AAAI.

Qiongkai Xu, Juyan Zhang, Lizhen Qu, Lexing Xie,
and Richard Nock. 2018. D-PAGE: Diverse Para-
phrase Generation. ArXiv.

138

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 139–143
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

POSTECH Submission on Duolingo Shared Task

Junsu Park1, Hongseok Kwon1, Jong-Hyeok Lee1,2

Department of Computer Science and Engineering1, Graduate School of Artificial Intelligence2

Pohang University of Science and Technology (POSTECH), Republic of Korea
{jspak3, hkwon, jhlee}@postech.ac.kr

Abstract

This paper describes POSTECH’s submission
to the 2020 Duolingo Shared Task on Simul-
taneous Translation And Paraphrase for Lan-
gauge Education (STAPLE) for the English-
Korean language pair. In this paper, we pro-
pose a transfer learning based simultaneous
translation model by extending BART. We pre-
trained BART with Korean Wikipedia and a
Korean news dataset, and fine-tuned it with an
additional web-crawled parallel corpus and the
2020 Duolingo official training dataset. In our
experiments on the 2020 Duolingo test dataset,
our submission achieves 0.312 in weighted
macro F1 score, and ranks second among the
submitted En-Ko systems.

1 Introduction

Simultaneous Translation And Paraphrase for Lan-
guage Education (STAPLE) is the task of automati-
cally producing multiple translations from a single
source sentence (Mayhew et al., 2020). Because
STAPLE can be regarded as a mixture of the ma-
chine translation (MT) and paraphrasing problem,
MT and paraphrasing techniques play an impor-
tant role in this task. Unlike in a typical MT task,
systems are demanded to generate high-coverage
sets on a sentence-level, as opposed to word-level.
Subsequently, systems require a deeper linguistic
understanding of the target language to generate
accurate target sentences.

Recent NLP studies have alleviated this problem
by transfer learning (Ventura and Warnick, 2007)
from pre-trained language models. Radford et al.
(2018) proposed a generative pre-trained language
model (GPT), which trains a Transformer decoder
with large-scale monolingual data, to achieve sig-
nificantly improved performance in nine out of the
twelve datasets. Despite these improvements, GPT
shows a limited ability to model bidirectional con-
text due to using the classical generative model-

ing approach. On the other hand, Devlin et al.
(2018) proposed bidirectional encoder representa-
tions from Transformers (BERT), trained for the
reconstruction of natural language from sentences
containing masked tokens, in order to obtain deeper
representations for natural language. By training on
an enormous amount of training data, they achieved
state-of-the-art results on eleven NLP tasks. To
take advantage of both pre-trained generative mod-
els and pre-trained bidirectional encoders, Lewis
et al. (2019) introduced a denoising autoencoder for
pre-training sequence-to-sequence models called
BART. BART aims to learn linguistic knowledge in
the process of first corrupting the text using various
noise functions and then restoring it, and showed
state-of-the-art performance in various tasks.

Given this background, we expected that using a
transfer-learning-based approach could resolve two
difficulties of the En-Ko track of STAPLE: data
insufficiency and multiple sentence generation. Un-
like recent MT models which used over 4.5 million
sentence pair for training data, the STAPLE offi-
cial dataset includes only 2500 En-Ko source sen-
tences. With such small data, we predicted that re-
cent NMT models would not be able to learn trans-
lation knowledge effectively. Also, we speculated
that paraphrasing requires a deep understanding
of the language. Based on this prediction, a well-
trained language model and a generative model for
target language were needed to achieve this task’s
objectives.

With these considerations, we concluded that
BART, a sequence-to-sequence generative model
pre-trained on a large amount of data, is most
suitable for STAPLE and thus propose a transfer-
learning-based simultaneous translation model by
extending BART. Our model added a randomly ini-
tialized source-side encoder in place of the embed-
ding layer of BART pre-trained by Korean mono-
lingual data and predicts translation weights with

139

https://www.aclweb.org/anthology/D19-56%2d

Figure 1: The overall architecture of the proposed
model. The input vectors of feed-forward network are
the sum of the pre-trained decoder’s hidden vectors.

an additional feed-forward network using hidden
vectors generated by the pre-trained decoder. The
remainder of the paper is organized as follows: Sec-
tion 2 describes our proposed method. Section 3
summarizes the experimental procedure and results,
and Section 4 gives the conclusion.

2 Method

We adopt BART to the STAPLE problem, which
takes source sentence to generate multiple target
sentences. Our model consists of a pre-trained
autoencoder with the source-side encoder that pro-
posed in Lewis et al. (2019) and a feed-forward
network to predict translation weights (Figure 1).
In the following subsections, we describe our meth-
ods in detail.

2.1 Pre-trained autoencoder (BART)

We used BART as our pre-trained autoencoder
structure. As was with BART, our autoencoder
structure learns linguistic information of the target
language by denoising various types of document
corruptions. Among the five document corruption
types proposed by BART, we applied Text Infilling
and Sentence Permutation because they yielded the
best results on Lewis et al. (2019).

2.2 Source-side Encoder

Pre-trained BART is a monolingual model, so the
proposed model needs an additional encoder to
function as translation model. After pre-training
BART, we removed the embedding layer of the pre-
trained encoder and added a randomly-initialized
encoder instead (Lewis et al., 2019). In order to pre-
vent corruption from the high loss in the randomly-

Dataset Sentence Word

Monolingual 31,654,593 447,754,804
Additional parallel 2,035,566 29,964,677
Official (1 to 1) 700,410 2,915,939

Table 1: Dataset statistics - number of target sentence
and word.

initialized encoder during initial training, we freeze
all pre-trained BART weights during the first fine-
tuning step except for the self-attention input pro-
jection matrix of BART’s first encoder layer. In the
second step, we train all model parameters.

2.3 Feed-forward network for translation
weight training

We added a feed-forward network to predict a trans-
lation weight on each generated sentence. The
sum of hidden vectors which generated on the de-
coder is passed as the input of the feed-forward
network. The output of the feed-forward network
passed through a sigmoid layer becomes the final
translation weight. During the generation step, the
sentences with the high weights are selected.

3 Experiments

3.1 Dataset
Pre-training. For pre-training, we use text
crawled from the Korean Wikipedia (5.8M words)
and Korean online news sites (447M words). When
crawling, we extracted only text passages and ig-
nored headers, lists, and tables. To reduce training
time, we filtered out any samples that exceed 100
tokens.

Fine-tuning. For fine-tuning, we used the STA-
PLE official training data (Duolingo, 2020) (700K
sentences), setting aside 100 sentences each for
the development set and test set. In addition, we
adopted the web crawling parallel corpus (2M
sentences) as additional training and development
data for the source-side encoder. As with the pre-
training corpus, we filtered out any training or de-
velopment samples longer than 100 tokens.

3.2 Training Details
Settings. We modified the Fairseq (Ott et al.,
2019) implementation of BART to build our model.
Most hyperparameters of BART pre-training such
as dropout ratio, hidden size, and etc. were copied
from the base model described in Lewis et al.

140

Decoding Option Weighted Macro F1 ↑ Weighted Recall ↑ Precision ↑
Beam Size Diverse Nbest (weight)

Beam search

50 – 50 0.3192 0.3092 0.5202
75 – 75 0.3280 0.3651 0.4628
100 – 100 0.3234 0.4008 0.4214
140 – 140 0.3108 0.4394 0.3680
500 – 500 0.2218 0.5817 0.1865

Diverse
beam search

100 5 100 0.1673 0.2069 0.2212
100 10 100 0.1164 0.1474 0.1601

Beam search
with weight

75 – 50 0.2695 0.2546 0.4630
75 – 65 0.3064 0.3197 0.4615
75 – 70 0.3163 0.3410 0.4596

Table 2: Results of training variants – each separated section corresponds to a different generation strategy
(Beam search, Diverse beam search and Beam search with weight). Diverse is the number of group for diverse
beam search and Nbest (weight) is the number of sentences selected by highest translation weight. The bold values
indicate the best result in the metrics for each architecture.

(2019). For the document corruption scheme, we
used the pre-training options of Lewis et al. (2019):
Text Infilling and Sentence Shuffling. We set warm-
up learning steps to 10K out of 250K total steps.
For data preprocessing, we applied the sentence-
piece (Kudo and Richardson, 2018) implementa-
tion of byte-pair encoding (Sennrich et al., 2016)
with a 32k vocabulary on each language.

Pre-training. We trained target-side BART us-
ing Text Infilling and Sentence Shuffling as de-
scribed in §2.1. We replaced 30% of tokens with
single [MASK] symbols with span length distribu-
tion (λ = 3) on Text Infilling.

Fine-tuning. We divided fine-tuning step into
four steps.

1. Pre-train source-side encoder After pre-
training, we detached the embedding layer
of BART encoder and attached a randomly
initialized encoder as described in §2.2. We
used only our web crawling parallel corpus for
this step. During this step, we freeze the pre-
trained model except the first encoder layer’s
projection weights to prevent the pre-trained
weights being affected by the high loss while
the encoder learns the source-side representa-
tion.

2. Fine-tuning on MT After pre-training the
source-side encoder, we trained entire model
on the same training data with a smaller learn-
ing rate. Because the size of the parallel data
used for fine-tuning is much smaller than that

of monolingual data used for pre-training, we
expected pre-trained BART to generate the
correct sentences even if the source-side en-
coder produced an incorrect expression.

3. Fine-tuning on paraphrasing After training
on an additional parallel corpus, we trained
the entire model on the official parallel corpus
to reach the paraphrasing goal.

4. Weight training After learning all sentence
representations, we trained a feed-forward net-
work for translation weight prediction on the
official target language weights. In order to
train translation weights without corrupting
the sentence generation model, we freeze all
parts of the model excluding the feed forward
network.

Experiment variations. We conduct multiple
experiments on test set divided from official train-
ing set to determine the best generation strategy.

• Beam search with different beam size. We
selected all generated sentences.

• Diverse beam search with different beam
size and group size. We used the implementa-
tion of Vijayakumar et al. (2016).

• Beam search w/ weight with same beam size
but different size of sentences selected by
highest translation weight.

141

Systems Weighted Macro F1 ↑ Weighted Recall ↑ Precision ↑
jbrem 0.4035 0.4518 0.4795
jspak3 (ours) 0.3116 0.3342 0.4701
sweagraw 0.2553 0.3168 0.3216
jindra.helcl 0.2058 0.1935 0.3894

STAPLE fairseq baseline 0.0486 0.0315 0.2204
STAPLE aws baseline 0.0412 0.0226 0.6360

Table 3: Submission results – the official results of 2020 Duolingo shared task in En-Ko language pair. The bold
values indicate the best result in the metrics for the each architecture.

3.3 Results

We trained the model as described in §3.2 using var-
ious generation strategies. For evaluation, we used
weighted macro F1 scores on our test set extracted
from the 2020 Duolingo official dataset. Table 2
shows the scores of each generation strategy. In
the case of beam size, results showed the highest
weighted macro F1 score when the beam size was
75. We speculate this to be because of the trade-off
between weighted recall and precision. Using di-
verse beam search with beam size 100 and beam
search with translation weight showed ineffective
results. We initially expected to attain a higher pre-
cision with similar weighted recall if the translation
weights were predicted accurately, but it seems our
feed-forward network was not able to learn the dis-
tribution of translation weights properly. Also, we
had expected diverse beam decoding to help gen-
erate more diverse sentences, but it had an adverse
effect on overall performance.

Submission results. The submission results on
the official test set are reported in Table 3. We
selected the decoding option obtained by applying
beam search with beam size 75, Nbest 75 which
showed the highest weighted macro F1 score in
Table 2 as our final submission. Our submission
achieves an improvement of +0.263 in weighted
macro F1 score compared to the baseline. As a
result, our system ranks second out of the four
systems submitted this year.

4 Conclusion

In this paper, we present POSTECH’s submissions
to the 2020 Duolingo shared task. We propose
a transfer-learning based simultaneous translation
model by extending BART. The proposed model is
first pre-trained by reconstructing large corrupted
text using text infilling and sentence shuffling, and

then fine-tuned with an additional parallel corpus
and the official training dataset with a newly added
randomly initialized encoder in place of the em-
bedding layer. It has an additional feed-forward
network to predict translation weight trained on the
official dataset. Finally, our model outperforms the
baseline by a large margin and ranks second out of
the submitted systems.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Duolingo. 2020. Data for the 2020 Duolingo Shared
Task on Simultaneous Translation And Paraphrase
for Language Education (STAPLE).

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

S. Mayhew, K. Bicknell, C. Brust, B. McDowell,
W. Monroe, and B. Settles. 2020. Simultaneous
translation and paraphrase for language education.
In Proceedings of the ACL Workshop on Neural Gen-
eration and Translation (WNGT). ACL.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL

142

https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Dan Ventura and Sean Warnick. 2007. A theoretical
foundation for inductive transfer. Brigham Young
University, College of Physical and Mathematical
Sciences.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R. Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models.

143

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 144–152
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

The ADAPT System Description for the STAPLE 2020
English-to-Portuguese Translation Task

Rejwanul Haque, Yasmin Moslem and Andy Way
ADAPT Centre

School of Computing
Dublin City University

Dublin, Ireland
firstname.lastname@adaptcentre.ie

Abstract

This paper describes the ADAPT Centre’s
submission to STAPLE (Simultaneous Trans-
lation and Paraphrase for Language Educa-
tion) 2020, a shared task of the 4th Work-
shop on Neural Generation and Translation
(WNGT), for the English-to-Portuguese trans-
lation task. In this shared task, the partic-
ipants were asked to produce high-coverage
sets of plausible translations given English
prompts (input source sentences). We present
our English-to-Portuguese machine translation
(MT) models that were built applying vari-
ous strategies, e.g. data and sentence selec-
tion, monolingual MT for generating alterna-
tive translations, and combining multiple n-
best translations. Our experiments show that
adding the aforementioned techniques to the
baseline yields an excellent performance in the
English-to-Portuguese translation task.

1 Introduction

The ADAPT Centre participated in STAPLE1

(Mayhew et al., 2020), a shared task of the 4th
WNGT which will be held at ACL 2020,2 in the
English-to-Portuguese language direction. The
task focuses on a specific use case of MT, i.e.
generating many possible translations for a given
input text. Such situations are usually seen on
language-learning platforms (e.g. Duolingo) where
the learning process includes translation-based ex-
ercises, and evaluation is done by comparing learn-
ers’ responses with a large set of human-curated
acceptable translations. The shared task organis-
ers (Duolingo) have released real language-learner
data of Duolingo as training examples. We applied
a number of strategies to our MT system build-
ing process, e.g. monolingual MT, extracting par-
allel sentences that are similar to the Duolingo’s

1https://sharedtask.duolingo.com/
2https://acl2020.org/

real language-learner data from the freely available
external parallel corpora, assembling n-best trans-
lations from multiple translation systems, which
essentially led us to generate high-coverage sets of
possible translations of the English prompts (input
source sentences).

The remainder of the paper is organised as fol-
lows: Section 2 explains our approaches; Section
3 details of the datasets used, explains the experi-
mental setups and presents the results with some
discussions; and Section 4 concludes our work with
avenues for future work.

2 Methodology

2.1 Selecting External Datasets
Since the shared task organisers released training
data with a limited number of prompts (only 4,000
English prompts for English-to-Portuguese transla-
tion) and allowed participants to use external data,
we made use of parallel corpora from a variety of
existing sources, e.g. OPUS3 (Tiedemann, 2012).
First, we found out which corpora are similar to
Duolingo’s training dataset. For this, we measured
perplexity of the source and target texts of the ex-
ternal datasets on the in-domain language mod-
els (LMs) (i.e. LMs were built on the Duolingo’s
data). We selected those corpora whose sentences
are found to be more similar to those of Duolingo’s
language learning data.

2.2 Selecting ‘Pseudo In-domain’ Parallel
Sentences from External Data

The state-of-the-art sentence selection method of
Axelrod et al. (2011) is used to extract ‘pseudo
in-domain’ data from large corpora using bilin-
gual cross-entropy difference. The extracted data
is usually used to train domain-specific MT sys-
tems or to fine-tune generic MT systems. We con-

3http://opus.lingfil.uu.se/

144

https://www.aclweb.org/anthology/D19-56%2d

sider Duolingo’s language learning data released
in this shared task as the real in-domain data. In
this task, we took each of the external parallel cor-
pora (usually large in size) chosen following the
approach described in Section 2.1, and selected
top n sentence-pairs as per low cross-entropy dif-
ferences over each side of the corpus (source and
target) following Axelrod et al. (2011). This pro-
vided us with a ‘pseudo in-domain’ corpus (i.e. the
extracted top n sentence-pairs) whose sentences are
similar to the sentences of the Duolingo’s data in
terms of domain and style. We appended the ex-
tracted ‘pseudo in-domain’ data to the STAPLE’s
(Duolingo’s) training data for building different
MT systems which are described latter in the paper
(cf. Section 3.5).

2.3 Same-language MT
Same-language MT has been successfully used in
many NLP applications, e.g. text-to-speech synthe-
sis for creating alternative target sequences (Cahill
et al., 2009), translation between varieties of the
same language (Brazilian Portuguese to European
Portuguese) (Fancellu et al., 2014), paraphrase gen-
eration (Plachouras et al., 2018), and producing
many alternative sequences of a given input ques-
tion in question answering (Bhattacharjee et al.,
2020). In our case, we developed Portuguese-to-
Portuguese MT systems that were able to generate
n-best (same-language) alternative sentences of an
input Portuguese sentence. Using this monolingual
MT systems, we could obtain a set of alternative
sequences of a given Portuguese translation.

As mentioned earlier, the Duolingo training data
includes a high-coverage set of Portuguese transla-
tions of the English prompts. We generated a set
of source–target pairs (Portuguese-to-Portuguese)
from each of the high-coverage sets of alterna-
tive Portuguese translations. This served as our
training data for Portuguese-to-Portuguese MT sys-
tem building. Additionally, we used an existing
paraphrasing resource (Ganitkevitch and Callison-
Burch, 2014) for Portuguese and appended that to
the training data.

2.4 Combining multiple n-best Translations
In this work, we built a number of MT systems
using the state-of-the-art phrase-based statistical
MT (PB-SMT) (Koehn et al., 2003) and neural MT
(NMT) (Vaswani et al., 2017) approaches. The
n-best translations produced by the different MT
systems (i.e. a PB-SMT and several NMT systems)

are combined adopting a variety of approaches (e.g.
majority voting) to produce the final sets of transla-
tions of the English prompts.

3 Experiments and Results

3.1 The MT system setups
As pointed out earlier, we chose the classical PB-
SMT and emerging NMT paradigms for building
our MT systems. To build our PB-SMT systems,
we used the Moses toolkit (Koehn et al., 2007). We
used a 5-gram LM trained with modified Kneser-
Ney smoothing (Kneser and Ney, 1995) using the
KenLM toolkit (Heafield et al., 2013). Our PB-
SMT log-linear features include: (a) 4 translational
features (forward and backward phrase and lexical
probabilities), (b) 8 lexicalised reordering probabil-
ities (wbe-mslr-bidirectional-fe-allff), (c) 5-gram
LM probabilities, (d) 5 OSM features (Durrani
et al., 2011), and (e) word-count and distortion
penalties. In our experiments, word alignment mod-
els are trained using the GIZA++ toolkit4 (Och
and Ney, 2003), phrases are extracted following
the grow-diag-final-and algorithm of Koehn et al.
(2003), Kneser-Ney smoothing is applied at phrase
scoring, and a smoothing constant (0.8u) is used
for training lexicalised reordering models. The
weights of the parameters are optimised using the
margin-infused relaxed algorithm (Cherry and Fos-
ter, 2012) on the development set. For decoding,
the cube-pruning algorithm (Huang and Chiang,
2007) is applied, with a distortion limit of 12.

To build our NMT systems, we used the Marian-
NMT (Junczys-Dowmunt et al., 2018) toolkit. The
NMT systems are Transformer models (Vaswani
et al., 2017). In our experiments, we followed
the recommended best set-up from Vaswani et al.
(2017). The tokens of the training, evaluation and
validation sets are segmented into sub-word units
using the Byte-Pair Encoding (BPE) technique
(Sennrich et al., 2016). We performed 32,000 join
operations. Our training set-up is as follows.

We consider the size of the encoder and decoder
layers to be 6. As in Vaswani et al. (2017), we em-
ploy residual connection around layers (He et al.,
2015), followed by layer normalisation (Ba et al.,
2016). The weight matrix between the embed-
ding layers is shared, similar to Press and Wolf
(2016). Dropout (Gal and Ghahramani, 2016) be-
tween layers is set to 0.10. We use mini-batches of

4http://www.statmt.org/moses/giza/
GIZA++.html

145

size 64 for updating. The models are trained with
the Adam optimizer (Kingma and Ba, 2014), with
the learning-rate set to 0.0003 and reshuffling the
training corpora for each epoch. As in Vaswani
et al. (2017), we also use the learning rate warm-
up strategy for Adam. Validation on the develop-
ment set is performed using three cost functions:
cross-entropy, perplexity and BLEU. The early-
stopping criteria is based on cross-entropy while
the final NMT system is selected as per the highest
BLEU score on the validation set. The beam size
for search is set to 12.

3.2 The Shared Task Data
The data released by STAPLE is compiled from
Duolingo’s language learning courses. The train-
ing data for English-to-Portuguese translation con-
tains 4,000 English prompts, with multiple Por-
tuguese translations, from which we obtained a
total of 526,467 source–target segment-pairs. We
randomly sampled 2,000 sentence-pairs from the
training set, and considered them as development
set. As for the development set, we chose the high-
est scoring Portuguese translations of the English
prompts. The development set (blind) released by
STAPLE contains 500 English prompts. They also
provided a high-quality automatic reference trans-
lations of the development set sentences by Ama-
zon Translate.5 We considered the development
set (with translations by Amazon translate as refer-
ences) as our test set in order to evaluate our MT
systems. We removed those entries from the train-
ing set (526,467 source–target segment-pairs) that
overlap with entries (source or target counterparts)
of the development and test sets. The training set is
left with 258,306 source–target segment-pairs after
discarding the overlapping entries. The statistics
of training, development and test set sentences are
shown in Table 1.

sentences words (en) words (pt)
train set 258,306 2,063,108 2,128,044
dev set 2,000 14,557 14,196
test set 500 3,551 3,322

Table 1: The shared task data statistics.

3.3 The baseline MT systems
We first built MT systems with only the data pro-
vided by the shared task (cf. Table 1). We com-
puted the BLEU (Papineni et al., 2002) score to

5https://aws.amazon.com/translate/

evaluate the MT systems on the test set, which are
reported in Table 2. Note that we used transla-
tions by Amazon Translate provided by STAPLE
as the reference translations, which are excellent in
quality. Thus, the BLEU scores on the test set can
provide indications how good or bad our MT sys-
tems are. Additionally, we have reported the MT
systems’ BLEU scores on the development set. As
can be seen from Table 2, the BLEU scores of the
MT systems are very low. These scores were ex-
pected given the (small) number of sentences used
for training. Interestingly, PB-SMT outperforms
NMT by a large margin in terms of BLEU, and this
can happen in low-resource scenarios (Koehn and
Knowles, 2017).

BLEU
dev set test set

PB-SMT 22.69 19.92
Transformer 9.57 9.23

Table 2: The BLEU scores of baseline MT systems.

3.4 The External Datasets Used

Since we (participants) are allowed to use external
data, we decided to use freely available bilingual
corpora whose sentences are similar to those of the
Duolingo’s English–Portuguese dataset. We took
all bilingual corpora available in the OPUS reposi-
tory, and measured perplexity of source and target
texts on in-domain LMs (built on the Duolingo
data only). We found that the most similar cor-
pora to the English-side of the Duolingo’s training
corpus are OpenSubtitles6 and Tatoeba7 and to the
Portuguese-side of that are Books8 and Tatoeba. In
addition to Tatoeba, Books and OpenSubtitles, we
made use of ParaCrawl (parallel sentences crawled
from Web)9 and Wikipedia (parallel sentences ex-
tracted from Wikipedia)10 which were found to be
moderately similar to the task data according to
the LM perplexity scores. Additionally, we also
used several generic corpora for building an NMT

6http://opus.nlpl.eu/
OpenSubtitles-v2018.php

7http://opus.nlpl.eu/Tatoeba-v20190709.
php

8http://opus.nlpl.eu/Books-v1.php
9http://opus.nlpl.eu/ParaCrawl-v5.php

10http://opus.nlpl.eu/Wikipedia-v1.0.
php

146

system, EUconst,11 JRC-Acquis,12 Europarl13 and
DGT.14

We manually looked at these datasets, and ob-
served that the Tatoeba and Books corpora are
good in quality. We directly used sentences of
the Tatoeba and Books corpora for system building.
In contrast, the OpenSubtitles corpus seems to have
considerable noise intact in it. We also noticed that
a corpus of one language (say, English) contains
sentences of other languages, so we use a language
identifier15 in order to remove such noise. We ap-
plied a number of standard cleaning routines for
removing noisy sentences, e.g. removing sentence-
pairs that are too short, too long or which violate
certain sentence-length ratios. The latter process-
ing was applied to all corpora. In order to perform
tokenisation for English and Portuguese, we used
the standard tool16 in the Moses toolkit.

As for the selection of “pseudo in-domain”
sentence-pairs from the external bilingual corpora
using bilingual cross-entropy difference measure
(Axelrod et al., 2011) (cf. Section 2.2), we ap-
plied the strategy to every corpus except Tatoeba
and Books. The so-called “pseudo in-domain” par-
allel sentences that were extracted from the out-
of-domain data were appended to the in-domain
(shared task) training data in order to build the MT
systems.

3.5 The MT systems built using external
datasets

3.5.1 The PB-SMT systems
This section presents the PB-SMT systems that
were built on the training data augmented by ap-
pending external data (cf. Section 3.4) to the shared
task data. As stated earlier, the performance of
the PB-SMT systems on the development set and
test sets in terms of BLEU are shown in Table
3. The second row of Table 3 represents the MT
system built on the training data (Duo + Books +
Tatoeba) that includes sentences of the Duolingo’s
training data and of two external corpora: Books
and Tatoeba. We see that this MT system surpassed

11http://opus.nlpl.eu/EUconst-v1.php
12http://opus.nlpl.eu/JRC-Acquis-v3.0.

php
13http://opus.nlpl.eu/Europarl-v8.php
14http://opus.nlpl.eu/DGT-v2019.php
15cld2: https://github.com/CLD2Owners/

cld2
16https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

the baseline PB-SMT system (cf. Table 2) by a
large margin in terms of BLEU.

dev set test set
(a) Baseline 22.69 19.92
(b) Duo + Books + Tatoeba 53.18 49.42
(c) (b) + 3M ParaWiki 57.80 55.27

Table 3: The BLEU scores of the PB-SMT systems.
Duo: Duolingo’s training data.

We merged the ParaCrawl and Wikipedia cor-
pora, and from now on, we call the combined
corpus ParaWiki. We took low-scoring (bilingual
cross-entropy difference) (cf. Section 2.2) sentence-
pairs from ParaWiki, added them to the training
data (i.e. Duo + Books + Tatoeba) in various pro-
portions, and built PB-SMT systems on them. The
BLEU scores of the best system out of the PB-SMT
systems that were built on these sets of training data
on the development and test sets are shown in the
last row of Table 2. As illustrated by the table, sen-
tences of ParaWiki have a positive impact on the
system’s performance since we get further gains
in terms of BLEU. In short, our best-performing
PB-SMT system is the one that is built on train-
ing data compiled by three million sentences from
ParaWiki, all sentences of the Books and Tatoeba
corpora and the Duolingo’s training data. From
now on, this PB-SMT system is referred as PB-
BEST. In this context, we also carried out a number
of experiments and built many PB-SMT systems by
adding sentences from other data sets (e.g. Open-
Subtitles) to the training data in various proportions
as above. None of the setups results in any other
MT system that could outperform PB-BEST.

dev set test set
(a) Baseline 9.57 9.23
(b) Duo + Books + Tatoeba 62.19 58.17
(c) (b) + 3M ParaWiki 60.77 62.61
(d) (b) + 6M ParaWiki 65.69 67.97
(e) (b) + 3M Generic 46.15 43.38
(f) (b) + 8M Sub 50.83 57.82
(g) (d) + 8M Sub 55.73 61.07

Table 4: The BLEU scores of the NMT systems. Duo:
Duolingo’s training data.

3.5.2 The NMT systems
This section presents our NMT systems that were
built on the training data prepared by appending

147

external data (cf. Section 3.4) to the shared task
data. We evaluate the NMT systems on the test set,
and report BLEU scores in Table 4. As above, we
also show their performance (i.e. BLEU scores)
on the development set. When we compare the
scores of Table 3 with those of Table 4 (rows (b)
and (c)), we see that NMT outperforms PB-SMT
with large margins. This time, our best setup is
the one when we use training data compiled by six
million sentences from ParaWiki, all sentences of
the Books and Tatoeba corpora and the shared task
training data (cf. row (d) of Table 4). From now
on, we call this MT system NEURAL-BEST.

We also built MT systems using sentences from
other datasets. We merged sentences of the generic
corpora (EUconst, JRC-Acquis, Europarl, DGT),
selected low-scoring 3M sentence-pairs from the
combined corpus (i.e. the most similar sentences
to those of the Duolingo’s data), and added them
to the baseline training set. We can see from Table
4 (row (e)) that the the MT system built on this
training data does not perform well. We call this
MT system NEURAL-Generic.

As mentioned above (cf. Section 3.4), sentences
of the OpenSubtitles corpus are quite similar to
those of Duolingo’s training corpus. To this end,
we carried out a series of experiments by selecting
different sizes of sentences from this dataset fol-
lowing the approach described in Section 2.2. We
found that this dataset does have much impact on
our system building (cf. row (f) of Table 4). In fact,
we see from the last row of Table 4 that inclusion
of a part of the OpenSubtitles corpus to the train-
ing set of the best setup deteriorates the system’s
performance. We call this MT system (row (g))
NEURAL-OpenSub.

3.6 The Portuguese-to-Portuguese MT
Systems

In Section 2.3, we explained the purpose of cre-
ating monolingual MT systems. This section de-
scribes our Portuguese-to-Portuguese MT systems.
We prepare training data for the Portuguese-to-
Portuguese MT system from the high-coverage set
of Portuguese translations for the English prompts.
Thus, the training data contains source–target pairs
whose source and target counterparts are two vari-
ations of Portuguese translation. In Table 5, we
show the number of training examples used for
building monolingual Portuguese MT systems. The
table also shows the maximum number of varia-

tions for a Portuguese translation used for forming
the training set. Additionally, we used Portuguese
paraphrases from the PPDB database17 (Ganitke-
vitch and Callison-Burch, 2014) as the part of the
training data for this task. We also used the target-
side (Portuguese) sentences of the shared task train-
ing set (cf. Table 1), and add them (i.e. identical
copy) to the both sides of the training set. The first
1,000 sentences of the development set (cf. Table
1) serves as our development set and the remaining
sentences of the development set serves as our test
set.

Sentences Variations
PB-SMT 3,091,264 30 (max.)
NMT 12,523,886 75 (max.)
Paraphrases 16,915,010

Table 5: Number of training examples used for the
monolingual MT training.

BLEU
PB-SMT 72.30
NMT 40.73

Table 6: The BLEU scores of the monolingual MT sys-
tems.

We obtain the BLEU scores to evaluate the
monolingual MT systems on the test set, and re-
port them in Table 6. The learning objective of the
monolingual MT models is to generate alternative
sequences of a language given the sentences of the
same language. Therefore, these scores, to a certain
extent, show how likely an MT system can produce
their own versions of the Portuguese sentences. We
see from Table 6 that PB-SMT outperforms NMT
with a large margin in terms of BLEU.

3.7 Generating Translations of English
Prompts

This section presents our translation framework
that is expected to generate high-coverage sets of
plausible translations given the English prompts.
In the translation framework, we made use of
our best system NEURAL-BEST, and two more
Transformer models, NEURAL-OpenSub and
NEURAL-Generic (cf. Section 3.5.2), and best
SMT system PB-BEST (cf. Section 3.5.1). Note
that we make each of our final NMT models with
ensembles of 4 models that are sampled from the

17http://paraphrase.org/#/download

148

training run, and one of them is selected as per
highest BLEU score on the validation set.

The STAPLE development and test sets are blind,
and participants were asked to submit the sys-
tem’s output via CodaLab18 which displays sys-
tem’s scores upon submission. The main scoring
metric for evaluation is weighted macro F1. The
precision and recall are calculated in unweighted
and weighted fashions, respectively. In short, the
systems are scored based on how well they can
return all human-curated acceptable translations,
weighted by the likelihood that an English learner
would respond with each translation.

R P F1

NEURAL-BEST 0.4325 0.6564 0.4601
NEURAL-OpenSub 0.3922 0.5542 0.3922
NEURAL-Generic 0.3224 0.5541 0.3451
PB-BEST 0.2044 0.5643 0.2512
SysCom 0.4566 0.6019 0.4620
SysCom + MMT-B1 0.4551 0.6204 0.4669
SysCom + MMT-B5 0.4656 0.6138 0.4710

Table 7: Performance of our MT systems on dev set
(submitted).

In Table 7, we present the performance of our
submitted MT systems on the development set. The
first row of Table 7 represents our best NMT sys-
tem NEURAL-BEST which is competitive and pro-
duces an F1 score of 0.4601 on the development
set. As for this system, we generate 12-best (n =
12) translations for each English prompt. We tried
higher values for n and the systems with different
values of n are more or less comparable to the one
reported in the table. Therefore, we keep the value
of n 12 for generating alternative translations for
all our MT systems. The system that represents the
first row of the table can be seen as our baseline.

The next three rows of Table 7 show the scores of
other two neural models, NEURAL-OpenSub and
NEURAL-Generic, and the best PB-SMT system
PB-BEST. We see from Table 7 that these MT sys-
tems perform much worse than NEURAL-BEST
as far as the F1 scores on the development set are
concerned. Interestingly, precision of PB-BEST
is relatively better than the other two MT systems
despite its low recall which in fact is responsible
for its low final F1. We found that many 12-best
translations produced by PB-BEST are identical.

18https://competitions.codalab.org/
competitions/

This is the reason why its recall (and F1) is too low.

The fifth row of Table 7 presents a system that
combines n-best translations of different MT sys-
tems. We refer to this system as SysCom. The idea
is to produce final sets of translations of the En-
glish prompts as exhaustive and precise as possible
by combining 12-best translations produced by the
different MT systems. We tried a number of ways
for combining the translations produced by multi-
ple systems, and the setup that worked best for us
is described as follows. We took 12-best transla-
tions by NEURAL-BEST and 1-best translations
by NEURAL-Generic, NEURAL-OpenSub and
PB-BEST. Additionally, we also took translations
from 12-best translations by NEURAL-Generic,
NEURAL-OpenSub and PB-BEST with two out
of three voting logic. The reason for using differ-
ent MT methods and MT systems built on differ-
ent data domains or styles in the system combina-
tion strategy is that such MT systems may produce
some alternative translations that are to be differ-
ent to each other. SysCom produces a 0.0019 F1

point absolute (corresponding to 0.41% relative)
gain over the baseline. Naturally, this approach
increases the coverage of plausible translations of
the English prompts, which causes a 0.0241 recall
point absolute (corresponding to 5.57% relative)
gain over the baseline however at the expense of
precision.

The final two rows of Table 7 correspond to two
system setups in which we used our monolingual
Portuguese MT systems on top of the SysCom
setup. In other words, we applied the monolingual
Portuguese MT systems to the Portuguese trans-
lations of the English prompts in order to collect
more viable alternative translations. We tried to
avoid applying monolingual MT on the noisy trans-
lations generated in the previous stage (i.e. English-
to-Portuguese MT). Accordingly, we adopted dif-
ferent setups in order to obtain translations that are
to be as much error free as possible (i.e. a set of
high precision n-best translations). The setup that
worked best in our case is described as follows. We
took 1-best (i.e. row 6 of Table 7; MMT-B1) or
5-best (i.e. row 7 of Table 7; MMT-B5) transla-
tions by both NEURAL-BEST and PB-BEST. We
also took a set of translations which is an intersec-
tion of the sets of 12-best translations produced by
NEURAL-BEST, NEURAL-Generic, NEURAL-
OpenSub and PB-BEST. Let’s call this set of trans-
lations mono-set.

149

We translated the sentences (i.e. Portuguese
translations) of the mono-set using the monolin-
gual Portuguese PB-SMT and NMT systems (cf.
Section 3.6). For each sentence of mono-set we
produce 12-best translations by the PB-SMT and
NMT systems, take intersection of the two sets of
12-best translations, and consider the intersected
set as the viable alternative translations. Nonethe-
less, this stage includes another screening that helps
weed out as much noise as possible, which are de-
scribed as follows. We used 12-best translations
provided by the monolingual PB-SMT and NMT
systems if and only if a certain portion of the trans-
lations by each system should appear in the output
of SysCom. In other words, a ratio of the number
of the overlapping translations by each of the mono-
lingual MT systems with the translations provided
by SysCom and the total number of the transla-
tions provided by SysCom should be greater than
a threshold which we set to 0.2. The intersection
operation on two sets of 12-best translations and
the screening strategy, to a certain extent, ensures
the translation variations generated by the mono-
lingual MT systems of good quality. We see from
the final two rows of Table 7 that the strategy of ap-
plying monolingual MT for generating alternative
translations brings about moderate improvements
in terms of F1 over the baseline. The best setup
(SysCom + MMT-B5) produces a 0.0109 F1 point
absolute (corresponding to 2.4% relative) gain over
the baseline.

R P F1

SysCom + MMT-B1 0.4306 0.6379 0.4574
SysCom + MMT-B5 0.4377 0.6318 0.4597

Table 8: Performance of our MT systems on test set
(submitted).

In Table 8, we show the performance of our
submitted systems on the STAPLE 2020 test set.
These systems in fact correspond to the two sys-
tems whose performance on the development set
were presented in the last two rows of Table 7. The
second row of Table 8 (SysCom + MMT-B5) rep-
resents the system whose submission earned us the
fifth position in the competition.

4 Conclusion

This paper presents the ADAPT translation sys-
tem for the STAPLE 2020 English-to-Portuguese
Translation Task. We aimed to build a competitive

translation system that can produce high-coverage
sets of plausible translations given English prompts
(input source sentences). For this, we applied vari-
ous strategies, e.g. selecting data sources that are
similar to STAPLE 2020 training data, selecting
sentences from external corpora, applying mono-
lingual MT for generating alternative translations,
combining translations produced by multiple MT
systems. We found that the systematic addition
of these techniques to baseline yields moderate
improvement over the baseline (0.0109 F1 point
absolute corresponding to 2.4% relative gain). The
best experimental setup earned us the fifth position
in the competition.

In the future, we aim to apply confusion network
decoding in order to re-rank n-best translations gen-
erated by the multiple MT systems. We used mono-
lingual MT for generating alternative sentences for
the target (Portuguese) translations. We also aim
to apply this strategy to the English prompts (i.e.
source-side of the translation-pair) for generating
alternative sequences of the input source sentences.

Acknowledgments

The ADAPT Centre for Digital Content Technol-
ogy is funded under the Science Foundation Ire-
land (SFI) Research Centres Programme (Grant
No. 13/RC/2106) and is co-funded under the Eu-
ropean Regional Development Fund. This project
has partially received funding from the European
Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie
grant agreement No. 713567, and the publication
has emanated from research supported in part by
a research grant from SFI under Grant Number
13/RC/2077.

References
Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

2011. Domain adaptation via pseudo in-domain data
selection. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 355–362, Edinburgh, Scotland, UK. Associa-
tion for Computational Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Santanu Bhattacharjee, Rejwanul Haque, Gideon Mail-
lette de Buy Wenniger, and Andy Way. 2020. In-
vestigating Query Expansion and Coreference Res-
olution in Question Answering on BERT. In Pro-

150

ceedings of Natural Language Processing and In-
formation Systems - 25th International Conference
on Applications of Natural Language to Information
Systems, NLDB 2020, page (to appear), Saarbrücken,
Germany.

Peter Cahill, Jinhua Du, Andy Way, and Julie Carson-
Berndsen. 2009. Using same-language machine
translation to create alternative target sequences for
text-to-speech synthesis. In Proceedings of Inter-
speech 2009, the 10th Annual Conference of the
International Speech Communication Association,
pages 1307–1310, Brighton, UK.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
427–436, Montréal, Canada.

Nadir Durrani, Helmut Schmid, and Alexander Fraser.
2011. A joint sequence translation model with in-
tegrated reordering. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1045–1054, Portland, Oregon, USA.

Federico Fancellu, Morgan O’Brien, and Andy Way.
2014. Standard language variety conversion using
smt. In Proceedings of the Seventeenth Annual Con-
ference of the European Association for Machine
Translation, pages 143–149, Dubrovnik, Croatia.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. CoRR, abs/1512.05287.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 4276–
4283, Reykjavı́k, Iceland.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modified
kneser-ney language model estimation. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 690–696, Sofia, Bulgaria.

Liang Huang and David Chiang. 2007. Forest rescor-
ing: Faster decoding with integrated language mod-
els. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
144–151, Prague, Czech Republic.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast

neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

R. Kneser and H. Ney. 1995. Improved backing-off for
m-gram language modeling. In 1995 International
Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 1, pages 181–184 vol.1.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexan-
dra Constantin, Williams College, and Evan Herbst.
2007. Moses: Open source toolkit for statistical
machine translation. In ACL 2007, Proceedings of
the Interactive Poster and Demonstration Sessions,
pages 177–180, Prague, Czech Republic.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In HLT-
NAACL 2003: conference combining Human Lan-
guage Technology conference series and the North
American Chapter of the Association for Computa-
tional Linguistics conference series, pages 48–54,
Edmonton, AB.

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). ACL.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Vassilis Plachouras, Fabio Petroni, Timothy Nugent,
and Jochen L. Leidner. 2018. A comparison of two
paraphrase models for taxonomy augmentation. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 315–320, New Or-
leans, LA.

151

Ofir Press and Lior Wolf. 2016. Using the output
embedding to improve language models. CoRR,
abs/1608.05859.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the 8th Inter-
national Conference on Language Resources and
Evaluation (LREC’2012), pages 2214–2218, Istan-
bul, Turkey.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

152

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 153–160
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Expand and Filter: CUNI and LMU Systems for the WNGT 2020
Duolingo Shared Task

Jindřich Libovický1 and Zdeněk Kasner2 and Jindřich Helcl2 and Ondřej Dušek2

1Center for Information and Language Processing, LMU Munich, Germany
2Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

libovicky@cis.lmu.de, {kasner,helcl,odusek}@ufal.mff.cuni.cz

Abstract

We present our submission to the Simultane-
ous Translation And Paraphrase for Language
Education (STAPLE) challenge. We used a
standard Transformer model for translation,
with a crosslingual classifier predicting correct
translations on the output n-best list. To in-
crease the diversity of the outputs, we used
additional data to train the translation model,
and we trained a paraphrasing model based
on the Levenshtein Transformer architecture
to generate further synonymous translations.
The paraphrasing results were again filtered
using our classifier. While the use of addi-
tional data and our classifier filter were able to
improve results, the paraphrasing model pro-
duced too many invalid outputs to further im-
prove the output quality. Our model with-
out the paraphrasing component finished in the
middle of the field for the shared task, improv-
ing over the best baseline by a margin of 10–
22% weighted F1 absolute.

1 Introduction

The usual goal of machine translation (MT) is to
generate a single correct translation of a source
sentence. Neural machine translation (NMT; Bah-
danau et al., 2015; Vaswani et al., 2017) models
a conditional distribution over possible target sen-
tences given a source sentence, and uses beam-
search decoding as a heuristic to get one or more
translations. However, the number of possible cor-
rect translations is often vast in comparison (Bojar
et al., 2013).

The STAPLE challenge (Mayhew et al., 2020)
poses the problem of MT slightly differently. Here,
the goal is to generate as many correct translations
as possible. Knowing many correct translations
can be useful e.g. for automatic scoring in tools
for language education, such as Duolingo.1 On

1https://www.duolingo.com

one hand, the learners should be guided to use
the more common formulations, on the other hand,
they should not be penalized for providing a correct
but unusual answer.

We present a pipeline of two systems in our sub-
mission to the STAPLE challenge. As the first step,
we use a standard NMT model trained with addi-
tional, carefully filtered data. The NMT output
n-best lists are filtered using a classifier. Second,
we use a Levenshtein Transformer model (Gu et al.,
2019) to generate paraphrases of the outputs of the
first model. Again, the outputs of the Levenshtein
Transformer are filtered using another classifier.

The paper is structured as follows. Our training
datasets are described in detail in Section 2. We
describe the two models in Sections 3 and 4 re-
spectively. We conduct experiments with all five
target languages in the challenge, i.e. Hungarian,
Japanese, Korean, Vietnamese and Portuguese. The
source language is English in all setups. The exper-
iment settings are shown in Section 5. The results
(Section 6) show that the Levenshtein Transformer
paraphrase generator cannot easily improve on the
filtered NMT output n-best list.

2 Data

2.1 STAPLE Dataset

The data in the STAPLE shared task comes from
the Duolingo language learning platform. This
represents a specific domain with a limited number
of mostly simple sentences targeted at learners,
using a limited vocabulary.

Each source (English) sentence comes with a list
of valid translations in the target language, ranging
from a few up to hundreds of paraphrases. All of
the valid translations are further annotated with a
probability score indicating how frequent a given
variant is. Statistics of the data are given in Table 1.

We held out 200 source sentences with all their

153

https://www.aclweb.org/anthology/D19-56%2d

Language Prompts Trans. Avg. P/S

Hungarian 3,800 238,467 62.75
Korean 2,300 646,410 281.05
Japanese 2,300 788,591 342.87
Portuguese 3,800 503,839 132.59
Vietnamese 3,300 183,339 55.57

Table 1: STAPLE training data statistics (target lan-
guage set, number of source sentences (prompts), num-
ber of paraphrases (translations), average number of
paraphrases per source).

translations as our internal validation dataset. We
use this dataset for validating the translation models
and for estimating the filtering thresholds.

2.2 Additional data for MT
For training the translation model, we obtained
out-of-domain parallel corpora from the OPUS col-
lection (Tiedemann, 2012) for all target languages,
ParaCrawl (Esplà et al., 2019) for Portuguese and
Hungarian, and JParaCrawl (Morishita et al., 2019)
for Japanese. We applied FastText language iden-
tifier (Joulin et al., 2016b,a) to clean the corpora.
Furthermore, we filtered out sentence pairs with a
length ratio that differs from the estimated mean
ratio by more than 2.5 times the standard deviation.

As in-domain training data, we mix data from the
STAPLE training dataset and the Tatoeba2 corpus
(part of the OPUS collection). To balance the under-
representation of the in-domain data in the training
dataset, we oversample both the STAPLE dataset
(200×) and the Tatoeba dataset (10×).

We use the combined mixed-domain parallel cor-
pora for training backtranslation models (Sennrich
et al., 2016) and an XLM-R-based domain classi-
fier. The classifier is trained to predict whether a
target sentence came from the STAPLE training
dataset, conditioning on the source sentence.

The monolingual data consists of Wikipedia,
WMT NewsCrawl (Barrault et al., 2019) for Hun-
garian, Japanese and Portuguese, Leipzig Corpora
NewsCrawl (Goldhahn et al., 2012) for all lan-
guages and the jpWaC corpus for Japanese (Erjavec
et al., 2008).

We filtered both the monolingual and parallel
data using the domain classifier. The classifier has
over 99% accuracy on balanced data. We set a
permissive threshold for keeping the sentence pair
to 10−5.

2https://tatoeba.org/

Based on preliminary experiments, we include
only a single correct translation from the STAPLE
training set into the machine translation training
data. This had a slightly positive effect on trans-
lation quality. Also, the n-best lists obtained by
machine-translating the STAPLE dataset are more
representative and thus more suitable for training
the classifier for n-best list filtering than if we in-
cluded all translations from the training set.

3 Translation and Filtering Model

3.1 Translation Model
Our pipeline starts with the Transformer model
(Vaswani et al., 2017) trained on the provided
dataset enriched with additional data (see Sec-
tion 2). This provides initial translations of the
source sentence on the output n-best list, which are
further filtered.

3.2 Filtering Classifier
We train a crosslingual classifier which predicts
whether a translation in the MT output n-best list
is correct (given the source sentence). Using the
trained translation model, we first generate large
n-best lists for all English sentences in the original
training data. Next, we label each generated sen-
tence whether it is a positive or a negative sample
(based on the reference data). Finally, we create
a balanced mix of negative and positive samples.
Since the n-best lists contained much more incor-
rect translations, we oversample the list of correct
translations.

We use XLM-RoBERTa as our sentence classi-
fier model (XLM-R; Conneau et al., 2020), specif-
ically the pretrained variant available in the Hug-
gingFace Transformers library3 (Wolf et al., 2019).
We finetune this model on the balanced mix of
the correct and incorrect translations for a given
sentence.

During inference, we generate an n-best list for
a given source sentence, and we apply the classi-
fier to filter out the sentences which are labeled as
incorrect using a threshold value. The n-best list
size and the threshold are hyperparameters of the
method.

4 Paraphrasing Model

As an additional step to increase the number of
valid translations produced, we train a target-

3https://github.com/huggingface/
transformers

154

All
parallel

+ lang. &
length filter

+ domain
filtering Monolingual + domain

filtering
Total

(unique)

Hungarian 56.1M 47.9 M 22.1M 54.3M 7.0M 27.1M
Japanese 14.7M 14.0 M 1.9M 44.2M 2.8M 4.7M
Korean 2.2M 2.0 M 0.6M 9.3M 0.8M 1.4M
Portuguese 63.5M 53.7 M 21.3M 30.0M 4.5M 25.8M
Vietnamese 3.9M 3.4 M 1.5M 9.7M 1.4M 2.8M

Table 2: Number of sentences in the parallel and monolingual data used for training the MT systems. The data
in the second column were used for training the backtranslation systems, the last column corresponds to final
translation systems.

language paraphrasing model. Rather than generat-
ing a translation directly from the source sentence,
the model refines existing translations in order to
produce new ones.

The model is based on the Levenshtein Trans-
former (LevT; Gu et al., 2019), which is a se-
quence generation model based on the Transformer
(Vaswani et al., 2017) architecture. Instead of left-
to-right autoregressive generation, LevT generates
sequences in an arbitrary order using two basic
operations – insertion and deletion. Using an ini-
tial sequence as a starting point, LevT is able to
perform sequence refinement.

4.1 Training

LevT iteratively applies three policies represented
by fully-connected neural network layers on top of
the last layer of a Transformer decoder:

1. Deletion policy πdel removes tokens from the
sequence;

2. Placeholder policy πplh inserts placeholders
into the sequence;

3. Insertion policy π ins replaces placeholders
with tokens from the vocabulary.

The policies are trained to follow oracle policies.
Given a source sequence X and a target sequence Y ,
L(X ,Y) is a minimum sequence of edit operations
(delete and insert) that transform X to Y . Its length
is equal to the Levenshtein distance (Levenshtein,
1966) between X and Y . The operations in L(X ,Y)
define oracle policies for πdel, πplh and π ins.

There are two other possible training strategies:
Either training the insertion policy to repair a target
sentence with randomly dropped tokens, or training
the deletion policy to refine the output from the
insertion policy. However, we do not use these
strategies for our model. In the first case, we did not
find it beneficial for the model performance. In the

second case, the option does not fit together with
our inference scheme as described in Section 4.2.

To train the model to gradually produce more
diverse, but still valid paraphrases, we provided
the model with training paraphrase pairs with min-
imum edit distance. We represent the set of para-
phrases as a complete graph with edges weighted
by the Levenshtein distance (see Figure 1). We
construct a minimum spanning tree of this graph
and use the sentence pairs from the spanning tree
edges as training examples.

Formally, a training example for LevT is a tuple
(E,X0,X ,Y) where E is the original English sen-
tence, X0 is the gold translation, X is the source
node and Y is the target node. (E,X0) is processed
by the encoder, X is used as the initial sequence for
the decoder and Y acts as the ground truth. We do
not use any additional data for LevT.

4.2 Inference
In the original LevT formulation, inference is done
by applying the model over the initial sequence for
several iterations. This approach aims to produce a
single output translation and the intermediate trans-
lations are deemed to be incorrect. We redefine the
generation process as state-space search, consider-
ing translations in each step as potentially correct
and accepting the translations based on the classi-
fier score. We also repurpose the deletion policy as
paraphrasing policy, which gives us the possibility
to generate multiple translations in each step. Simi-
larly to the original LevT architecture, the encoder
output is grounding the translations in the source
sentence throughout the inference process.

The process can start from an arbitrary number
of initial translations – in our case, the initial trans-
lations are the filtered outputs from the MT system.
We put all the initial translations in a queue. In each
step, we pop a translation from the queue, and we
let the deletion policy mark all tokens suitable for
paraphrasing. To expand our search space, we gen-

155

o lugar está aberto.

o site está aberto.

o local está aberto.

o lugar é aberto.

o sítio está aberto.

o site é aberto.

o local é aberto.

o sítio é aberto.

a área está aberta.
a página está aberta.

o website está aberto.

o website é aberto.

o espaço está aberto.

a página é aberta.

a página da web é aberta.

a página da internet é aberta.
a área é aberta.

a página da internet está aberta.

o espaço é aberto.

a página da web está aberta.

Figure 1: A minimum spanning tree of the graph of Portuguese translations for “The site is open.”. Levenshtein
distance (the sum of delete and insert operations) is 2 for solid green lines and 6 for the dashed yellow line.

Figure 2: An example of a step of the inference algo-
rithm of the paraphrasing model. A translation is taken
from the queue Q and expanded using LevT policies.
Results are scored by the classifier C; the translations
scoring above the threshold thr = 0.5 are accepted. The
translations are grounded in the source sentence by the
encoder output.

erate multiple versions of the partially deleted sen-
tence using all possible combinations of selected
tokens, which are individually processed by the
placeholder and insertion policies. We put the out-
put translations in the queue and repeat the process
until the queue is empty or we reach a preset limit
on the number of generated sentences.

4.3 Filtering

Similarly to our NMT model, we filter relevant
translations using a classifier built on top of XLM-
R (see Section 3). In this case, the negative exam-
ples for the classifier are generated from LevT. We
use the classifier’s predictions to accept only trans-
lations passing a preset threshold. Moreover, we
use the scores predicted by the classifier (probabil-
ity of translation correctness) to define the priority
of the translations in the queue, thus making it a pri-

ority queue. Figure 2 shows an example of a single
step of the inference algorithm with filtering.

5 Experiments

5.1 Evaluation Metric
We use the official evaluation metric for the STA-
PLE challenge, which is the weighted macro F1
score, computed by exact match with respect to
the set of all valid translations for a given source
sentence. The weighted F1 is a compound of un-
weighted precision and weighted recall, where the
weight is determined based on each translation’s
probability (see Section 2.1).

5.2 Translation Model
We train the translation model using the Marian
toolkit4 (Junczys-Dowmunt et al., 2018). We
use the Transformer Base hyperparameters, i.e.,
model dimension 512, feed-forward layer dimen-
sion 2048, 8 attention heads with a head dimension
of 64. All models use SentencePiece-based (Kudo
and Richardson, 2018) vocabulary of 32k units.
Japanese was tokenized using UDPipe (Straka and
Straková, 2017), other languages were processed
with SentencePiece without tokenization.

The model is trained using the Adam optimizer
(Kingma and Ba, 2015), with Noam learning sched-
ule (Vaswani et al., 2017) with 8,000 warmup steps
and initial learning rate 3 ·10−4, dropout rate 0.1,
label smoothing 0.1 and gradient clipping at 5.0.
We set the training batch size to 4,096 tokens.

5.3 Paraphrasing Model
We base our paraphrasing model on the Leven-
shtein Transformer as implemented in fairseq5 (Ott

4https://marian-nmt.github.io/
5https://github.com/pytorch/fairseq

156

et al., 2019). We replace the Transformer encoder
with the pretrained XLM-R Base with 12 layers
and 8 attention heads, keeping the vanilla Trans-
former decoder with 6 layers and 8 attention heads.
We use the output layer of XLM-R as the decoder
output layer and finetune it together with the last
four layers of XLM-R (freezing the rest of XLM-R
parameters). We train a separate decoder for each
policy and employ the early exit as described by
Gu et al. (2019) by using only the features from
the third layer of the decoder for the deletion and
placeholder policies.

The model is optimized using the Adam opti-
mizer, with fixed learning rate 10−5, batch size
1,500 tokens, dropout rate 0.5 and label smoothing
0.1. We set the maximum number of placeholders
for each position at 3 instead of 256.

We experiment with various decoding strategies.
For deletion and placeholder policies, we introduce
a penalty parameter preventing the policy from pro-
ducing the zero (unchanged) outcome. This proved
beneficial in particular for the deletion policy, as
it frequently did not mark any tokens for deletion,
thus limiting the search process. Alternatively, we
force the policy to produce an outcome by selecting
top k results with the highest score. In both cases,
we find that limiting the number of placeholders
generated at the same position to 1 helps to prevent
excessive sentence length.

For the insertion policy, we give up the non-
autoregressivity and replace the placeholders in the
left-to-right order, re-running the decoder in each
step. This acts as a supplement for the fact that the
insertion policy cannot repeatedly interact with the
deletion policy in a single state-space search step.

Our experiments show that it is difficult to find
a set of decoding parameters which would consis-
tently produce meaningful output. For generating
paraphrases, we find it useful to use the penalty
strategy described above and tune the penalty sep-
arately for each language. Producing less para-
phrases generally leads to better results, as it tends
to limit the amount of incorrect output. On the
contrary, we use the top-k strategy for generating
the classifier training data, as it produces negative
samples more robustly.

6 Results

The results on the blind development and test data
are shown in Table 3. Our translation model was
able to bring considerable improvements over the

provided baseline models – 10–22% weighted F1
absolute due to increase in both precision and re-
call. We observed the highest improvements for
Portuguese. Overall, our model tends to finish in
the middle of the field.

Experiments with training data filtering showed
that a smaller training set with better selected sen-
tences leads to better trasnslation quality than us-
ing a larger general domain corpus (see Table 4),
although the general corpus was double in the num-
ber of sentences (see Table 2). The optimal beam
size for filtering only roughly corresponds to the
average number of paraphrases in the data (see Ta-
ble 1). Figure 3 shows the effect of beam size on
the output quality. Without filtering, the precision
quickly drops with increasing beam size. The filter-
ing can partially compensate for the precision loss,
however, at the expense of decreasing recall, too.

Despite our extensive efforts, the paraphrasing
model did not bring substantial improvements over
the translation model. Increase in recall typically
came with lower precision and lower weighted F1
score. Even with the specific classifier training
and its overall accuracy over 99%, the LevT output
was too noisy to be precisely filtered. The only
improvement was achieved for Portuguese, where
the final paraphrasing and filtering setting resulted
in slightly higher precision and similar recall. How-
ever, the improvement was mostly influenced by
the second round of filtering (on the paraphrasing
output). Therefore, we did not include the para-
phrasing output in our primary submission.

We suppose that the inefficiency of the LevT
model is caused by a mismatch between model
training criteria and its application: the individual
policies are trained separately, but need to com-
plement each other to achieve good results. More-
over, the loss computed independently for each
paraphrase may prevent the model from learning
to generate multiple paraphrases. The shortage of
useful paraphrases may be also caused by the lack
of additional training data.

7 Conclusions

We presented our submission to the 2020 STA-
PLE translation and paraphrasing shared task. Our
model is based on the Transformer architecture,
used additional carefully selected training data, a
XLM-R-based classifier to filter MT output beams,
and an optional paraphrasing component based on
the Levenshtein Transformer approach. The MT

157

Target System Development Test

Rk Pre W-R W-F1 ∆base ∆best Rk Pre W-R W-F1 ∆base ∆best

Hungarian MT 4/9 50.65 50.66 46.25 +16.40 -13.58 4/7 51.04 45.77 43.49 +15.39 -11.91
+Para - 49.73 50.57 45.75 +15.90 -14.08 - 49.91 45.66 43.01 +14.91 -12.39

Japanese MT 5/10 39.02 19.36 21.50 +17.25 -10.09 5/8 36.70 19.93 21.28 +16.97 -10.49
+Para - 38.27 19.32 21.34 +17.09 -10.25 - 35.76 19.87 21.08 +16.77 -10.69

Korean MT 4/8 40.05 21.57 22.21 +16.76 -19.16 4/6 38.94 19.35 20.58 +15.71 -19.77
+Para - 39.65 21.06 21.87 +16.42 -19.50 - 38.42 18.92 20.29 +15.42 -20.06

Portuguese MT 8/14 49.75 46.78 42.74 +21.59 -13.00 6/10 49.88 43.81 40.84 +19.54 -14.26
+Para - 50.72 46.60 43.22 +22.07 -12.52 - 50.94 43.44 41.18 +19.88 -13.92

Vietnamese MT 3/6 52.27 37.36 38.26 +11.47 -16.47 3/5 51.59 36.84 37.71 +12.32 -17.85
+Para - 53.17 36.39 37.68 +10.89 -17.05 - 52.09 36.35 37.34 +11.95 -18.22

Table 3: Results for both system variants and all languages. “MT” denotes the variant without paraphrasing (final
official result), “+Para” is the system with paraphrasing. Metrics: Rk = official competition rank (with the number
of valid submissions), Pre = precision (%), W-R = weighted recall (%), W-F1 = weighted F1 (%), ∆base = weighted
F1 difference w. r. t. the best baseline model (% absolute), ∆best = w. r. t. the overall winner (% absolute).

100 101 102

Beam size

20

40

60

80

Pr
ec

is
io

n/
R

ec
al

/F
-S

co
re

Beam: Precision
Beam: Recall
Filtered: Precision
Filtered: Recall
Beam: F1-score
Filtered: F1-score

Figure 3: Precision, weighted recall and weighted F1 score for NMT decoding with different beam sizes and with
and without beam filtering.

AWS Gen. Dom. Best

Hungarian 29.2 27.4 40.2 49.1 100
Japanese 4.8 2.8 11.9 18.6 1000
Korean 4.9 6.5 11.5 22.0 1000
Portuguese 23.1 29.9 39.6 44.0 50
Vietnamese 20.3 33.0 38.5 42.1 5

Table 4: Translation quality measured by the weighted
F1 score for general training (Gen.) data and domain-
specific (Dom.) training data measured on our valida-
tion set with beam size 10 compared with the task base-
line (AWS) and best filtered beam with beam size.

model with the filter was able to gain substantial
increases over the baseline, but did not reach the
top places in the challenge. The paraphrasing com-
ponent’s output proved too noisy to bring any sub-
stantial benefits – we only observed minor improve-
ments in Portuguese. Therefore, the paraphrasing
was not included in our primary submission.

Improving the paraphrasing model could be an
interesting direction of future work. The amount
of incorrect output could be reduced by better ac-

counting for deletion and insertion policy interplay.
However, computing the loss independently for
each paraphrase may still hinder the ability of the
model to generate multiple paraphrases for a sin-
gle sentence. It may be thus necessary to rethink
the training objective and tie it together with the
inference process.

Acknowledgements

Work conducted at LMU was supported by the
European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innova-
tion programme (grant agreement No. 640550).

Work conducted at CUNI was supported by the
Charles University grant No. 140320, the SVV
project No. 260575, the European Union’s Hori-
zon 2020 research and innovation programme
under grant agreement No. 825303 (Bergamot),
Czech Science Foundation grant No. 19-26934X
(NEUREM3), and the Charles University project
PRIMUS/19/SCI/10.

158

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations
(ICLR2015), San Diego, CA, USA.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Ondřej Bojar, Matouš Macháček, Aleš Tamchyna, and
Daniel Zeman. 2013. Scratching the surface of pos-
sible translations. In Proc. of TSD 2013, Lecture
Notes in Artificial Intelligence, Berlin / Heidelberg.
Západočeská univerzita v Plzni, Springer Verlag.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of ACL 2020. ArXiv: 1911.02116.

Tomaž Erjavec, Kristina Hmeljak Sangawa, and
Yoshiko Kawamura. 2008. Japanese web corpus
with difficulty levels jpWaC-l 1.0. Slovenian lan-
guage resource repository CLARIN.SI.

Miquel Esplà, Mikel Forcada, Gema Ramı́rez-Sánchez,
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-
lel corpora for the languages of the EU. In Proceed-
ings of Machine Translation Summit XVII Volume 2:
Translator, Project and User Tracks, pages 118–119,
Dublin, Ireland. European Association for Machine
Translation.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at
the leipzig corpora collection: From 100 to 200 lan-
guages. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 759–765, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11179–11189.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016b. Bag of tricks
for efficient text classification. arXiv preprint
arXiv:1607.01759.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). ACL.

Makoto Morishita, Jun Suzuki, and Masaaki Nagata.
2019. Jparacrawl: A large scale web-based english-
japanese parallel corpus. CoRR, abs/1911.10668.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

159

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 6000–6010, Long Beach,
CA, USA. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv preprint arXiv:1910.03771.

160

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 161–168
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Exploring Model Consensus to Generate Translation Paraphrases

Zhenhao Li1, Marina Fomicheva2, Lucia Specia12

1 Department of Computing, Imperial College London
2 Department of Computer Science, University of Sheffield
{zhenhao.li18, l.specia}@imperial.ac.uk

{m.fomicheva}@sheffield.ac.uk

Abstract

This paper describes our submission to the
2020 Duolingo Shared Task on Simultaneous
Translation And Paraphrase for Language Ed-
ucation (STAPLE). This task focuses on im-
proving the ability of neural MT systems to
generate diverse translations. Our submis-
sion explores various methods, including N-
best translation, Monte Carlo dropout, Diverse
Beam Search, Mixture of Experts, Ensem-
bling, and Lexical Substitution. Our main sub-
mission is based on the integration of mul-
tiple translations from multiple methods us-
ing Consensus Voting. Experiments show that
the proposed approach achieves a considerable
degree of diversity without introducing noisy
translations. Our final submission1 achieves
0.5510 weighted F1 score on the blind test set
for the English-Portuguese track.

1 Introduction

Machine Translation (MT) systems are typically
used to produce a single output for a given source
sentence, whereas in human translation the same
source sentence can often be translated in various
different ways while still preserving its meaning.

In the 2020 Duolingo Shared Task on Simultane-
ous Translation And Paraphrase for Language Edu-
cation (STAPLE) (Mayhew et al., 2020), participat-
ing MT systems are evaluated using multiple refer-
ence translations to measure their ability to gener-
ate diverse, yet high quality translations. For that,
a new dataset with multiple human translations for
each source sentence is provided. These human
translations were produced by language learners
as part of a translation exercise on the Duolingo
platform2 where they were asked to translate sen-
tences from the language they were learning (e.g.
English) to their native language. Each translation

1https://github.com/Nickeilf/STAPLE20
2https://www.duolingo.com

in the dataset is assigned a weight based on the
learner response frequency. Table 1 gives an ex-
ample of the weighted translations in the dataset
for English-Portuguese. The STAPLE dataset in-
cludes five language pairs: English to Portuguese,
Hungarian, Japanese, Korean, and Vietnamese. In
the shared task, we only participated in English-
Portuguese (En-Pt) track.

Original is my explanation clear?
Translation minha explicação está clara? | 0.2673

minha explicação é clara? | 0.1616
a minha explicação está clara? | 0.1111
a minha explicação é clara? | 0.0878
minha explanação está clara? | 0.0572
está clara minha explicação? | 0.0443
minha explanação é clara? | 0.0392
...

Table 1: An example of weighted translations in the
STAPLE dataset for English-Portuguese.

In this paper, we experiment with various meth-
ods to improve the diversity of translations, while
preserving their quality. We show that simply by
generating N-best translations with larger beam
size, we can already achieve a considerable degree
of diversity. Our final submission is based on the
integration of multiple translations from various
methods, namely N-best translation, Monte Carlo
dropout, Mixture of Experts, Ensembling, and Lex-
ical Substitution, through a consensus voting mech-
anism. It achieves 0.5510 weighted F1 score on the
official blind test set.

This paper is structured as follows: Section 2
describes the methods we used in our experiments.
Section 3 introduces the experimental settings, in-
cluding data preparation, model hyperparameters,
and the evaluation procedure. Section 4 describes
the results and analysis. Section 5 presents our
three official submissions to STAPLE blind test set.
Finally, Section 6 summarises our submission to
the shared task and our contributions.

161

https://www.aclweb.org/anthology/D19-56%2d

2 Methods

In what follows we describe the methods used
in our experiments, including N-best translation,
Monte Carlo dropout, Diverse Beam Search, Mix-
ture of Experts, Ensembling and Lexical Substitu-
tion. We combine all of these methods except the
Diverse Beam Search in our official submissions
through a consensus voting mechanism. Details
about the submissions can be found in Section 5.

2.1 N-best

The simplest method to generate multiple transla-
tions for a given sentence is to use N-best trans-
lations with a large beam size during decoding.
Larger beam size might lead to more translation
options with similar meanings. We experimented
with multiple sizes for N , and used the same value
for N-best and beam size.

2.2 MC Dropout

Gal and Ghahramani (2016) proposed the Monte
Carlo (MC) dropout method to estimate predictive
NMT model uncertainty. The method consists in
running several forward passes through the model
(i.e., at inference time), each applying dropout be-
fore every weight layer and collecting posterior
probabilities generated by the model with parame-
ters perturbed by dropout. The mean and variance
of the resulting distribution can then be used to
represent model uncertainty. Instead of using this
method for scoring translations, we use it as a way
to generate alternative MT hypotheses for a given
source sentence. Specifically, we run inference
with dropout M times and collect the resulting
translations. In our experiments, the dropout rate
is set to 0.1 and M = 10.

2.3 Diverse Beam Search

Vijayakumar et al. (2016) proposed the Diverse
Beam Search algorithm to improve the diversity of
beam hypotheses. The algorithm proceeds by di-
viding the beam budget into groups and enforcing
diversity between groups of beams. In our experi-
ments we use the implementation of this algorithm
in fairseq (Ott et al., 2019) with default param-
eters.

2.4 Mixture of Experts

Shen et al. (2019) introduced the Mixture of Ex-
perts (MoE) framework to capture the inherent un-
certainty of the MT task where the same input sen-

tence can have multiple correct translations. A
mixture model introduces a multinomial latent vari-
able to control generation and produce a diverse set
of MT hypotheses. In our experiment we use hard
mixture model with uniform prior and 5 mixture
components.

2.5 Ensembling

Training an ensemble of various MT models ini-
tialized with different random seeds is a common
strategy used to boost the output quality (Garmash
and Monz, 2016). Unlike the typical ensembling
method that combines prediction distributions from
different models by averaging, we use each sys-
tem in the ensemble to generate a separate set of
translation hypotheses, and take the set of dictinct
translations as the final output.

2.6 Lexical substitution

In the STAPLE dataset, we observed that many
of the paraphrases in translations are simple vari-
ants with word substitutions in the target language.
Therefore, we built a dictionary containing all lex-
ical substitutions from the STAPLE training data.
The substitutions are sorted according to two crite-
ria: 1) number of occurrences 2) substitution prob-
ability. The substitution probability is calculated as
follows:

P (sub) =
Count(sub(w1, w2))

Count(w1)
(1)

The top-5 lexical substitutions from frequency-
sorted and probability-sorted dictionaries are listed
in Table 2. We filtered the substitution dictionary
with a stopword list3 and a threshsold (which can be
either frequency count or substitution probability),
to avoid generating ungrammatical translations.

Frequency Probability
substitution count substitution prob
neste-nesse 5091 baixar->descarregar 1.0
irá-vai 4920 descarregar->baixar 1.0
vou-irei 4645 situa-se->fica 1.0
local-lugar 2989 achasse->encontrasse 1.0
bem-bastante 2694 localizasse->achasse 1.0

Table 2: Top-5 lexical substitutions in frequency-sorted
and probability-sorted dictionaries.

3http://snowball.tartarus.org/
algorithms/portuguese/stop.txt

162

2.7 Consensus voting

To integrate translations from different models, we
employed a consensus voting mechanism by count-
ing the number of systems that predicted each trans-
lation. A threshold Tcon is set, meaning that a
translation must be predicted by at least Tcon + 1
systems, otherwise it is removed. Considering the
lexical translation might generate rare but correct
translation, we assign the lexical-substituted trans-
lations a weight Wsub so that they can be seen as
generated by Wsub systems. The consensus method
guarantees a high precision by removing transla-
tions that are likely to be incorrect.

3 Experiments

3.1 Data

To build the NMT model, we used parallel corpora
for En-Pt from OPUS (Tiedemann, 2012) as out-of-
domain data, including ParaCrawl4, EUbookshop5,
Europarl6, Wikipedia7, QED8, and Tatoeba9. The
combination of these corpora contains 22.42 mil-
lion parallel sentence pairs. The STAPLE dataset,
which contains 4000 source sentences with 526,466
translations, is used as in-domain data for fine-
tuning.

Since in the STAPLE dataset a source sentence
have an average number of 131 reference transla-
tions, we constructed parallel data by duplicating
the source sentence to match the number of transla-
tions, as shown in Figure 1.

source

target1

target2

target3

target4

target5

source

target1

target2

target3

target4

target5

source

source

source

source

STAPLE Parallel data

Figure 1: Constructing parallel fine-tuning data from
the STAPLE dataset.

4http://opus.nlpl.eu/ParaCrawl-v5.php
5http://opus.nlpl.eu/EUbookshop-v2.php
6http://opus.nlpl.eu/Europarl-v8.php
7http://opus.nlpl.eu/Wikipedia-v1.0.

php
8http://opus.nlpl.eu/QED-v2.0a.php
9http://opus.nlpl.eu/Tatoeba-v20190709.

php

We also experimented with different data filter-
ing strategies on the STAPLE dataset by only keep-
ing the top-K translations with the highest weights
(we refer to this as tune-K). Statistics regarding the
corpus size after filtering are shown in Table 3.

Filtering Source Translations
tune-5 20,000 5.00
tune-10 40,000 10.00
tune-20 78,439 19.61
tune-all 526,466 131.62

Table 3: Size of parallel fine-tuning data after filtering
the STAPLE dataset. Source indicates the number of
source sentences and Translations indicates the aver-
age number of translations per source sentence

All sentences are tokenized with Moses (Koehn
et al., 2007), and then processed via Byte-Pair-
Encoding (BPE) (Sennrich et al., 2016). A shared
vocabulary of 40,000 subwords is constructed for
both English and Portuguese. The training data
was then cleaned by removing sentence pairs with
more than 250 subwords or with length ratio over
1.5, using the clean-corpus-n.perl10 script
in Moses.

3.2 Model and hyperparameters

We used the Transformer model (Vaswani et al.,
2017) as our baseline model. The model is
trained using fairseq toolkit (Ott et al., 2019)
with the default hyperparameter settings using
transformer_wmt_en_de architecture. The
model was trained on 8 GPUs with a batch size
of 4096 tokens on each GPU. We used mixed-
precision training to accelerate the training. The
model was pre-trained on OPUS data for 30 epochs
and then fine-tuned on STAPLE data. We set 5 as
the number of experts for training the MoE system.
For ensembling, we pretrained with 3 random seeds
and fine-tuned with 4 random seeds, resulting in 12
different MT systems.

3.3 Generation of Translations

When generating an integration of translations from
multiple systems, we follows the procedure as de-
scribed below:

1. Generate translations from N systems, result-
ing in N translation sets s1, s2, s3, ..., sN

10https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
training/clean-corpus-n.perl

163

2. Apply consensus voting to the N system trans-
lations with threshold Tcon, resulting in one
translation set sconsensus

3. Apply lexical substitution to sconsensus, re-
sulting in a separate translation set slexical

4. Apply consensus voting to the N system trans-
lations and the lexical substitution translation
s1, s2, s3, ..., sN , slexical with threshold Tcon

and weight Wsub, resulting in the final trans-
lation set slexical&consensus.

3.4 Evaluation
The shared task provides a blind dev set (blind-dev)
and a blind test set (blind-test) for evaluation. Since
the number of submissions is limited, we also take
a small random split from the STAPLE training set
for dev (heldout-dev) and test (heldout-test) sets
with 500 source sentences.

The translations are evaluated at sentence-level
as a classification problem where true positives
(TP) occur when the system produces one of the
translations in the given set of references, false pos-
itives (FP) when a translation out of this set is pro-
duced, and false negatives (FN) when translations
in this set are missed by the system. The official
evaluation metric is a weighted macro F1-score av-
eraging over all source sentences. The weighted
F1 score is calculated with weighted recall and
unweighted precision:

recall =
∑

t∈TP

weight(t)

precision =
TP

TP + FP

weightedF1 =
2 ∗ precision ∗ recall
precision+ recall

weightedmacroF1 =
∑

s∈S

weightedF1(s)

|S|

4 Results

N-best We present the F1 score with respect to
n-best size (from 1 to 20) in Figure 2. The models
fine-tuned with different filtered data are evaluated
on our heldout test set. As shown in Figure 2,
the pre-trained model (tune-0) shows a poorer
performance than the other fine-tuned models.
The tune-1 model shows a good performance
when the N-best size is small, but experiences
a degradation when N-best increases. Models

fine-tuned with 5, 10, and 20 reference translations
show similar performances with F1 score around
0.49. However, the optimal n-best size is closely
related to the number of translations used for
fine-tuning, with N-best=3,10,12,18 for model
tuned with 1, 5, 10 and 20 references respectively.
The models fine-tuned with all translations
in the STAPLE dataset show a growing trend
in F1 score as n-best size increases, but the
overall F1 score is still much lower than for the
three fine-tuned models. We found that the upper
bound for tune-all model is around 0.415 F1 score.

Figure 2: F1 score w.r.t N-best size for models fine-
tuned with different number of reference translations.

MC dropout Table 4 shows a comparison
on the heldout-test set between the N-best and
N-best with MC dropout. It can be seen that the
N-best12 achieves a higher recall than the N-best5,
which leads to an increase of 0.038 in F1 score.
When decoding with dropout, the N-best5 could
match the performance of N-best12. Although
noticing that MC Dropout could improve the
performance for small N-best size, we found that
when the N-best size gets larger the weighted F1
score does not improve further.

Precision Recall F1
N-best12 0.717 0.452 0.494
N-best5 0.839 0.360 0.456
+dropout(H=10) 0.725 0.441 0.497

Table 4: A comparison between N-best and N-best with
MC Dropout.

Diverse beam search When evaluating di-
verse beam search on the heldout-test set, we found
that the model performance lags behind the N-best

164

baseline to a large extent, with F1 score of only
0.292. We looked into some translation examples
and noticed that although diverse beam search can
lead to more diversity in translations, it sometimes
adds an extra full stop at the end of translations.
Considering that the evaluation is conducted at
sentence-level, such a minor modification can
lead to a large false positive number. In the final
submission, we left this method out.

Mixture of experts Regarding the MoE method,
we found that different experts show inconsistent
performance. As shown in Table 5, with the
same N-best size, experts 2, 3, and 5 show a
good performance, achieving an F1 score over
0.4. However, the other two experts, especially
expert 4, exhibit poorer performance. This might
be caused by insufficient training for the experts
that perform poorly. In the final submission, we
removed translations from experts 1 and 4 to avoid
incorrect predictions.

Expert Precision Recall F1
1 0.425 0.320 0.312
2 0.708 0.426 0.475
3 0.647 0.374 0.415
4 0.276 0.217 0.193
5 0.640 0.404 0.437

Table 5: An illustration of the inconsistent performance
from different experts in MoE (with N-best=12).

Ensemble & Consensus In Table 6, we present
our ensembling submission and consensus
submission (with threshold Tcon set to 1) on the
blind-dev set. Both ensembling and consensus
voting improve over the N-best by increasing the
recall and reducing the precision. However, since
consensus voting removed translations with fewer
votes from other systems, the precision score is
higher than that of ensembling while the recall is
similar. This leads to a higher F1 score with the
consensus submission.

Precision Recall F1
N-best 0.714 0.483 0.521
+Ensemble 0.617 0.549 0.523
+Consensus(Tcon = 1) 0.652 0.534 0.530

Table 6: A comparison between ensembling and con-
sensus voting.

Ensembling can be seen as a special case of

consensus voting, with the threshold Tcon being
zero. Ensembling maximizes the recall by taking
translations from all the systems but sacrifices the
precision. Increasing the value of the threshold
Tcon would compensate for the precision loss
while maintaining the gain in recall.

Lexical substitution Table 7 shows the sub-
missions on the blind-dev set after applying lexical
substitution to a consensus output combining
ensembled N-best, MC dropout, and MoE sys-
tems.We first generated a set of translations with
all lexical substitutions, using the translations from
an N-best system. The translations with lexical
substitution achieve an F1 score of 0.127, which
shows potential benefits of this method. However,
as shown in Table 7, simply adding the substituted
translations will harm performance, and this will
happen for both frequency-based sorting and
probability-based sorting. This is due to the fact
that the translations after substitution are likely to
be ungrammatical since the substituted word does
not fit in the context. To alleviate this, we added
the substituted translations to the consensus pool
for higher precision. This only improves over the
consensus system without lexical substitution by
+0.002 F1 score.

F1
Lexical only 0.127
Consensus(Tcon = 5) 0.542
+lexical (freq > 1000) 0.512
+lexical (prob > 0.85) 0.532
+lexical (prob > 0.85, consensus) 0.544

Table 7: An illustraction of the benefit and harm
from lexical substitution (evaluated on blind-dev set).
The Consensus system combines the ensembled N-bset,
MC-Dropout, and MoE systems.

In the experiment combining theses methods, we
found that the N-best translations contributes the
most score among all these methods. While an
N-best system could achieve a weighted F1 score
of nearly 0.5, other methods such as MC-Dropout,
Ensembling and Consensus would only result in an
extra improvement of less than 0.05 weighted F1
score. In our experiments, Diverse Beam Search
and Mixture of Experts systems didn’t contribute
much.

165

5 Official submissions

Our official submissions combine translations from
12 tune-10 N-best systems (12 random seeds, fine-
tuned with top-10 references, N = 12), 12 tune-20
N-best systems (12 random seeds, finetuned with
top-20 references, N = 20), 2 MC Dropout sys-
tems (n = 3, M = 50; n = 5, M = 10), 3
experts from the MoE system, and lexical substi-
tution (with a probability threshold of 0.7). The
consensus voting threshold Tcon is set to be 10, and
the weight Wsub for lexical substitution is 9. Re-
sults for our three official submissions to the blind
test set are shown in Table 8.

Precision Recall F1
Consensus(Tcon=10)+lexical 0.741 0.516 0.551
Consensus(Tcon=10) 0.757 0.501 0.545
Consensus(Tcon=1)+lexical 0.579 0.580 0.521

Table 8: Our three official submissions to STAPLE
blind-test set.

The best submission, which achieves the best
F1 score of 0.5510, applies both consensus voting
and lexical substitution. As shown in the second
submission, removing lexical substitution would re-
duce the F1 score by 0.006, although the precision
is improved marginally. In the third submission,
we set the consensus voting threshold T to be 1
to see the upper bound for recall. The recall in-
creases from 0.516 to 0.580 while the precision
drops significantly from 0.741 to 0.579.

Our best submission achieves the second po-
sition in the English-Portuguese track, with only
0.0006 weighted F1 score behind the winning sub-
mission. The official result on STAPLE test set is
shown in Table 9.

Participant Weighted F1
jbrem 0.5516
Ours 0.5510
rakchada 0.5440
aws baseline 0.2130
fairseq baseline 0.1357

Table 9: Official results on STAPLE test set in English-
Portuguese translation (top-3 submissions and base-
lines).

6 Conclusions

This paper describes our submissions to the STA-
PLE shared task for English-Portuguese translation.

We showed that simply generating N-best trans-
lations already achieves a considerable degree of
diversity and quality. We experimented with var-
ious methods to improve the diversity in the MT
output, including N-best translation, MC Dropout,
Diverse Beam Search, Mixture of Experts, Ensem-
bling, Consensus Voting, and Lexical Substitution.
We showed the benefits and drawbacks of these
methods in generating diverse, high quality trans-
lations. Our systems combining these methods
further improve over the N-best translation and
achieve 0.5510 weighted F1 score on STAPLE
blind test set, which is only 0.0006 behind the win-
ning submission.

References

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
Bayesian Approximation: Representing Model Un-
certainty in Deep Learning. In international confer-
ence on machine learning, pages 1050–1059.

Ekaterina Garmash and Christof Monz. 2016. Ensem-
ble learning for multi-source neural machine trans-
lation. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 1409–1418.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). ACL.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

166

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’Aurelio Ranzato. 2019. Mixture models for
diverse machine translation: Tricks of the trade.
arXiv preprint arXiv:1902.07816.

Jrg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

A Appendices

A.1 Checkpoiting vs tune-K
Table 10 presents the best finetuning checkpoint for
models finetuned with different number of refer-
ences. Models trained with more references might
converge faster, and when the tuning number is
larger than 40, only 1 epoch is used for finetuning.

Finetuning Best checkpoint
tune-1 10
tune-5 10
tune-10 6
tune-20 4
tune-40 1
tune-all 1

Table 10: The best finetuning checkpoint vs the number
of finetuning reference translations

A.2 Submission on blind-dev set
To provide a comprehensive understanding of the
different methods, we selectively list our submis-
sions to the blind-dev set in Table 11.

167

ID System Precision Recall F1 Hyperparameters
1 nbest 0.714 0.484 0.521 N=12, tune-10
2 ensemble 0.617 0.549 0.523 N=12, tune-10, 3 pretrain * 4 finetune seeds
3 nbest 0.645 0.522 0.518 N=18, tune-10
4 nbest 0.635 0.522 0.511 N=20, tune-20
5 MoE 0.368 0.527 0.385 N=12, tune-10, experts=5
6 MC Dropout 0.660 0.496 0.514 N=3, tune-10, M=50
7 MC Dropout 0.672 0.485 0.511 N=5, tune-10, M=10
8 Consensus 0.653 0.534 0.530 12*nbest systems(tune-10), Tcon = 1

9 Consensus 0.641 0.541 0.529 12*nbest systems(tune-10), 2 MC Dropout systems(row 6 and 7), 5 experts, Tcon = 2

10 Consensus 0.677 0.527 0.536 same as Row 9, Tcon = 3

11 Lexical 0.443 0.538 0.428 same as Row 10, add lexical substitutions (frequency > 4000)
12 Lexical 0.612 0.534 0.509 same as Row 11, frequency > 5000
13 Consensus 0.633 0.565 0.538 24*nbest systems(tune-10, tune-20), 2 MC Dropout systems, 5 experts, Tcon = 4

14 Consensus 0.652 0.558 0.542 same as Row 13, Tcon = 5

15 Consensus 0.655 0.557 0.543 24*nbest systems(tune-10, tune-20), 2 MC Dropout systems, 3 experts, Tcon = 5

16 Lexical 0.607 0.578 0.533 same as Row 15, add lexical substitution(probability > 0.85)
17 Lexical+Consensus 0.651 0.561 0.544 same as Row 15, add lexical substitution to consensus voting (Wsub = 3)
18 Lexical+Consensus 0.667 0.553 0.546 same as Row 17, Tcon = 6

19 Lexical+Consensus 0.682 0.546 0.548 same as Row 17, Tcon = 7

20 Lexical+Consensus 0.697 0.540 0.550 same as Row 17, Tcon = 8

21 Consensus 0.710 0.530 0.550 same as Row 15, Tcon = 9

22 Consensus 0.721 0.526 0.551 same as Row 15, Tcon = 10

23 Lexical only 0.243 0.114 0.127
24 Lexical+Consensus 0.720 0.526 0.550 same as Row 22, add lexical substitutions to consensus voting (frequency > 1000, Wsub = 3)
25 Consensus 0.564 0.582 0.506 36*nbest systems(tune-10, tune-20, tune-40), 2 MC Dropout systems, 3 experts, Tcon = 10

26 Consensus 0.618 0.565 0.526 same as Row 25, Tcon = 11

27 Lexical+Consensus 0.722 0.527 0.552 same as Row 22, add lexical substitutions to consensus voting (probability > 0.99, Wsub = 3)
28 Lexical+Consensus 0.720 0.529 0.552 same as Row 27, Wsub = 7

29 Lexical+Consensus 0.718 0.531 0.553 same as Row 27, Wsub = 9

30 Lexical+Consensus 0.715 0.535 0.554 same as Row 27, (probability > 0.90, Wsub = 9)
31 Lexical+Consensus 0.710 0.539 0.555 same as Row 27, (probability > 0.70, Wsub = 9)

Table 11: Submissions on the blind-dev set.

168

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 169–177
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Growing Together: Modeling Human Language Learning With n-Best
Multi-Checkpoint Machine Translation

El Moatez Billah Nagoudi1, Muhammad Abdul-Mageed1, Hasan Cavusoglu 2

1 Natural Language Processing Lab
2 Sauder School of Business

1,2 The University of British Columbia
1 {muhammad.mageed,moatez.nagoudi}@ubc.ca, 2 cavusoglu@sauder.ubc.ca

Abstract

We describe our submission to the 2020
Duolingo Shared Task on Simultaneous Trans-
lation And Paraphrase for Language Educa-
tion (STAPLE) (Mayhew et al., 2020). We
view MT models at various training stages (i.e.,
checkpoints) as human learners at different lev-
els. Hence, we employ an ensemble of multi-
checkpoints from the same model to gener-
ate translation sequences with various levels
of fluency. From each checkpoint, for our
best model, we sample n-Best sequences (n =
10) with a beam width = 100. We achieve
37.57 macro F1 with a 6 checkpoint model
ensemble on the official English to Portuguese
shared task test data, outperforming a baseline
Amazon translation system of 21.30macro F1

and ultimately demonstrating the utility of our
intuitive method.

1 Introduction

Machine Translation (MT) systems are usually
trained to output a single translation. However,
many possible translations of a given input text can
be acceptable. This situation is common in online
language learning applications such as Duolingo,1

Babbel2, and Busuu.3 In applications of this type,
learning happens via translation-based activities
while evaluation is performed by comparing learn-
ers’ responses to a large set of human acceptable
translations. Figure 1 shows an example of a typical
situation extracted from the Duolingo application.

The main set up of the 2020 Duolingo Shared
Task on Simultaneous Translation And Paraphrase
for Language Education (STAPLE 2020) (Mayhew
et al., 2020) is such that one starts with a set of En-
glish sentences (prompts) and then generates high-
coverage sets of plausible translations in the five

1https://www.duolingo.com/
2https://www.babbel.com/
3https://www.busuu.com/

Figure 1: Translations proposed by English language
learners at various levels of fluency, from diverse
backgrounds. Our multi-checkpoint ensemble models
mimic learner fluency.4

target languages: Portuguese, Hungarian, Japanese,
Korean, and Vietnamese. For instance, if we want
to translate the English (En) sentence “is my expla-
nation clear?” to Portuguese (Pt), all the translated
Portuguese sentences illustrated in Table 1 would
be acceptable.4

Limited training data. One challenge for training
a sufficiently effective model we faced is the lim-
ited size of the source training data released by or-
ganizers (4, 000 source English sentences coupled
with 226, 466 Portuguese target sentences). We cir-
cumvent this limitation by training a model on a
large dataset acquired from the OPUS corpus (as
described in Section 3), which gives us a powerful
MT system that we build on (see Section 4.2). We
then exploit the STAPLE-provided training data in
multiple ways (see Sections 4.3 and 4.4) to extend
this primary model as a way to nuance the model
to the shared task domain.
Paraphrase via MT. In essence, the shared task
is a mixture of MT and paraphrase. This poses a
second challenge: there is no paraphrase dataset

4Examples taken from shared task description at: https:
//sharedtask.duolingo.com/.

169

https://www.aclweb.org/anthology/D19-56%2d

to train the system on. For this reason, we re-
sort to using outputs from the MT system in place
of paraphrases. This required generating multiple
sentences for each source sentence. To meet this
need, we generate multiple translation hypotheses
(n-Best) using a wide beam search (Section 5.1),
perform ‘round-trip’ translations exploiting these
multiple outputs (Section 5.2), and employ ensem-
bles of checkpoints (Section 5.3).
Diverse outputs. A third challenge is that the tar-
get Portuguese sentences provided for training by
organizers are produced by learners of English at
various levels of fluency. This makes some of these
Portuguese translations inarticulate (i.e., not quite
fluent). MT systems are not usually trained to pro-
duce inarticulate translations (part of the time), and
hence we needed to offer a solution that matches
the different levels of language learners who pro-
duced the translations. Intuitively, we view MT
systems trained at various stages (i.e., checkpoint)
as learners with various levels of fluency. As such,
we employ an ensemble of checkpoints to gener-
ate translations matching the different levels of
learner fluency (Section 5.3). Ultimately, our con-
tributions lie in alleviating the 3 challenges listed
above.

The remainder of the paper is organized as
follows: Section 2 is a brief overview of related
work. In Section 3, we describe the data we use for
both training and fine-tuning our models. Section 4
presents the proposed MT system. Section 5
describes our different methods. We discuss our
results in Section 6, and conclude in Section 7.

2 Related Work

We focus our related work overview on the task
of paraphrase generation and its intersection with
machine translation. Paraphrasing is the task of
expressing the same textual units (e.g. sentence)
with alternative forms using different words while
keeping the original meaning intact. 5 Over the last
few years, MT has been the dominant approach for
paraphrase generation. For instance, Barzilay and
McKeown (2001); Pang et al. (2003) use multiple
translations of the same text to train a paraphrase
system. Similarly, Bannard and Callison-Burch
(2005) use an MT phrase table to mapping an En-
glish sentences to various non-English sentences.

5https://dictionary.cambridge.org/
dictionary/english/paraphrase

English sentence is my explanation clear?
- minha explicação está clara?

Accepted - minha explicação é clara?
Portuguese - a minha explicação é clara?
Translations - está clara minha explicação?

- minha explanação está clara?
- é clara minha explicação?

English sentence you look so pretty!
- você está tão linda!

Accepted - você está tão bonita!
Portuguese - você está muito linda!
Translations - você está muito bonita!

- você parece tão linda!
- você parece tão bonita!

Table 1: English sentences with their Portuguese trans-
lation samples from shared task training split.

More recently, advances in neural machine trans-
lation (NMT) have spurred interest in paraphrase
generation (Sutskever et al., 2014; Luong and Man-
ning, 2015; Aharoni et al., 2019). For example,
Prakash et al. (2016) employ a stacked residual
LSTM network to learn a sequence-to-sequence
model on paraphrase data. A parpahrase model
with adversarial training is presented by (Li et al.,
2017). Wieting and Gimpel (2017); Iyyer et al.
(2018) propose a translation-based paraphrasing
system, which is based on NTM to translate one
side of a parallel corpus. Paraphrase generation
with pivot NMT is used by (Mallinson et al., 2017;
Yu et al., 2018).

3 Data

3.1 Shared task data

As part of the STAPLE 2020 shared task, only
training data were released. The target train-
ing split is a total of 526, 466 of learner transla-
tions of 4, 000 input (source) English sentences.
We note that the number of translations of each
English sentence varies, with an average of ∼
132 Portuguese target sentences for each English
source sentence. As shared task organizers point
out, this training dataset can be used as a refer-
ence/anchor points, and also serves as a strong
baseline. For evaluation, a sets of 60, 294
translations (learner-crafted sentences) of 500 input
English sentences were available on Colab. Test
data were also made available only via Colab and
comprised 500 English sentences learner-translated

170

Corpus Content Documents Sentences En. Words Pt. Words

ParaCrawl v5 Parallel corpora from Web Crawls collected in the ParaCrawl project 287 13.9M 341.4M 347.9M

TildeMODEL v2018 This is the Tilde MODEL Corpus – Multilingual Open Data for European Languages 6 3.6M 134.1M 100.4M

DGT A collection of translation memories provided by the JRC 287 13.9M 341.4M 347.9M

SciELO Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO 2 3.1M 92.8M 95.4M

OpenSubtitles A new collection of translated movie subtitles 42,755 35.5M 283.4M 248.9M

Tanzil A collection of Quran translations 15 0.1M 2.8M 2.4M

News Commentary A parallel corpus of News Commentaries provided by WMT 7,185 0.6M 15.4M 15.5M

Europarl v8 A parallel corpus extracted from the European Parliament web site 10,344 2.0M 59.5M 6.1M

JW300 v1 JW300 is a parallel corpus of over 300 languages 26,991 2.2M 40.0M 40.8M

CAPES v1 Parallel corpus of theses and dissertation abstracts in Portuguese and English from CAPES 1 1.2M 38.4M 39.1M

EMEA v3 A parallel corpus from the European Medicines Agency 1,921 1.1M 12.0M 16.4M

QED v2.0a Open multilingual collection of subtitles for educational videos and lectures 4,618 0.5M 8.7M 7.4M

JRC-Acquis v3.0 JRC-Acquis is a collection of legislative text of the European Union 20,507 1.7M 64.3M 64.8M

Wikipedia A corpus of parallel sentences from Wikipedia 5 1.8M 47.0M 44.8M

TED2013 A parallel corpus of TED talk subtitles by CASMACAT 1 0.2M 3.1M 2.9M

GNOME. A parallel corpus of GNOME localization files 1,307 0.6M 2.6M 3.7M

Tatoeba A collection of translated sentences from Tatoeba 1 0.2M 11.0M 2.7M

ECB v1 Website and documentatuion from the European Central Bank 1 0.2M 5.8M 6.2M

bible-uedin v1 Multilingual parallel corpus created from translations of the Bible 2 62.2K 1.8M 1.7M

GlobalVoices A parallel corpus of news from the Global Voices website 5,133 71.5k 2.3M 2.3M

KDE4 A parallel corpus of KDE4 system messages 2,136 0.2M 2.4M 2.7M

Ubuntu A parallel corpus of the Ubuntu Dialogue Corpus 449 0.1M 0.7M 0.5M

EUconst v1 A parallel corpus collected from the European Constitution 47 10.9K 0.2M 0.2M

Books v1 A collection of copyright free book 1 1.4K 33.8K 32.3K

Total All corpora extracted from OPUS 162,425 77.7M 1.5B 1.4B

Table 2: English-Portuguese datasets from Tiedemann (2012) used in our training.

into 67, 865 Portuguese sentences. For all training,
development, and test data, these translations are
ranked and weighted according to actual learner re-
sponse frequency. We refer the reader to the shared
task description for more information. 6

3.2 OPUS data

In order to develop efficient English-Portuguese
MT models that can possibly work across dif-
ferent text domains, we make use of a large
dataset of parallel English-Portuguese sentences
extracted from the Open Parallel Corpus Project
(OPUS) (Tiedemann, 2012). OPUS7 contains
more than 2.7 billion parallel sentences in 90 lan-
guages. The specific corpus we extracted con-
sists of data from multiple domains and sources
including: ParaCrawl project (Esplà-Gomis et al.,
2019), EUbookshop (Skadiņš et al., 2014), Tilde
Model (Rozis and Skadinš, 2017), translation mem-
ories (DGT) (Steinberger et al., 2013), Open-
Subtitles (Creutz, 2018), SciELO Parallel (Soares
et al., 2018), JRC-Acquis Multilingual (Steinberger
et al., 2006), Tanzil (Zarrabi-Zadeh, 2007), Eu-

6https://sharedtask.duolingo.com/#data.
7http://opus.nlpl.eu/

roparl Parallel (Koehn, 2005), TED 2013 (Cettolo
et al., 2012), Wikipedia (Wołk and Marasek, 2014),
Tatoeba 8, QCRI Educational Domain (Abdelali
et al., 2014), GNOME localization files, 9 Global
Voices, 10 KDE4, 11, Ubuntu, 12 and Multilingual
Bible (Christodouloupoulos and Steedman, 2015).
To train our models, we extract more than 77.7M
parallel (i.e., English-Portuguese) sentences from
the whole collection. The extracted dataset com-
prises more than 1.5B English tokens and 1.4B
Portuguese tokens. More details about the training
dataset are given in Table 2.

3.3 Pre-Processing
Pre-processing is an important step in building any
MT model as it can significantly affect the end re-
sults. We remove punctuation and tokenize all data
with the Moses tokenizer (Koehn et al., 2007). We
also use joint Byte-Pair Encoding (BPE) with 60K
split operations for subword segmentation (Sen-
nrich et al., 2016).

8www.tatoeba.org
9www.10n.gnome.org

10www.globalvoices.org/
11www.i18n.kde.org
12www.translations.launchpad.net

171

4 Models

In this section, we first describe the architecture of
our models. We then explain the different ways we
train the models on various subsets of the data.

4.1 Architecture

Our models are mainly based on a Convolutional
Neural Network (CNN) architecture (Kim, 2014;
Gehring et al., 2017). This convolutional archi-
tecture exploits BPE (Sennrich et al., 2016). The
architecture is as follows: 20 layers in the encoder
and 20 layers in the decoder, a multiplicative at-
tention (Luong et al., 2015) in every decoder layer,
a kernel width of 3 for both the encoder and the
decoder, a hidden size 512, and an embedding size
of 512, and 256 for the encoder and decoder layers
respectively. We use a Fairseq implementation (Ott
et al., 2019).

4.2 Basic En↔Pt Models

We trained two MT models, English-to-Portuguese
(En→Pt) and Portuguese-to-English (Pt→En), on
4 V100 GPUs, following the setup described in Ott
et al. (2018). For both models, the learning rate
was set to 0.25, a dropout of 0.2, and a maximum
tokens of 4, 000 for each mini-batch. We train
our models on the 77.7M parallel sentences of the
OPUS dataset described in Section 3. Validation is
performed on the development data from STAPLE
2020 (Mayhew et al., 2020).

4.3 En→Pt Extended Model

We use the training data of the STAPLE 2020
shared task13 to create a new En-Pt parallel dataset.
More specifically, at the target side, we use all the
Portuguese gold translations while duplicating the
same English source sentence at the source side.
This results in a new training set of 251, 442 En-Pt
parallel sentences. We refer to this training dataset
as STAPLE-TRAIN, or simply S-TRAIN. We then
merge OPUS and S-TRAIN to train an En→Pt
model from scratch. We refer to this new model as
the extended model.

4.4 En→Pt Fine-Tuned Model

Fine-tuning with domain-specific data, from a do-
main of interest, can be an effective strategy when
it is desirable to develop systems for such a do-
main (Ott et al., 2019, 2018). Motivated by this,

13http://sharedtask.duolingo.com/#data

we experiment with using the STAPLE-based S-
TRAIN parallel dataset from the previous sub-
section to fine-tune our En→Pt basic model for
5 epochs. 14 We will refer to the model resulting
from this fine-tuning process simply as the fine-
tuned model.

5 Model Deployment Methods

In order to enhance the 1-to-n En-Pt translation, we
propose three methods based on the previously dis-
cussed MT models (see section 4). These methods
are n-Best prediction, multi-checkpoint translation,
and paraphrasing.

5.1 n-Best Prediction

We first use our three MT models (basic, extended,
and fine-tuned) with a beam search size of 100 to
generate n-Best translation hypotheses. We then
use the average log-likelihood to score each of
these hypotheses. Finally, we select the hypoth-
esis with the n highest score as our output.

5.2 Paraphrasing

Paraphrasing is an effective data augmentation
method which is commonly used in MT tasks (Po-
liak et al., 2018; Iyyer et al., 2018). In order to
extend the list of accepted Portuguese translations,
we use both of our En→Pt and Pt→En models, as
follows:

1. Translate the English sentences using the
En→Pt model. For instance, we generate n-
Best (n = 10) Portuguese sentences for each
English source sentence.

2. Then, we use the Pt→En model to get
n′-Best English translations (we experiment
with n′ = 1, 3, and 5) for each of the 10
Portuguese sentence. At this point, we
would have 10 ∗ n′ new English sentences
(oftentimes with duplicate generations that
we remove). These new sentences represent
paraphrases of the original English sentence.

3. After de-duplication, the new English sen-
tences are fed to the En→Pt model to get the
1-Best Portuguese translation.

14We choose the number of epochs arbitrarily, but note that
it is a hyper-parameter that can be tuned.

172

Figure 2: An illustration of our proposed models and methods: (a) n-Best prediction method with n = 10
resulting in the En→Pt basic model; (b) paraphrasing method with n = 10 and n′ = 3 used in the En→Pt
fine-tuning and the En↔Pt basic models, (c) multi-checkpoint method used with n = 10 and m = 4 for the
En→Pt extended model.

5.3 Multi-Checkpoint Translation

Our third method is based on saving the models
at given epochs (checkpoints) during training. We
use the m last checkpoints (models) to generate the
n-Best translation hypotheses (the same way as our
n-Best prediction method). We then de-duplicate
the outputs of all the m models and use them in
evaluation. We now describe our evaluation.

6 Evaluation

In order to evaluate our methods, we carry out a
number of experiments. First, we consider per-
formance of each proposed method on the official
training and development datasets of STA-
PLE (Mayhew et al., 2020). Our models were ul-
timately evaluated on the shared task test data.
We now describe STAPLE evaluation metrics and
baselines as provided by organizers, before report-

ing on our results on training, development, and
test.

6.1 Evaluation Metrics & Baselines

Weights of Translation. We note that each Por-
tuguese translated sentence has a weight as pro-
vided in the gold dataset. The weights of transla-
tions correspond to user (learner) response rates.
These weights are used primarily for scoring. The
STAPLE 2020 shared task data takes the format
illustrated in Table 3.
Metrics. Performance of MT systems in the
shared task is quantified and scored based on
how well a model can return all human-curated
acceptable translations, weighted by the likelihood
that an English learner would respond with each
translation (Mayhew et al., 2020). As such, the
main scoring metric is the weighted macro F1,
with respect to the accepted translations. To

173

English Sentence : is my explanation clear?

Weights Portuguese Translation
0.26739 - minha explicação está clara?
0.16168 - minha explicação é clara?
0.11109 - a minha explicação é clara?
0.08778 - está clara minha explicação?
0.05717 - minha explanação está clara?
English Sentence : this is my fault.

Weights Portuguese translation
0.17991 - isto é minha culpa.
0.10664 - isso é minha culpa.
0.08944 - esta é minha culpa.
0.07794 - isto é culpa minha.
0.06803 - é minha culpa.

Table 3: English sentences with their Portuguese trans-
lation and Weights samples from shared task train data.

compute weighted macro F1 (see formula 6),
the weighted F1 for each English sentence (s) is
calculated and the average over all the sentences
in the corpus is computed. The weighted F1 (see
formula 5) is computed using the unweighted
precision (see formula 1) and the weighted recall
(see formulas 2, 3 and 4).

Precision (s) =
TPs

TPs + FNs
(1)

WTPs =
∑

s∈TPs

weight(t) (2)

WFNs =
∑

s∈FNs

weight(t) (3)

Weighted Recall (s) =
WTPs

WTPs +WFNs
(4)

Weighted F1(s) =
2 · Prec. (s) ·W. Recall (s)

Prec. (s) +W. Recall (s)
(5)

Weighted Macro F1 =
∑

s∈S

Weighted F1(s)

|S| (6)

Baselines. We adopt the two baselines offered by
the task organizers. These are based on Amazon
and Fairseq translation systems and are at 21.30%
and 13.57%, respectively. More information about
these baselines can be reviewed at the shared task
site listed earlier.

6.2 Evaluation on TRAIN and DEV

In this section, we report the results of our 3 pro-
posed methods, (a) n-Best prediction, (b) para-
phrasing, and (c) multi-checkpoint translation us-
ing the MT models presented in section 4.

Evaluation on TRAIN. For (a) the n-Best
prediction method, we explore the 4 different
values of n in the set {5, 10, 15, 20}. For (b)
the paraphrase method, we set the number of
Portuguese sentences to n′ = {1, 3, 5}. Finally,
(c) the multi-checkpoint method was tested with
4 different values for the number of checkpoints
m = {2, 4, 6, 8}.
For paraphrasing and multi-checkpoint translation,
we fix the number of n-best translations n to
10, varying the values of n′ and m only when
evaluating our extended model. This leads us to
identifying the best evaluation values of n′ = 3
and m = 6, which we then use when evaluating
our basic and fine-tuned models.

Evaluation on DEV. For evaluation on the
STAPLE development data, we adopt the same
procedure followed for evaluation on the train split.
Table 4 summarizes our experiments with different
configurations (i.e., values of n, n′, and m) on
train and development task data, respectively.

Discussion. Results presented in Table 4 demon-
strate that all the models with the different meth-
ods and configurations outperform the the offi-
cial shared task baseline with macro F1 scores
between 27.41% and 40.78%. As expected, fine-
tuning the En→Pt basic model with the S-TRAIN
data-set improves the results with a mean of
+1.46% on the training data. We also observe that
training on the concatenated OPUS and S-TRAIN
data-sets from scratch leads to better results com-
pared to the exclusive fine-tuning method.

Based on these results, we can see that the best
configuration is the multi-checkpoint method used
with the extended MT model. This configuration
obtains the best macro F1 score of 40.78% and
39.21% on the training and development STAPLE
data splits, respectively.

174

Train Data
Basic Model Extended Model Fine-Tuned Model

Method n Prec. W. Recall W. F1 Prec. W. Recall W. F1 Prec. W. Recall W. F1

Prediction

5 55.44 23.87 27.41 45.51 28.24 29.43 44.68 26.91 28.38
n-Best 10 42.78 29.65 28.47 46.02 34.18 33.51 41.81 32.19 30.33

15 37.42 27.09 29.17 39.25 35.50 31.80 45.51 28.24 29.43
20 29.68 38.24 27.48 39.22 35.49 31.79 46.23 27.04 30.27

Paraphrasing

n′ Prec. W. Recall W. F1 Prec. W. Recall W. F1 Prec. W. Recall W. F1

1 - - - 40.24 35.01 31.68 - - -
3 40.24 35.01 31.68 46.45 35.08 34.39 39.98 37.27 32.89
5 - - - 40.44 39.20 34.16 - - -
m Prec. W. Recall W. F1 Prec. W. Recall W. F1 Prec. W. Recall W. F1

Checkpoint

2 - - - 58.81 31.57 36.57 - - -
Multi 4 - - - 50.53 44.22 40.76 - - -

6 44.44 45.52 39.46 49.58 44.92 40.78 36.77 52.73 38.54
8 - - - 42.16 44.96 39.28 - - -

DEV Data
Basic Model Extended Model Fine-Tuned Model

Method n Prec. W. Recall W. F1 Prec. W. Recall W. F1 Prec. W. Recall W. F1

Prediction

5 - - - 52.48 26.27 29.87 - - -
n-Best 10 32.56 36.83 29.33 36.52 41.09 32.96 35.39 37.84 31.30

15 - - - 38.62 37.46 32.36 - - -
20 - - - 36.03 37.44 31.33 - - -

Paraphrasing

n’ Prec. W. Recall W. F1 Prec. W. Recall W. F1 Prec. W. Recall W. F1

1 - - - 45.77 33.31 33.05 - - -
3 48.66 31.17 32.43 46.34 33.85 33.17 39.98 37.27 32.89
5 - - 46.14 34.26 33.40 - - -
m Prec. W. Recall W. F1 Prec. W. Recall W. F1 Prec. W. Recall W. F1

Checkpoint

2 - - - 55.88 32.16 35.26 - - -
Multi 4 - - - 52.27 37.35 38.25 - - -

6 45.35 43.20 38.04 56.42 37.31 39.16 45.01 41.23 37.26
8 - - - 53.83 38.85 39.21 - - -

Table 4: Performance on the STAPLE 2020 Train and Dev data splits.

Extended Model

Method m Prec. W. Recall W. F1

Aws Baseline - 87.80 13.98 21.29
Fairseq Baseline - 28.25 11.70 13.57

Multi-Checkpoint
4 60.14 33.14 37.06
6 53.83 36.50 37.57
8 49.94 38.27 37.21

Table 5: Results on STAPLE 2020 Test Data.

6.3 Evaluation on TEST
In test phase, we submitted translations from 3 sys-
tems for the STAPLE English-Portuguese sub-task.
The 3 systems are based on our multi-checkpoint

translation with the extended model. The number
of checkpoints used was m = {4, 6, 8}, and n is
fixed to 10 (i.e., the best value of n identified on
training data with our extended model). Table 5
shows the results of our 3 final submitted systems
as returned by the shared task organizers.

Discussion. Our results indicate that when the
multi-checkpoint method with the extended model
and only two last checkpoints (m = 4) is used,
the macro F1 score reaches 37.07% (with a best
precision of 60.14%). This method with m = 6
represents our best macro F1 score 37.57% for
the English-Portuguese translation sub-task. We

175

note that with this configuration we outperform the
Amazon and Fairseq translation baseline systems
(at +15.92% and +23.99%, respectively) provided
by the task organizers. We also observe that when
m is set to 8, the macro F1 slightly decreases to
37.21%. Ultimately, our findings show the utility
of using multiple checkpoint ensembles as a way
to mimic the various levels of language learners.
Simple as this approach is, we find it quite intuitive.

7 Conclusion

In this work, we described our contribution to
the 2020 Duolingo Shared Task on Simultaneous
Translation And Paraphrase for Language Edu-
cation (STAPLE) (Mayhew et al., 2020). Our
system targeted the English-Portuguese sub-task.
Our models effectively make use of an approach
based on n-Best prediction and multi-checkpoint
translation. Our use of the OPUS dataset for
training proved quite successful. In addition,
based on our results, our intuitive deployment
of a multi-checkpoint ensemble coupled with
n-Best decoded translations seem to mirror leaner
proficiency. As future work, we plan to explore
other methods on new language pairs.

Acknowledgements

MAM gratefully acknowledge the support of
the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Social Sciences
Research Council of Canada (SSHRC), and
Compute Canada (www.computecanada.ca).

References
Ahmed Abdelali, Francisco Guzman, Hassan Sajjad,

and Stephan Vogel. 2014. The amara corpus: Build-
ing parallel language resources for the educational
domain. In LREC, volume 14, pages 1044–1054.

Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.
Massively multilingual neural machine translation.
arXiv preprint arXiv:1903.00089.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 597–604. Associ-
ation for Computational Linguistics.

Regina Barzilay and Kathleen McKeown. 2001. Ex-
tracting paraphrases from a parallel corpus. In Pro-
ceedings of the 39th annual meeting of the Associa-
tion for Computational Linguistics, pages 50–57.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Confer-
ence of the European Association for Machine Trans-
lation (EAMT), pages 261–268, Trento, Italy.

Christos Christodouloupoulos and Mark Steedman.
2015. A massively parallel corpus: the bible in
100 languages. Language resources and evaluation,
49(2):375–395.

Mathias Creutz. 2018. Open subtitles paraphrase
corpus for six languages. arXiv preprint
arXiv:1809.06142.

Miquel Esplà-Gomis, Mikel L Forcada, Gema
Ramı́rez-Sánchez, and Hieu Hoang. 2019.
Paracrawl: Web-scale parallel corpora for the
languages of the eu. In Proceedings of Machine
Translation Summit XVII Volume 2: Translator,
Project and User Tracks, pages 118–119.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
arXiv preprint arXiv:1804.06059.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86. Citeseer.

Philipp Koehn, Marcello Federico, Wade Shen,
Nicola Bertoldi, Ondrej Bojar, Chris Callison-Burch,
Brooke Cowan, Chris Dyer, Hieu Hoang, Richard
Zens, et al. 2007. Open source toolkit for statisti-
cal machine translation: Factored translation models
and confusion network decoding. In Final Report of
the Johns Hopkins 2006 Summer Workshop.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2017. Paraphrase generation with deep reinforce-
ment learning. arXiv preprint arXiv:1711.00279.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion, pages 76–79.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

176

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing revisited with neural ma-
chine translation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 881–893.

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). ACL.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensi-
ble toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. arXiv preprint arXiv:1806.00187.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based alignment of multiple translations: Ex-
tracting paraphrases and generating new sentences.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 102–109. Association for Computa-
tional Linguistics.

Adam Poliak, Yonatan Belinkov, James Glass, and
Benjamin Van Durme. 2018. On the evaluation of
semantic phenomena in neural machine translation
using natural language inference. arXiv preprint
arXiv:1804.09779.

Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji
Farri. 2016. Neural paraphrase generation with
stacked residual lstm networks. arXiv preprint
arXiv:1610.03098.

Roberts Rozis and Raivis Skadinš. 2017. Tilde
model-multilingual open data for eu languages. In
Proceedings of the 21st Nordic Conference on
Computational Linguistics, NoDaLiDa, 22-24 May
2017, Gothenburg, Sweden, 131, pages 263–265.
Linköping University Electronic Press.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Raivis Skadiņš, Jörg Tiedemann, Roberts Rozis, and
Daiga Deksne. 2014. Billions of parallel words for
free: Building and using the eu bookshop corpus. In
Proceedings of LREC.

Felipe Soares, Viviane Moreira, and Karin Becker.
2018. A large parallel corpus of full-text scientific
articles. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC-2018).

Ralf Steinberger, Andreas Eisele, Szymon Klocek,
Spyridon Pilos, and Patrick Schlüter. 2013. Dgt-
tm: A freely available translation memory in 22 lan-
guages. arXiv preprint arXiv:1309.5226.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, Tomaz Erjavec, Dan Tufis, and
Dániel Varga. 2006. The jrc-acquis: A multilingual
aligned parallel corpus with 20+ languages. arXiv
preprint cs/0609058.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. 2012:2214–2218.

John Wieting and Kevin Gimpel. 2017. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. arXiv
preprint arXiv:1711.05732.

Krzysztof Wołk and Krzysztof Marasek. 2014. Build-
ing subject-aligned comparable corpora and mining
it for truly parallel sentence pairs. Procedia Technol-
ogy, 18:126–132.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. arXiv preprint arXiv:1804.09541.

Hamid Zarrabi-Zadeh. 2007. Tanzil project. URL:
http://tanzil. net/wiki/Tanzil Project.

177

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 178–187
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Generating Diverse Translations via Weighted Fine-tuning and
Hypotheses Filtering for the Duolingo STAPLE Task

Sweta Agrawal
Department of Computer Science

University of Maryland
sweagraw@cs.umd.edu

Marine Carpuat
Department of Computer Science

University of Maryland
marine@cs.umd.edu

Abstract
This paper describes the University of Mary-
land’s submission to the Duolingo Shared Task
on Simultaneous Translation And Paraphrase
for Language Education (STAPLE). Unlike the
standard machine translation task, STAPLE re-
quires generating a set of outputs for a given
input sequence, aiming to cover the space of
translations produced by language learners.
We adapt neural machine translation models to
this requirement by (a) generating n-best trans-
lation hypotheses from a model fine-tuned on
learner translations, oversampled to reflect the
distribution of learner responses, and (b) fil-
tering hypotheses using a feature-rich binary
classifier that directly optimizes a close ap-
proximation of the official evaluation metric.
Combination of systems that use these two
strategies achieves F1 scores of 53.9% and
52.5% on Vietnamese and Portuguese, respec-
tively ranking 2nd and 4th on the leaderboard.

1 Introduction

While machine translation (MT) typically produces
a single output for each input, scoring and gen-
eration for second language learning applications
might benefit from systems whose outputs bet-
ter capture the diversity of translations produced
by language learners. The Duolingo Simultane-
ous Translation And Paraphrase for Language Ed-
ucation (STAPLE) shared task (Mayhew et al.,
2020) provides a framework for developing and
testing such systems, grounded in real transla-
tions produced by English learners into five native
languages (Portuguese, Vietnamese, Hungarian,
Japanese, Korean). In this task, given an English
sentence prompt, systems are asked to produce a set
of translations for that prompt, and are scored based
on how well their outputs cover human-curated ac-
ceptable translations, weighted by the likelihood
that an English learner would respond with each
translation (Table 1).

Prompt is my explanation clear?

Output

minha explicação está clara? 0.267
minha explicação é clara? 0.161
a minha explicação está clara? 0.111
a minha explicação é clara? 0.088
minha explanação está clara? 0.057
está clara minha explicação? 0.044
minha explanação é clara? 0.039

Table 1: STAPLE data: given a prompt in English,
translation alternatives are weighted according to
Learner Response Frequency (LRF)

While the multiple translations can be viewed as
paraphrases, we propose to address the STAPLE
task primarily as a MT task to better understand
the strengths and weaknesses of neural MT archi-
tectures for generating multiple learner-relevant
translations. Given a Transformer model for the
language pair of interest, we use beam search to
generate n-best translation candidates. However,
since n-best lists are known to lack diversity, we
propose to generate hypotheses that better match
the requirements of the STAPLE task via:

1. Frequency-Aware n-Best Lists: We encour-
age hypotheses to reflect the diversity and fre-
quency of learner responses by fine-tuning
models on STAPLE data, oversampling trans-
lation options to reflect learner preferences.

2. Hypothesis Filtering: We filter the resulting
n-best lists using a binary classifier which
identifies good translations that are likely to
be produced by a learner.

Controlled experiments and analysis show the
benefits of both strategies. Our final submission
which includes both techniques achieves F1 scores
of 53.9% and 52.5% for en-vi and en-pt respec-

178

https://www.aclweb.org/anthology/D19-56%2d

tively, reaching a rank of 2nd and 4th on the leader-
board, only 2 points below the top scoring sys-
tem. For completeness, we also submitted systems
for the remaining language pairs using Frequency-
Aware n-best lists: our system ranked 2nd for
Japanese and 3rd for Korean and Hungarian.

2 Background

Unlike in the STAPLE task, recent attempts at gen-
erating multiple translations for a single source
have targeted output variability along specific
stylistic dimensions (Sennrich et al., 2016b; Ra-
binovich et al., 2016; Niu et al., 2018; Agrawal and
Carpuat, 2019) or produce diverse outputs without
a specific use case (Kikuchi et al., 2016; Shu et al.,
2019). The techniques used can be divided in three
categories: (a) constrain the decoding process to
generate diverse candidates (Li and Jurafsky, 2016;
Li et al., 2015; Cho, 2016); (b) optimize via a di-
versity promoting loss function (Li et al., 2015); (c)
expose the model to different translation candidates
with side-constraints (Rabinovich et al., 2016; Sen-
nrich et al., 2016a; Niu et al., 2018; Agrawal and
Carpuat, 2019; Shu et al., 2019) or without (Shen
et al., 2019). Since it is unclear what dimensions
of variations are captured in the STAPLE trans-
lation, we focus instead on improving n-best lists
generated by a standard neural MT model.

Source texts with multiple references have
mostly been used to evaluate rather than train MT
systems (Papineni et al., 2002; Banerjee and Lavie,
2005; Qin and Specia, 2015). Evaluation sets with
4 or 5 references have been converted to single-
reference training samples (Zheng et al., 2018) to
improve MT training, but reference translations
vary in arbitrary ways and often exhibit poor diver-
sity, mostly limited to translationese effects. The
STAPLE data presents an opportunity to explore
multiple translations generated in a more compre-
hensive fashion.

3 Approach

3.1 Frequency-Aware Hypotheses Generation

While neural MT systems can generate multi-
ple translation candidates per source using beam
search, the n-best translations often lack diversity.
One issue is that systems are trained on single-
translation training samples. We propose to tailor
MT to the STAPLE task by fine-tuning models on
LRF-weighted multi-reference samples to obtain

more diverse translations and a ranking that better
reflect learner preferences.

Given the STAPLE data for a language pair,
where the i-th training example, (ei,Fi,Wi) in-
cludes a source sentence in English, a reference set
Fi = {f1i , f2i , ..., fKi } of K translations and corre-
sponding LRF weights Wi = {w1

i ,w
2
i , ...,w

K
i },

we create MT training samples by copying the
translation pair (ei, f

j
i), w

j
i × O times.1 Given

model parameters θ, this yields a weighted cross-
entropy loss:

Llrf (θ) =
M∑

i=1

K∑

j=1

(wj
i ×O) logPr(f ji |ei; θ) (1)

3.2 Hypothesis Filtering as Binary
Classification

Even when informed by STAPLE data and LRF
scores, n-best lists might include translations that
are not in the reference set, due to translation errors
or selecting paraphrases that do not match language
learners’ preferences. We design a binary classi-
fier that further filters the n-best lists by predicting
for each hypothesis whether or not it should be in-
cluded in the final set. This lets us define features
based on the complete prompt and hypothesis se-
quence pairs, while the MT model generates the
hypothesis incrementally.

Let D = {(ei, f̂1i , f̂2i , ..., f̂Ni)}M1 represent the
n-best list generated via beam search for all the
source prompts in the training dataset: ei corre-
sponds to the i-th source prompt and f̂ ji corre-
sponds to the j-th candidate hypothesis extracted
via beam search. xi

j represents the feature vector
extracted from the source (ei) and j-th candidate
hypothesis (̂f ji) and yj

i is a binary label indicative
of whether the candidate hypothesis, f̂ ji , is found
in the gold standard data. The classification model
f : X → R maps the feature vector to a real value,
where, f is a two-layer Neural Network (NN) to
enable learning feature combinations.

Features We aim to capture the quality of a
source-hypothesis pair using multiple sentence-
level features:

• Length features |f̂ |, |e|, |f̂ |
|e| ,

|e|
|f̂ | might indicate

mismatches between source and target content.

• Word alignment features have proved use-
ful to identify semantic divergences in bitext
1We set O = 1000 in practice.

179

(Munteanu and Marcu, 2005; Vyas et al., 2018).
We use the Forward and Reverse Alignment
score, the count of unaligned words for source
and target, and the top three largest fertilities for
source and target.

• Scores from various MT models as often done
when reranking n-best lists (Cherry and Foster,
2012; Neubig et al., 2015; Hassan et al., 2018)
including a left-to-right model, a right-to-left
model, and a target-to-source model, which pro-
vide different views of the example and might
better estimate the adequacy of the translation
than the original MT model score.

• Target 5-gram language model score to estimate
the fluency of the hypothesis.

Loss We optimize a Soft Macro-F1 objective
(Hsieh et al., 2018) function to approximate the
official evaluation metric.2 The true positive (tp),
false positive(fp), and true negative (tn) rate for
each source prompt ei are estimated as:

tpei =
N∑

t=1

ŷi × yi

fpei =
N∑

t=1

ŷi × (1− yi)

tnei =
N∑

t=1

(1− ŷi)× yi

Then, the precision, recall, F1 for a source ei, and
the loss are defined as:

Pei =
tpei

tpei + fpei + ε

Rei =
tpei

tpei + fnei + ε

F1Macroei =
2× Pei × Rei

Pei +Rei + ε

Loss =

M∑

i=1

(1− F1Macroei)

4 Experiment Settings

4.1 Data
STAPLE Data The shared task provides English
source prompts, associated with high-coverage sets

2Preliminary experiments showed that a LRF-weighted
version of this loss resulted in unstable training and inconsis-
tent results depending on initialization.

Figure 1: Average of the top-1, top-5, mean and me-
dian LRF values across source prompts: the LRF distri-
bution is more uniform for languages with many more
references per prompt (e.g. en-ja).

of plausible translations in five other languages.
These translations are weighted and ranked accord-
ing to LRF scores indicating which translations are
more likely. About 3000 prompts per language are
available (see Table 2 for details) and the number
of reference translations available per prompt vary
across languages (mean: 174.2, variance: 116). Fig-
ure 1 illustrates the differences in LRF distributions
across languages: for languages with many refer-
ences per prompt (e.g. en-ja, en-ko), the gap be-
tween the top-1 and the mean LRF value is small,
indicating an almost uniform distribution. Aver-
age top-1 LRF scores also vary across languages
(e.g en-vi: 0.25, en-ja: 0.05) depending upon the
number of references available per prompt.

For system development, we divide the STAPLE
dataset into train, development and test datasets
using 72%, 8%, and 20% of source prompts re-
spectively. We refer to these subsets as STAPLE
train, internal dev and internal test. Note that the
last two differ from the official blind development
and test sets available to participants on codalab.

Other Bitexts We use bitext from OpenSubti-
tles (Tiedemann, 2012) and Tatoeba (Tiedemann,
2012) as described in Table 3. The Tatoeba corpus
provides multiple reference translations for some
sources (with 2 translation per source on average),
but unlike in the STAPLE data, these translations
are not weighted by frequency of usage.

Preprocessing All datasets are pre-processed us-
ing Moses tools for normalization, tokenization
and lowercasing. We further segment tokens into
subwords using a joint source-target Byte Pair En-
coding (Sennrich et al., 2016c) model with 32, 000

180

Language Source Target T/S
Train Dev Test Types Tokens Train Dev Test Types Tokens

en-pt 2.8K 300 800 2.3K 3.8M 380K 42K 104K 8.7K 4M 131
en-vi 2.5K 280 700 2.3K 950K 142K 14K 38K 1.7K 1.3M 56
en-ja 1.8K 200 500 1.3K 3.8M 600K 65K 166K 4K 6.8M 342
en-ko 1.8K 200 500 1.3K 3M 500K 57K 137K 17K 2.6M 280
en-hu 2.8K 320 800 1.5K 1.1M 182K 21K 47K 11K 1M 62

Table 2: STAPLE data statistics: segments in our train/dev/test split, overall vocabulary statistics and average
translations per source prompt (T/S).

Language OpenSubtitles Tatoeba

en-pt 47.2M 196K
en-vi 3M 5.3K
en-ja 1.8M 200K
en-ko 1.2M 2.7K
en-hu 34.5M 102K

Table 3: Additional bitext used for training and fine-
tuning MT models

operations. For Japanese, we use kytea 3 toolkit for
word tokenization.

4.2 MT configurations

Model Architecture We use the Transformer
model implemented in the Sockeye toolkit4 as a
baseline MT system. Both encoder and decoder
are 6-layer Transformer models with model size
of 1, 024, feed-forward network size of 4, 096, and
16 attention heads. We adopt label smoothing and
weight tying. We tie the output weight matrix with
the target embeddings. We use Adam optimizer
with initial learning rate of 0.0002.

Experimental Conditions We train several
models with the above configuration:

• OpenSubs a baseline model trained and vali-
dated on the OpenSubtitles bitext.

• Unweighted builds on the baseline by fine-
tuning on multi-reference samples includ-
ing the Tatoeba bitext and STAPLE train.
We create one training sample per source-
reference pair, and the resulting samples are
not weighted. We use the internal dev set (1-
best reference only) as a validation set.

3https://github.com/neubig/kytea
4https://github.com/awslabs/sockeye

• Frequency-Aware is fine-tuned as the un-
weighted model except that STAPLE train is
oversampled as described in § 3.1.

We generate n-best list of translations for various
models by running beam search with a beam size
corresponding to the desired n.

4.3 Filtering configurations

Classifier The 2-layer feed-forward NN has 5
hidden units and 2 output units. It is trained with
the Adam optimizer with an initial learning rate of
0.001 and runs for 2000 epochs on the internal dev
set. The best model is selected based on internal
test set performance. We consider two losses: the
soft macro F1 loss which approximates the official
evaluation metric (§ 3.2) and the standard cross-
entropy loss as a baseline.

Reranking Baseline We compare our NN based
classifer with a standard MT n-best list reranker
trained on the internal dev set. We use the n-best
batch MIRA ranker (Cherry and Foster, 2012) in-
cluded in Moses. A threshold to filter candidates
in the reranked list is selected by maximizing the
Weighted Macro F1 on the internal dev dataset.

Features We use eflomal 5 trained on the Open-
subtitles dataset to obtain word alignment between
source and translation hypotheses. The language
model is trained with the kenlm (Heafield, 2011)
toolkit with default hyper-parameters6 on the target
side of the Opensubtitles and the STAPLE dataset.
The Right-to-left and Target-to-source MT models
were trained on OpenSubtitles (same configuration
as in § 4.2).

5https://github.com/robertostling/
eflomal

6https://github.com/kpu/kenlm

181

5 Evaluation

We evaluate the lowercased detokenized output of
the systems on our internal test dataset using:

Weighted Macro F1 This is the official scoring
metric which quantifies how the set of system out-
puts covers the human-curated acceptable transla-
tions, weighted by the LRF of each translation. It is
defined as the harmonic mean of unweighted pre-
cision (P) and weighted recall (WR) calculated for
each prompt ei, and averaged over all the prompts
in the corpus. Specifically, using the same nota-
tion as introduced in § 3.1, for each translation Ti

generated by the MT model, we have:

WTPei =
∑

t∈Ti

∑

fj
i ∈Fi

1[t == f ji]w
j
i

WFNei =
∑

fj
i 6∈Ti

wj
i

WRei =
WTPei

WTPei +WFNei

The weighted Macro F1 (WMF1) is then given
by:

WMF1ei =
2× Pei ×WRei

Pei +WRei

WMF1 =
1

M

M∑

i

WMF1ei

BLEU@1 We also report the translation quality
of the 1-best neural MT output compared against
the highest LRF reference translation using the
standard BLEU metric (Papineni et al., 2002).

6 Experiment Results

6.1 Impact of Frequency-Aware Fine-Tuning
Table 4 summarizes the evaluation of n-best lists
obtained with our neural MT systems.

Baselines We confirm that the neural MT con-
figuration is sound by comparing our neural MT
baseline to the provided AWS system. Our baseline
(“OpenSubs”) improves the BLEU@1 score by 2
points for en-pt, and remains 6 points lower for en-
vi, as can be expected given the smaller size of the
OpenSubtitles training set. However, the “Open-
Subs” n-best lists improve over the AWS baseline
according to the official task metric (WMF1), es-
tablishing that this system is a good starting point
for fine-tuning.

Fine-Tuning The Frequency-Aware n-best hy-
potheses consistently yield the best Weighted Re-
call and Weighted Macro-F1 scores for all lan-
guages. The improvement in recall and therefore
F1 score is largest for en-ja and en-ko which
have larger translation reference sets (Table 4).
Frequency-Aware oversampling also improves pre-
cision over the Unweighted model for all but one
language (en-pt). The impact on the auxiliary
BLEU@1 metric is less consistent: the Frequency-
Aware system achieves the best BLEU@1 in 3
out of 5 languages, but outperforms the OpenSubs
baseline in 4 out of 5. BLEU@1 drops when fine-
tuning on all the samples without weighting (Un-
weighted) which we attribute to the increased un-
certainty during training as the model is exposed
to many different translations for the same source
English text.

Overall, these results show the benefits of fine-
tuning on task-relevant data and shows that in-
corporating LRF weights via oversampling im-
proves the ranking of n-best hypotheses. This is
further illustrated in Table 5, which shows the top
10 Vietnamese translations for two randomly sam-
pled source prompts: the Frequency-Aware n-best
list yields Weighted Recall of 81% at a Precision
of 60% and 76% at a Precision of 100% for the
two source prompts respectively, illustrating that
the model generates high-quality candidates that
cover reference translations well, but not perfectly.

N-Best List Quality How well do n-best trans-
lations cover the space of reference learner trans-
lations? Figure 2 shows the impact of increasing
the decoding beam (and resulting n-best list size)
from 10 to 500 for the Frequency-Aware model.
For en-pt, while weighted recall increases up to
66%, the drop in precision hurts the weighted F1
score. The oracle F1 score, which represents the
Weighted Macro F1 at a Precision of 100%, also
increases gradually, reaching a score of 76%. This
suggests that the raw n-best lists contain many use-
ful translation candidates but need to be filtered
down to better match translations preferred by lan-
guage learners.

6.2 Impact of Hypothesis Filtering
Due to time constraints, we explore the impact of
hypothesis filtering only for en-pt and en-vi.

Filtering consistently improves Precision and
Weighted Macro F1 (Table 6). The binary clas-
sifier that optimizes Soft Macro-F1 performs best,

182

Language Method BLEU@1 n-best size P WR WMF1

en-pt

AWS 68.9 1 86.67 14.47 21.60
OpenSubs 70.9 10 49.66 39.18 37.39
Unweighted 61.5 10 72.69 40.58 46.11
Frequency-Aware 76.6 10 67.31 44.34 47.4

en-vi

AWS 61.4 1 65.09 13.32 19.57
OpenSubs 55.2 10 29.10 31.38 25.76
Unweighted 49.8 10 56.43 42.91 41.00
Frequency-Aware 71.9 10 61.61 54.37 51.87

en-ja

AWS 50.6 1 67.68 2.18 4.01
OpenSubs 32.7 50 2.94 3.47 2.52
Unweighted 30.1 50 45.71 21.21 24.88
Frequency-Aware 42.4 50 47.29 22.83 26.57

en-hu

AWS 63.4 1 83.70 18.12 27.12
OpenSubs 64.4 10 41.51 42.6 37.83
Unweighted 26.2 10 47.11 29.7 31.62
Frequency-Aware 51.4 10 52.22 41.05 41.69

en-ko

AWS 27.9 1 60.68 2.26 4.11
OpenSubs 9.2 50 12.53 7.41 7.20
Unweighted 14.8 50 33.82 18.8 19.78
Frequency-Aware 30.2 50 35.31 20.92 21.94

Table 4: Frequency-Aware systems outperform both OpenSubs and Unweighted models for all languages. The size
of the n-best list for each model was selected based on the WMF1 score on the internal test set.

as the loss leads to a better balance between Preci-
sion and Weighted Recall than cross-entropy. The
classifier outperforms the MIRA reranker. Since
the reranker is trained to maximize BLEU@1, it
tends to prefer candidates that are lexically similar
to the top reference translation and misses some of
the more diverse learner translations. This confirms
the benefits of framing the selection of candidate
hypothesis as binary classification.

Ablation Experiments show that the MT scores
are the most useful of the features used, as they
capture not only the generation probability of a
candidate hypothesis but estimate adequacy via
the Target-to-source neural MT model (Table 8).
Length features help precision but not recall, while
the alignment and language model scores have lit-
tle impact overall. This suggests that the classifier
could benefit from improved feature design and
selection in future work.

6.3 Analysis of Translation Diversity
How diverse are the translations returned by vari-
ous system configurations? Following Zhang et al.
(2018), we quantify diversity using the entropy of

k-gram distributions within a translation set:

Ent-k (V) = − 1∑
w F (w)

∑

w∈V
F (w) log

F (w)∑
w F (w)

where V is the set of all k-grams that appear in the
translation set, and F (w) denotes the frequency of
w in the translations. The higher the Ent-k score,
the greater the diversity.

Fine-tuned models improve the diversity of 10-
best lists compared to the “OpenSubs” baseline for
both en-vi and en-pt (Table 9). Overall filtering
bridges 40% and 25% of the gap between baseline
and reference learner translations for en-pt and en-
vi respectively.

6.4 System Combinations
A manual examination of translation sets returned
by different models suggest that they make comple-
mentary errors. We therefore consider combining
system outputs by taking the union of the set of
translations they return. We evaluate the following
combinations (Table 7):

C1 Frequency-aware (10-best) + Unweighted (10-
best)

183

Figure 2: Increasing the size of n-best list with the Frequency-Aware system improves the coverage of learner
translations for en-pt and en-vi. Oracle F1 is the Weighted Macro F1 at a Precision of 100% and represents the
upper bound on WMF1 that can be achieved for a given n-best list.

Input: We live near the border. LRF

chúng tôi sống gần biên giới. 0.250
chúng tôi sống ở gần biên giới. 0.053
chúng tôi sống gần đường biên giới. 0.267
chúng tôi sống bên cạnh biên giới. 0.018
chúng tôi sống ở cạnh biên giới. 0.013
chúng ta sống gần biên giới. 0.036
chúng tôi sống cạnh biên giới. 0.061
chúng tôi sống ở bên cạnh biên giới. 0.004
chúng tôi sống ở gần đường biên giới. 0.052
chúng ta sống ở gần biên giới. 0.004
Precision: 100%, Weighted Recall: 76%

Input: My family lives in the south. LRF

gia đình tôi sống ở miền nam. 0.285
gia đình của tôi sống ở miền nam. 0.134
gia đình tôi sống ở phương nam. 0.061
gia đình của tôi sống ở phương nam. 0.019
gia đình tôi sống ở phía nam. 0.208
gia đình của tôi sống ở phía nam. 0.099
nhà của tôi sống ở miền nam. -
nhà tôi sống ở miền nam. -
nhà của tôi sống ở phương nam. -
gia đình tôi sống ở nam. -
Precision: 60%, Weighted Recall: 81%

Table 5: Frequency-Aware 10-best Vietnamese output
for two randomly selected English prompts. LRF values
are given for translations found in the reference set.

C2 Frequency-aware (10-best) + Frequency-
aware (filtered 50-best)

C3 Unweighted (10-best) + Unweighted (filtered
50-best)

C4 Union of all of the above.

For en-pt and en-vi, it helps to combine higher
precision unfiltered 10-best lists, and higher re-
call filtered 50-best lists. For en-pt, the union of
all outputs (C4) performs best overall. Recall in-
creases when combining the Frequency-Aware and
the Unweighted model (C1) compared to individ-
ual lists (Unweighted: +1.6, Frequency-Aware: +2)
without compromising Precision. Similar trends
are observed when adding the filtered 50-best list
to unfiltered 10-best lists (C2: +2.2, C3: +4.8).
For en-vi, a different combination (C2) yields the
best result, perhaps due to the smaller set of ref-
erence translations per source prompt (en-vi: 56,
en-pt: 131) and high Precision of the “Unweighted”
model for en-pt.

7 Submitted Systems

We tested our systems on the official blind devel-
opment set to select the best performing models
for final evaluation on the test set. For Portuguese
and Vietnamese, our official submissions include
frequency-aware hypothesis generation and hypoth-
esis filtering:

en-vi C2: Frequency-aware (10-best) + Frequency-
aware (filtered 50-best)

184

Method en-vi en-pt
P WR WMF1 K P WR WMF1 K

No filtering 31.00 70.31 37.69 50 44.75 57.21 42.84 50
Reranker 69.71 46.85 50.67 9 67.44 41.82 45.51 14
Classifier with CE loss 69.70 47.74 48.77 12 69.26 42.70 46.60 10
Classifier with F1 loss 65.15 55.21 53.69 12 67.81 45.71 48.68 13

Oracle 100 70.31 77.90 15 100 70.31 66.9 16

Table 6: Filtering n-best lists consistently improves WMF1 and substantially reduces the size of the output set (K)

Method en-pt en-vi
P R WR WMF1 P R WR WMF1

Unweighted (10-best) 72.69 5.53 40.58 46.11 56.43 10.32 42.19 41.00
Unweighted (filtered 50-best) 67.81 9.68 45.71 48.17 63.14 15.23 54.35 51.48
Frequency-Aware (10-best) 67.31 5.07 44.34 47.40 61.61 11.28 54.37 51.87
Frequency-Aware (filtered 50-best) 64.33 6.40 36.94 41.44 65.15 15.33 55.21 53.69

C1 65.09 7.13 47.52 49.31 55.04 14.82 57.57 50.73
C2 64.33 7.30 48.67 48.81 60.41 16.07 60.19 53.57
C3 66.41 10.32 50.18 50.17 56.19 15.93 54.89 48.05
C4 59.76 11.60 53.56 50.79 53.75 18.31 61.04 50.78

Table 7: Combination of unfiltered 10-best lists (with better precision) and filtered 50-best lists (with better recall)
improves Weighted Macro F1. See § 6.4 for details on combinations.

Features P R WR WMF1
All 63.71 15.97 55.91 54.04
- LM score 65.10 15.35 55.62 53.92
- Alignment 65.21 15.27 55.08 53.86
- Length 58.44 16.49 55.98 52.53
- MT Scores 43.77 10.88 31.02 28.06

Oracle 100 28.28 70.31 77.90

Table 8: Impact of dropping one feature type (§ 3.2) at
a time from the “All” configuration for en-vi classifier.

Translations en-pt en-vi
Ent-4 n Ent-4 n

OpenSubs 2.34 10 2.53 10
Unweighted 2.60 10 2.65 10
Frequency-Aware 2.59 10 2.67 10
Filtered 2.95 13 2.71 11

Reference 3.93 131 3.23 56

Table 9: Diversity in translation sets: Filtered sets are
more diverse, bridging 40% of the gap between base-
line and reference translations for en-pt.

en-pt C4: Frequency-aware (10-best) + Frequency-
aware (filtered 50-best) + Unweighted (10-
best) + Unweighted (filtered 50-best)

We did not build hypothesis filtering models for
the other languages, and submitted systems based
only on unfiltered models:

en-ja Frequency-aware (50-best) + Unweighted (50-
best)

en-hu Frequency-aware (10-best) + Unweighted (10-
best)

en-ko Frequency-aware (50-best) + Unweighted (50-
best)

Table 10 and 11 compares our submissions to
baselines, as well as top and median submissions
across participants, for all the languages. On our
focus languages (en-pt and en-vi), where systems
benefitted from both frequency-aware generation
and filtering models, our submissions obtain a
Weighted Macro F1 score of 0.539 for en-vi and
0.525 for en-pt on the official test set, achieving
a rank of 2nd and 4th on the leader-board, within
2% of the top performing submission. On the other
language pairs, where our submissions did not use

185

any filtering, Weighted Macro F1 outperform the
baselines and median submission consistently. In-
terestingly on the en-ja task, our system ranks sec-
ond amongst all the submissions despite not using
any filtering.

Method en-vi en-pt en-ja en-hu en-ko
AWS 0.210 0.211 0.042 0.298 0.040
Fairseq 0.267 0.151 0.031 0.130 0.054
Median 0.382 0.451 0.214 0.298 0.047
Top 0.547 0.557 0.316 0.598 0.413

Ours 0.537 0.538 0.283 0.492 0.254

Table 10: Excerpt from official results: weighted Macro
F1 on the STAPLE dev set

Method en-vi en-pt en-ja en-hu en-ko
AWS 0.198 0.213 0.043 0.281 0.041
Fairseq 0.254 0.136 0.033 0.124 0.049
Median 0.377 0.436 0.239 0.452 0.230
Top 0.558 0.552 0.318 0.555 0.404

Ours 0.539 0.525 0.294 0.469 0.255
Rank 2nd 4th 2nd 3rd 3rd

Table 11: Excerpt from official results: weighted Macro
F1 on the STAPLE test set

8 Conclusion

We proposed two strategies to obtain multiple out-
puts that mimic translations by produced by lan-
guage learners from a standard neural MT model.
Our experiments showed that (1) finetuning MT
models using all reference translations and their
weight yields more diverse n-best hypotheses that
better reflect learner preferences, and (2) filter-
ing these n-best lists using a feature-rich classi-
fier trained to maximize an approximation of the
STAPLE evaluation metric yields further improve-
ments. Combinations of systems that use these two
strategies approach the top scoring submission in
the official evaluation.

While these results suggest that some degree of
output diversity can be achieved with little change
to core neural MT models, oracle scores obtained
with unfiltered n-best lists indicate that better mod-
eling the space of learner translations might benefit
both candidate generation and the filtering model
in future work.

References
Sweta Agrawal and Marine Carpuat. 2019. Control-

ling text complexity in neural machine translation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1549–
1564, Hong Kong, China. Association for Computa-
tional Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Colin Cherry and George Foster. 2012. Batch tun-
ing strategies for statistical machine translation. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 427–436. Association for Computational Lin-
guistics.

Kyunghyun Cho. 2016. Noisy parallel approximate
decoding for conditional recurrent language model.
CoRR, abs/1605.03835.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Federmann,
Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Renqian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce
Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving human parity on auto-
matic chinese to english news translation. CoRR,
abs/1803.05567.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation,
pages 187–197, Edinburgh, Scotland. Association
for Computational Linguistics.

Cheng-Yu Hsieh, Yi-An Lin, and Hsuan-Tien Lin.
2018. A deep model with local surrogate loss
for general cost-sensitive multi-label learning. In
Thirty-Second AAAI Conference on Artificial Intel-
ligence.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hi-
roya Takamura, and Manabu Okumura. 2016. Con-
trolling output length in neural encoder-decoders.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1328–1338.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. CoRR,
abs/1510.03055.

186

Jiwei Li and Dan Jurafsky. 2016. Mutual information
and diverse decoding improve neural machine trans-
lation. CoRR, abs/1601.00372.

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). ACL.

Dragos Stefan Munteanu and Daniel Marcu. 2005. Im-
proving machine translation performance by exploit-
ing non-parallel corpora. Computational Linguis-
tics, 31(4):477–504.

Graham Neubig, Makoto Morishita, and Satoshi Naka-
mura. 2015. Neural reranking improves subjective
quality of machine translation: Naist at wat2015. In
Proceedings of the 2nd Workshop on Asian Transla-
tion (WAT2015), pages 35–41.

Xing Niu, Sudha Rao, and Marine Carpuat. 2018.
Multi-Task Neural Models for Translating Between
Styles Within and Across Languages. In 27th Inter-
national Conference on Computational Linguistics
(COLING 2018).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ying Qin and Lucia Specia. 2015. Truly exploring
multiple references for machine translation evalua-
tion. In Proceedings of the 18th Annual Conference
of the European Association for Machine Transla-
tion, pages 113–120, Antalya, Turkey.

Ella Rabinovich, Shachar Mirkin, Raj Nath Patel, Lu-
cia Specia, and Shuly Wintner. 2016. Personal-
ized Machine Translation: Preserving Original Au-
thor Traits. arXiv:1610.05461 [cs].

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Controlling Politeness in Neural Machine
Translation via Side Constraints. pages 35–40. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural Machine Translation of Rare Words
with Subword Units. Proceedings of the Meet-
ing of the Association for Computational Linguistics
(ACL).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016c. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’Aurelio Ranzato. 2019. Mixture models
for diverse machine translation: Tricks of the trade.
CoRR, abs/1902.07816.

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2019. Generating diverse translations with sentence
codes. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1823–1827.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Lrec, volume 2012, pages 2214–
2218.

Yogarshi Vyas, Xing Niu, and Marine Carpuat. 2018.
Identifying semantic divergences in parallel text
without annotations. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1503–1515. Association for Computational
Linguistics.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
Xiujun Li, Chris Brockett, and Bill Dolan. 2018.
Generating informative and diverse conversational
responses via adversarial information maximization.
In Advances in Neural Information Processing Sys-
tems, pages 1810–1820.

Renjie Zheng, Mingbo Ma, and Liang Huang. 2018.
Multi-reference training with pseudo-references for
neural translation and text generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3188–3197,
Brussels, Belgium. Association for Computational
Linguistics.

187

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 188–197
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

The JHU Submission to the 2020 Duolingo Shared Task
on Simultaneous Translation and Paraphrase for Language Education

Huda Khayrallah‡ Jacob Bremerman§ Arya D. McCarthy‡
Kenton Murray‡ Winston Wu‡ and Matt Post‡,†

‡Center for Language and Speech Processing, Johns Hopkins University
†Human Language Technology Center of Excellence, Johns Hopkins University

§University of Maryland, College Park

Abstract

This paper presents the Johns Hopkins Univer-
sity submission to the 2020 Duolingo Shared
Task on Simultaneous Translation and Para-
phrase for Language Education (STAPLE). We
participated in all five language tasks, plac-
ing first in each. Our approach involved a
language-agnostic pipeline of three compo-
nents: (1) building strong machine transla-
tion systems on general-domain data, (2) fine-
tuning on Duolingo-provided data, and (3)
generating n-best lists which are then filtered
with various score-based techniques. In addi-
tion to the language-agnostic pipeline, we at-
tempted a number of linguistically-motivated
approaches, with, unfortunately, little success.
We also find that improving BLEU perfor-
mance of the beam-search generated transla-
tion does not necessarily improve on the task
metric—weighted macro F1 of an n-best list.

1 Introduction

The Duolingo 2020 STAPLE Shared Task (May-
hew et al., 2020) focuses on generating a com-
prehensive set of translations for a given sen-
tence, translating from English into Hungarian,
Japanese, Korean, Portuguese, and Vietnamese.
The formulation of this task (§2) differs from the
conventional machine translation setup: instead of
the n-gram match (BLEU) against a single refer-
ence, sentence-level exact match is computed be-
tween a list of proposed candidates and a weighted
list of references (as in Figure 1). The set of refer-
ences is drawn from Duolingo’s language-teaching
app. Any auxiliary data is allowed for building
systems, including existing very-large parallel cor-
pora for translation.

Our approach begins with strong MT systems
(§3) which are fine-tuned on Duolingo-provided
data (§4). We then generate large n-best lists, from
which we select our final candidate list (§5). Our

0.015

0.001

0.001

0.049can	i	walk	there? eu	posso	andar	lá?

posso	andar	lá?

dá	para	eu	andar	ali?

eu	posso	andar	pra	lá?

	

Figure 1: An example English source sentence with its
weighted Portuguese target translations. The objective
of the task is to recover the list of references, and per-
formance is measured by a weighted F-score.

entries outperform baseline weighted F1 scores by
a factor of 2 to 10 and are ranked first in the offi-
cial evaluation for every language pair (§6.2).

In addition to our system description, we per-
form additional analysis (§7). We find that
stronger BLEU performance of the beam-search
generated translation is not indicative of improve-
ments on the task metric—weighted macro F1 of
a set of hypotheses—and suggest this should en-
courage further research on how to train NMT
models when n-best lists are needed (§7.1). We
perform detailed analysis on our output (§7.2),
which led to additional development on English–
Portuguese (§8.1). We also present additional
linguistically-informed methods which we experi-
mented with but which ultimately did not improve
performance (§8).

2 Task Description

Data We use data provided by the STAPLE
shared task (Mayhew et al., 2020). This data con-
sists of a single English prompt sentence or phrase
paired with multiple translations in the target lan-

188

https://www.aclweb.org/anthology/D19-56%2d

hu ja ko pt vi

total prompts 4,000 2,500 2,500 4,000 3,500

mean translations 63 342 280 132 56
median translations 36 192 154 68 30
STD. translations 66 362 311 150 62

Table 1: Statistics over the Duolingo-provided data.

guage. These translations come from courses in-
tended to teach English to speakers of other lan-
guages; the references are initially generated by
trained translators, and augmented by verified user
translations. Each translation is associated with a
relative frequency denoting how often it is selected
by Duolingo users. Table 1 shows the total number
of prompts provided as well as the mean, median,
and standard deviation of the number of transla-
tions per training prompt. All of the provided task
data is lower-cased.

For each language pair, we created an internal
split of the Duolingo-provided training data: 100
training prompts for use in validating the MT sys-
tem (JHU-VALID), another 100 intended for model
selection (JHU-DEV),1 and a 300-prompt test set
for candidate selection (JHU-TEST). The remain-
ing data (JHU-TRAIN) was used for training the
MT models.

Evaluation metric The official metric is
weighted macro F1. This is defined as:

Weighted Macro F1 =
∑

s∈S

Weighted F1(s)

|S| ,

where S is all prompts in the test corpus. The
weighted F1 is computed with a weighted recall,
where TPs are the true positives for a prompt s,
and FN s are the false negatives for a prompt s:

WTPs =
∑

t∈TPs

weight(t)

WFNs =
∑

t∈FN s

weight(t)

Weighted Recall(s) =
WTPs

WTPs + WFNs
.

Note that recall is weighted (according to weights
provided with the gold data), but precision is not.

Evaluation is conducted on lowercased text with
the punctuation removed.

1However, we discovered that BLEU did not correlate
well enough with task performance to be used for this. See
§7.1 for more analysis and discussion.

3 Machine Translation Systems

We began by building high-quality state-of-the-art
machine translation systems.

Data and preprocessing Additional data for our
systems was obtained from Opus (Tiedemann,
2012).2 We removed duplicate bitext pairs, then
reserved 3k random pairs from each dataset to cre-
ate a validation, development, and test sets of 1k
sentence each. The validation dataset is used as
held-out data to determine when to stop training
the MT system.3 Table 2 shows the amount of
training data used from each source.

The Duolingo data (including the evaluation
data) is all lowercased. Since our approach is
to overgenerate candidates and filter, we want to
avoid glutting the decoder beam with spurious
cased variants. For this reason, we lowercase all
text on both the source and (where relevant) target
sides prior to training. However, it is worth not-
ing that this has a drawback, as source case can
provide a signal towards meaning and word-sense
disambiguation (e.g., apple versus Apple).

After lowercasing, we train separate Sentence-
Piece models (Kudo and Richardson, 2018) on
the source and target sides of the bitext, for each
language. We train a regularized unigram model
(Kudo, 2018) with a vocabulary size of 5,000 and
a character coverage of 0.995. When applying the
model, we set α = 0.5. No other preprocessing
was applied.

Translation models We used fairseq (Ott et al.,
2019) to train standard Transformer (Vaswani
et al., 2017) models with 6 encoder and decoder
layers, a model size of 512, feed forward layer
size of 2048, and 8 attention heads, and a dropout
of 0.1. We used an effective batch size of 200k
tokens.4 We concatenated the development data
across test sets, and quit training when validation
perplexity had failed to improve for 10 consecutive
checkpoints.

We trained two sets of models: MODEL1 was
trained on just the data above the line in Table 2,
while MODEL2 was trained on all the data.

2opus.nlpl.eu
3The other two were reserved for unanticipated use cases

that never materialized.
4(batch size 4000) × (2 GPUs) × (update interval 25)

189

hu ja ko pt vi

Europarl (Koehn, 2005) 2,351k - - 2,408k -
GlobalVoices (opus.nlpl.eu/GlobalVoices.php) 194k 822k 37k 1,585k -
OpenSubtitles (Lison and Tiedemann, 2016) 252,622k 13,097k 8,840k 196,960k 20,298k
Tatoeba (tatoeba.org) 580k 1,537k - 1,215k 16k
WikiMatrix (Schwenk et al., 2019) 5,682k 9,013k 2,598k 45,147k 17,427k

JW300 (Agić and Vulić, 2019) 19,378k 34,325k 32,356k 39,023k 11,233k
QED (Abdelali et al., 2014) 5,693k 9,064k 9,992k 8,542k 5,482k

Table 2: Number of English word tokens for all datasets used to train the baseline MT models. Just the data above
the line was used to train the MODEL1 baseline, all the data was used to train the MODEL2 baseline.

4 Fine-Tuning

After training general-domain machine translation
models, we fine-tune them on the Duolingo data.5

The Duolingo data pairs single prompts with up to
hundreds of weighted translations; we turned this
into bitext in three ways:

• 1-best: the best translation per prompt.

• all: each translation paired with its prompt.

• up-weighted: all possible translations with
an additional 1, 9, or 99 copies of the 1-
best translation (giving the 1-best translation
a weight of 2x, 10x, or 100x the others).6

We fine-tune with dropout of 0.1, and an effective
batch size of 160k tokens. We sweep learning rates
of 1× 10−4 and 5× 10−4.

We withhold a relatively high percentage of the
Duolingo training data for internal development
(500 prompts total, which ranged from to 12.5 to
20% of the provided data), so we also train sys-
tems using all the released data (with none with-
held), taking hyperparameters learned from our
splits (number of fine-tuning epochs, candidate se-
lection parameters, etc).

5 Candidate Generation and Selection

From the models trained on general-domain data
(§3) and refined on in-domain data (§4), we gen-
erate 1,000-best translations. For each translation,
fairseq provides word-level and length-normalized
log-probability scores, which all serve as grist for
the next stage of our pipeline: candidate selection.

5Training on the Duolingo data directly was less effective.
6A better method might be to train using the weights

to weight the sentences in training as available in Marian
(Junczys-Dowmunt et al., 2018) but that was not available
in fairseq, so we improvised.

5.1 Ensembling

For Portuguese only, we experimented with en-
sembling multiple fine-tuned models in two ways:
(a) using models from different random seeds, and
(b) using different types of systems.

5.2 Selecting top k hypotheses

As a baseline, we extract hypotheses
from the n-best list using the provided
my_cands_extract.py script.7 which sim-
ply extracts the same number of hypotheses, k,
per prompt. To determine how many hypotheses
to retain from the model’s n-best list, we conduct
a sweep over k on JHU-TEST and select the best k
per language pair based on weighted macro F1.

5.3 Probability score thresholding

We propose to use the log probability scores di-
rectly and choose a cutoff point based on the top
score for each prompt.

We consider a multiplicative threshold on the
probabilities of the hypothesis, relative to the best
hypothesis. For example, if the threshold value is
−0.40, for a prompt where the top hypothesis log-
probability is −1.20, any hypothesis from the top
1000 with a log-probability greater than or equal
to −1.60 will be selected.8 As in §5.2, we sweep
over this threshold value for each language pair
and choose the value that results in the highest
weighted macro F1 score from JHU-TEST.

7github.com/duolingo/
duolingo-sharedtask-2020/blob/
626239b78621af96fbb324e678cca17b3dd4e470/
my_cands_extract.py

8In other words, we set a threshold of exp{−0.40} on the
likelihood ratio.

190

en→ x hu ja ko pt vi

MODEL1 44.8 11.8 4.0 32.6 27.2

fi
ne

-t
un

e
on

: JHU-TRAIN: 1-best 43.4 12.4 11.4 41.6 41.6
JHU-TRAIN: all 52.1 23.1 23.1 49.3 52.0
upweighted JHU-TRAIN: all + 1x 1-best 52.1 23.5 24.3 50.1 52.3
upweighted JHU-TRAIN: all + 9x 1-best 56.6 24.1 25.0 52.8 54.3
upweighted JHU-TRAIN: all + 99x 1-best 54.0 23.0 21.9 51.1 52.4

Table 3: The weighted macro F1 on JHU-TEST for MODEL1 and fine-tuned variants. Candidates are extracted from
the n-best list using the proposed probability score thresholding (§5.3).

en→ x ja ko

MODEL2 16.8 12.5

fi
ne

-t
un

e
on

: JHU-TRAIN: 1-best 18.4 18.7
JHU-TRAIN: all 31.5 38.0
upweighted JHU-TRAIN: all + 1x 1-best 30.3 38.0
upweighted JHU-TRAIN: all + 9x 1-best 32.1 38.8
upweighted JHU-TRAIN: all + 99x 1-best 31.0 33.4

Table 4: The weighted macro F1 on JHU-TEST for MODEL2 and fine-tuned variants for Japanese and Korean.
Candidates are extracted from the n-best list using the proposed probability score thresholding (§5.3).

6 Results

We present results of our different methods on our
internal development set in §6.1 and present our
official evaluation performance in §6.2.

6.1 Internal evaluation

Table 3 shows the weighted macro F1 performance
on JHU-TEST for MODEL1 and fine-tuned vari-
ants. Candidates are extracted from the n-best
list using the proposed probability score threshold-
ing (§5.3). Fine-tuning improves performance (ex-
cept for fine-tuning on just the 1-best translation in
Hungarian). For all language pairs, the best fine-
tuning performance came from training on the up-
weighted training data, where we trained on all
possible translations with the 1-best up-weighted
10 times. For Japanese and Korean9 MODEL2 (Ta-
ble 4), all types of fine-tuning improve weighted
F1, but for both language pairs, the best fine-
tuning variant matches that of MODEL1.

Table 5 shows the weighted macro F1 on JHU-
TEST for two methods of selecting candidates from
the n-best list. The first line is the baseline top k
hypothesis selection (§5.2), the second is our pro-

9These were the two languages where MODEL2 improved
fine-tuning performance compared to MODEL1.

posed probability score thresholding (§5.3). The
best fine-tuned system is shown with each selec-
tion method for each language pair. The pro-
posed probability score thresholding improves per-
formance over the baseline top k candidate selec-
tion by 2–3.3 F1 points.

6.2 Official evaluation

In Table 6, we present the final results of our sub-
mission on the official test set (DUO-TEST). Our
systems ranked first in all language pairs, with im-
provements of 0.1 to 9.2 over the next best teams.
We denote in parenthesis the improvement over the
next best team’s system on DUO-TEST. We also
report the score that our system achieved on our
internal test set (JHU-TEST).

For Hungarian and Vietnamese, our winning
submission was MODEL1 fine-tuned on the up-
weighted Duolingo data (1-best repeated 10x) with
a learning rate of 1×10−4. For Japanese, our win-
ning submission was MODEL2 fine-tuned on the
up-weighted Duolingo data (1-best repeated 10x)
with a learning rate of 5 × 10−4. For Korean,
our winning submission was MODEL2 fine-tuned
on the up-weighted Duolingo data (1-best repeated
10x) with a learning rate of 1× 10−4, but without

191

en→ x hu ja ko pt vi

top k hypothesis selection (§5.2) 54.6 29.5 35.6 50.0 51.0
Probability score thresholding (§5.3) 56.6 32.1 38.8 52.8 54.3

Table 5: The weighted macro F1 on JHU-TEST for two methods of selecting candidates from the n-best list: baseline
top k hypothesis selected (discussed in §5.2), and our proposed probability score thresholding (§5.3). The best fine-
tuned system is shown with each selection method for each language pair.

en→ x DUO-TEST JHU-TEST

hu 55.5 (+0.3) 56.6
ja 31.8 (+2.4) 32.1
ko 40.4 (+9.2) 38.910

pt 55.2 (+0.1) 54.6
vi 55.8 (+1.9) 54.3

Table 6: The weighted macro F1 of our final submit-
ted systems on the official shared task test set (DUO-
TEST) on our internal test set (JHU-TEST). We denote in
parenthesis the improvement over the next best team’s
system on DUO-TEST.

any internal development data withheld.10

For Portuguese, our winning submission was an
ensemble of 3 systems. We began with MODEL1
fine-tuned on the up-weighted Duolingo data with
a learning rate of 1× 10−4. We used fairseq’s de-
fault ensembling to ensemble 3 systems trained on
all the translations of each Duolingo prompt, with
the 1-best data repeated a total of 2x, 10x, and
100x for each system.

While we submitted slightly different systems
for each language pair, the following worked
well overall: Fine-tuning on the Duolingo data
was crucial. This is a domain adaptation task—
the Duolingo data differs greatly from the stan-
dard MT bitext we pretrain on, such as Eu-
roparl proceedings, GlobalVoices news, Subtitles,
or Wikipedia text.11 Taking advantage of the rel-
ative weights of the training translations and up-
weighting the best one was also helpful across the
board. We suspect that using the weights in train-
ing directly (as opposed to our hack of upweight-

10As described in §4, we first fine-tune a system and use
our internal splits for model selection from checkpoints and
threshold selection. Then we apply all the same parameters to
fine-tune a system with no data withheld. This was better than
with holding data only for en-ko (on DUO-DEV). Since this
en-ko system was trained on JHU-TEST, Table 6 reports the
JHU-TEST results on the corresponding system that withheld
that data.

11In addition to style differences, the Duolingo sentences
are much shorter on average.

20 40 60 80
BLEU

0.2

0.4

m
ac

ro
 w

ei
gh

te
d

F1 hu
ja
ko
pt
vi

Figure 2: Macro Weighted F1 (JHU-TEST) vs. BLEU
(JHU-DEV) for a variety of fine-tuned systems for each
language pair. The two metrics are not well correlated
within a language pair.

ing the best translation) would likely improve per-
formance further.12

7 Analysis

We perform qualitative and quantitative analyses
of our output, which informed our own work and
will motivate future work.

7.1 BLEU vs. Macro Weighted F1

In Figure 2, we plot macro weighted F1 on JHU-
TEST against BLEU score13 on JHU-DEV for fine-
tuned systems for each language. It is clear that
this BLEU score did not identify the best per-
forming system according to the macro weighted
F1 metric. For example, performance on beam
search BLEU could be improved by further fine-
tuning systems that had already been fine-tuned
on all translations of each prompt on just the 1-
best translation of each prompt, but that degraded
the task performance. In fact, the systems that per-
formed best on macro weighted F1 in Hungarian
and Korean were over 20 BLEU behind the high-
est BLEU score for those languages (and the top
BLEU scoring systems did poorly on the task met-
ric).

12This feature does exist in Marian (Junczys-Dowmunt
et al., 2018) but not in Fairseq.

13Computed against the 1-best translation of each prompt.

192

While this phenomenon may be an artifact of
these particular metrics, we suspect this is indica-
tive of an interesting topic for further research. MT
models trained with NLL are trained to match a 1-
hot prediction, which may make their output dis-
tributions poorly calibrated (Ott et al., 2018; Ku-
mar and Sarawagi, 2019; Desai and Durrett, 2020).
More research is needed for strong conclusions,
but our initial analysis suggests that training on the
more diverse data improves quality of a deep n-
best list of translations at the expense of the top
beam search output. This may be important in
cases where an n-best list of translations is being
generated for a downstream NLP task.

The data for this task was unique in that it pro-
vided diverse translations for a given prompt. In
most cases where this type of data is not available,
training towards a distribution (rather than a single
target word), as is done in word-level knowledge
distillation (Buciluundefined et al., 2006; Hinton
et al., 2015; Kim and Rush, 2016) may prove use-
ful to introduce the diversity needed for a strong
n-best list of translations. This can be done ei-
ther towards a distribution of the base model when
fine-tuning (Dakwale and Monz, 2017; Khayral-
lah et al., 2018) or towards the distribution of an
auxiliary model, such as a paraphraser (Khayral-
lah et al., 2020).

7.2 Qualitative error analysis

In each language, we performed a qualitative error
analysis by manually inspecting the difference be-
tween the gold and system translations for prompts
with lowest weighted recall on JHU-TEST.

Our systems were often incapable of express-
ing target language nuance absent from the source
language. For example, for the prompt “we have
asked many times.”, a gold translation was ‘私た
ちは何度も尋ねてしまった’ whereas our sys-
tem output ‘私たちは何度も尋ねました’. The
gold translations often included the てしまった
verb ending, which conveys a nuance similar to
perfect aspect. The prompt’s scenario would lead
many Japanese users to use this nuanced ending
when translating, but our system produces valid
but less natural translations that do not appear in
the references.

Another issue is vocabulary choice on a more
general level. Often there are several ways to trans-
late certain words or phrases, but our systems pre-
fer the less common version. For example, a com-

mon translation of ‘please’ in Portuguese is ‘por
favor’, which appears in the high-weighted gold
translations. Another possible translation, ‘por ob-
séquio’, which our system seemed to prefer, ap-
pears in much lower-weighted translations. An-
other example is the translation of ‘battery’ in
Korean. The high-weighted references include
the common word for battery (‘건전지’) but
only lower-weighted references include ‘배터리’,
which was preferred by our system.

Our system also struggled with polysemous
prompt words. For example, for the prompt “cups
are better than glasses.”, our system output trans-
lations like ‘컵이 안경들보다 낫다’ , using 안
경 (eyeglasses), instead of translations like ‘컵
이 유리잔보다 낫다’ , using 유리잔 (drinking
glasses). The systems seem to be incapable of con-
sidering the context, “cups” in this case, for the
ambiguity resolution.

A final class of our system’s errors is gram-
matical errors. For example, for the prompt “ev-
ery night, the little sheep dreams about surfing.”,
the gold translations included sentences like ‘toda
noite a pequena ovelha sonha com surfe’ whereas
our system output sentences like ‘toda noite as
ovelhas pequenas sonham com surfe’. The er-
ror was that our output included ‘ovelhas’ (plural
sheep), but the gold translations all used ‘ovelha’
(single sheep).

7.3 Missing paradigm slots in Duolingo data

We also find cases where our system produces
valid translations but is penalized because these
are not among the gold translations. We consider
these cases as a result of an “incomplete” gold set
with missing paradigms.14

For example, the Vietnamese pronouns for ‘he’
and ‘she’ can vary according to age (in relation to
the speaker). From youngest to oldest, some pro-
nouns for ‘she’ are ‘chị ấy’, ‘cô ấy’, and ‘bà ấy’.
For several of the prompts, the gold outputs only
include some of these pronouns despite all being
valid. In the prompt “she has bread”, only the first
two pronouns are present even though a translation
representing the sentence as an older woman hav-
ing bread should be equally valid. We also find
this missing pronoun slot problem in Portuguese
(references only using ‘você’ and not ‘tu’ for trans-
lations of ‘you’) and Japanese (only using ‘あな

14The task website notes this phenomenon. It calls the set
of targets ‘comprehensive’, though not ‘exhaustive’.

193

た’ and not ‘君’ for translations of ‘you’).
We could not easily predict when slots would be

missing. Because the data comes from Duolingo
courses, we believe this may depend on the
prompt’s depth in the learning tree. As earlier
lessons are studied by more users, we suspect they
are also more likely to contain more complete gold
translation sets due to more users submitting ad-
ditional valid translations. This makes it difficult
to assess the success of our models and distin-
guish “true errors” from valid hypotheses that are
marked incorrect.

8 What Didn’t Work

We explored additional methods both for select-
ing candidates from an n-best lists and for gener-
ating additional candidates based on an n-best list.
While they did not improve performance and were
not included in our final submission, we discuss
the methods and the analyses learned from them.

8.1 Moore–Lewis filtering

Our error analysis revealed that our systems of-
ten output sentences that were not incorrect, but
not optimized for the Duolingo task. For exam-
ple, many of our top candidates for translations of
“please” in Portuguese used por obséquio, which
is a very formal version, instead of the more com-
mon por favor. While both versions were valid for
the prompts, the gold translations with por favor
were weighted higher, so we would desire models
to prefer this translation. We interpret this as do-
main mismatch between the STAPLE data and our
MT training data.

To filter out such bad candidates, we experi-
mented with cross-entropy language model filter-
ing (Moore and Lewis, 2010). This takes two lan-
guage models: a (generally large) out-of-domain
language model (OD), and a (typically small) in-
domain language model (ID), and uses the differ-
ence in normalized cross-entropy from these two
models to score sentences. Sentences with good
OD scores and poor ID scores are likely out-of-
domain and can be discarded based on a score
threshold.

Experimenting on Portuguese, we used KenLM
(Heafield, 2011) to train a Kneser–Ney-smoothed
5-gram model on the Portuguese side of the MT
training data (Table 2) as the OD model and a
3-gram model on the Duolingo Portuguese data
(ID). These were used to score all candidates t as

JHU-TEST DUO-TEST

Baseline 53.30 55.16
Baseline + Moore-Lewis 53.70 53.83

Table 7: Moore–Lewis filtering for Pt (macro F1).

score(t) = pID(t)− pOD(t). We swept thresholds
and minimum prompt lengths on our JHU-TEST

data, and found with a threshold of −1.50 on 7-
word prompts and longer performed the best.

Moore–Lewis filtering was originally designed
for more coarse-grained selection of training data.
We suspect (but did not have time to test) that a
better idea is therefore to apply this upstream, us-
ing it to help select data used to train the general-
domain MT system (Axelrod et al., 2011).

8.2 Dual conditional thresholding
Extending the probability score thresholding
(§5.3), we consider incorporating a score from a
reverse model that represents the probability that
the original prompt was generated by the candi-
date. The reverse model score is also used in
Dual Conditional Cross-Entropy Filtering when
selecting clean data from noisy corpora (Junczys-
Dowmunt, 2018), and for re-scoring n-best lists in
MMI decoding (Li et al., 2016)

We train base and fine-tuned reverse systems
for the five language pairs and use them to score
the output translations. We compute the combined
score of a hypothesis given a prompt as the arith-
metic mean of the forward and backward log prob-
ability scores and use them in the probability score
thresholding algorithm from §5.3. We find that af-
ter sweeping across threshold values, incorporat-
ing the reverse score performs slightly worse over-
all than the standard thresholding method for every
language.

8.3 N-gram filtering
The Duolingo data generally consists of simple
language, which means we did not expect to see
novel phrases in the references that were not in
our training corpora. We used this idea to fil-
ter hypotheses that had any n-grams that didn’t
appear in our training data. Our hope was that
this would catch rare formulations or ungrammat-
ical sentences, e.g. cachorro preta, which has the
wrong gender on the adjective. However, even us-
ing bigrams caused this method to filter out too
many hypotheses and hurt F1 performance.

194

None elas têm cinco meninas ?
Open elas V;3;PL NUM N;PL;FEM ?

Morph PRO;3;PL;FEM V;3;PL NUM N;PL;FEM PUNCT
POS PRO V NUM N PUNCT

Table 8: Preprocessing operations for filtering on one
Portuguese gold output for the prompt do they have five
girls?, organized from most specific to most general.

Part-of-speech filtering Although the language
used in Duolingo is relatively simple, the num-
ber of unique types turned out to be quite large.
However the number part-of-speech (POS) tags is
small. Instead of filtering based on words, we
count n-grams of POS tags, hoping to remove un-
grammatical sentences with tags such as DET DET.
In our experiments, this did not actually exclude
any hypotheses.

Open class words and morphology In between
the extremes of large number of types using raw
lexical forms and few types using POS tags is to
leverage open class words or additional morpho-
logical information. We morphologically tag the
dataset with the Stanford NLP toolkit (Qi et al.,
2018), then represent each sentence either by its
words, its POS tags, its morphological tags, or
words for closed-class items and tags for open-
class items, as shown in Table 8. This too resulted
in few hypotheses being filtered and did not im-
pact F1 performance.

Filtering by difficulty level As the Duolingo
data was generated by language learners, we also
considered filtering sentences by the difficulty of
the words within. Experimenting with Japanese,
we examined the grade level of kanji15 in each sen-
tence. Ignoring non-kanji characters, the average
grade level per sentence on the STAPLE training
data was 3.77, indicating a 3rd–4th grade level. Fu-
ture work could consider filtering by other mea-
sures such as the coreness of a word (Wu et al.,
2020).

8.4 Generation via post-editing

Inspired by query expansion in information re-
trieval, we post-edit either by consider morpho-
logical variants in situations of underspecifica-
tion, substituting forms in different scripts (for
Japanese), or replacing long-form number names
with numerals. We found these ineffective because

15Specified by the Japanese Ministry of Education and
annotated in edrdg.org/wiki/index.php/KANJIDIC_
Project

Strategy P RW WF1macro

Baseline 26.91 69.70 34.49
Add 1;PL 26.62 69.84 34.27
Add 3;SG;MASC 23.97 70.19 33.42
Add 3;SG;FEM 24.69 70.49 33.51
Add 3;PL 22.28 69.75 31.89
Add most frequent ‘she’ 26.77 69.84 34.38
Swap most common ‘he’s 26.71 69.82 34.37
Swap 2nd most common ‘he’s 26.90 69.71 34.47
Swap 3rd most common ‘he’s 26.88 69.71 34.45

Table 9: Effect of pronoun-based augmentation on met-
rics in Vietnamese, computed on JHU-TEST. All strate-
gies improve recall and weighted recall, but they cause
precision and F1 to decrease.

several acceptable translations were not present in
the ground truth dataset (see §7.3).

Morphological expansions English is morpho-
logically poorer than 4 target languages. As an ex-
ample, the English word ‘you’ may be translated
into Portuguese as ‘tu’, ‘você’, ‘vocês’, or ‘vós’,
to consider only nominative forms. We can thus
generate three additional candidates by altering the
morphosyntax (and maintaining grammatical con-
cord) while keeping the meaning intact.

Evaluating in Portuguese and Vietnamese, we
find that this is ineffective (see §7.3). Consider
Vietnamese. It is a morphologically isolating and
zero-marking language, so concord between con-
stituents is not overtly marked. This leaves us
fairly free to swap out morphological variants of
pronouns: there may be difference in age, conno-
tation, or register, but the overt semantics of the
English prompt are preserved. All swapping trans-
formations in Table 9 give poorer performance.

Hiragana replacement Japanese has three dif-
ferent writing systems—hiragana, katakana, and
kanji—and sometimes a word written in kanji is
considered an acceptable translation when written
in hiragana. For example, the Japanese word for
“child” is子供 when written with kanji, but an ac-
ceptable alternative is the hiragana こども . We
experiment with expanding translation candidates
by replacing Japanese kanji with pronunciations
from a furigana (hiragana pronunciation) dictio-
nary but this method did not improve performance.

Numeral replacement For sentences contain-
ing numbers, the list of accepted translations of-
ten contains Arabic numbers, in addition to num-
bers in the native language. For example, ‘o senhor

195

smith virá no dia dez de julho’ and ‘o senhor smith
virá no dia 10 de julho.’ are both gold translations
of “mr. smith will come on july tenth.” We ex-
periment with replacing native numbers with Ara-
bic numerals in Japanese, Portuguese, and Viet-
namese. This did not improve weighted F1.

9 Conclusion

Our approach was general, borrowing from best
practices in machine translation. We built large,
general-domain MT systems that were then fine-
tuned on in-domain data. We then followed an
“overgenerate and filter” approach that made ef-
fective use of the scores from the systems to find
a per-prompt truncation of large n-best lists pro-
duced from these systems. These techniques per-
formed very well, ranking first in all five language
pairs. We expect that further refinement and ex-
ploration of standard MT techniques—as well as
techniques that we were unsuccessful with (§8)—
would bring further improvements that would ac-
crue generally across languages.

At the same time, the Duolingo shared task
is distinct from machine translation in subtle but
important ways: presenting simpler, shorter sen-
tences and a 0-1 objective. While we were not able
to get additional gains from linguistic insights, we
don’t see these failures as conclusive indictments
of those techniques, but instead as invitations to
look deeper.

Acknowledgments

We thank Najoung Kim for remarks on Korean, An
Nguyen for remarks on Vietnamese and Vinicius
C. Costa for remarks on Portuguese, and Doug
Oard for general advice.

References
Ahmed Abdelali, Francisco Guzman, Hassan Sajjad,

and Stephan Vogel. 2014. The AMARA corpus:
Building parallel language resources for the educa-
tional domain. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’14), pages 1856–1862, Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Željko Agić and Ivan Vulić. 2019. JW300: A wide-
coverage parallel corpus for low-resource languages.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3204–3210, Florence, Italy. Association for Compu-
tational Linguistics.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
2011. Domain adaptation via pseudo in-domain data
selection. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 355–362, Edinburgh, Scotland, UK. As-
sociation for Computational Linguistics.

Cristian Buciluundefined, Rich Caruana, and Alexan-
dru Niculescu-Mizil. 2006. Model compression.
In Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’06, page 535–541, New York,
NY, USA. Association for Computing Machinery.

Praveen Dakwale and Christof Monz. 2017. Fine-
tuning for neural machine translation with limited
degradation across in- and out-of-domain data. In
Proceedings of the 16th Machine Translation Sum-
mit (MT-Summit 2017), pages 156–169.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation,
pages 187–197, Edinburgh, Scotland. Association
for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Marcin Junczys-Dowmunt. 2018. Dual conditional
cross-entropy filtering of noisy parallel corpora. In
Proceedings of the Third Conference on Machine
Translation: Shared Task Papers, pages 888–895,
Belgium, Brussels. Association for Computational
Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Huda Khayrallah, Brian Thompson, Kevin Duh, and
Philipp Koehn. 2018. Regularized training objective
for continued training for domain adaptation in neu-
ral machine translation. In Proceedings of the 2nd
Workshop on Neural Machine Translation and Gen-
eration, pages 36–44, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Huda Khayrallah, Brian Thompson, Matt Post, and
Philipp Koehn. 2020. Simulated multiple reference
training improves low-resource machine translation.
arXiv preprint arXiv:2004.14524.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

196

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86. Citeseer.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–
75, Melbourne, Australia. Association for Compu-
tational Linguistics.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Aviral Kumar and Sunita Sarawagi. 2019. Calibration
of encoder decoder models for neural machine trans-
lation. CoRR, abs/1903.00802.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA).

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). Asso-
ciation for Computational Linguistics.

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, pages 220–224, Uppsala, Sweden. Association
for Computational Linguistics.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. In Proceed-
ings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 3956–3965, Stock-
holmsmässan, Stockholm Sweden. PMLR.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible

toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160–170, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2019.
Wikimatrix: Mining 135m parallel sentences in
1620 language pairs from wikipedia. CoRR,
abs/1907.05791.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Winston Wu, Garrett Nicolai, and David Yarowsky.
2020. Multilingual dictionary based construction of
core vocabulary. In Proceedings of The 12th Lan-
guage Resources and Evaluation Conference, pages
4204–4210, Marseille, France. European Language
Resources Association.

197

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 198–203
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Simultaneous paraphrasing and translation by fine-tuning
Transformer models

Rakesh Chada
Amazon.com, Inc.,

rakchada@amazon.com

Abstract
This paper describes the third place submis-
sion to the shared task on simultaneous transla-
tion and paraphrasing for language education
at the 4th workshop on Neural Generation and
Translation (WNGT) for ACL 2020. The final
system leverages pre-trained translation mod-
els and uses a Transformer architecture com-
bined with an oversampling strategy to achieve
a competitive performance. This system sig-
nificantly outperforms the baseline on Hungar-
ian (27% absolute improvement in Weighted
Macro F1 score) and Portuguese (33% abso-
lute improvement) languages.

1 Introduction

This paper describes the third place submission to
the shared task Mayhew et al. (2020) on simulta-
neous translation and paraphrasing for language
education at the 4th workshop on Neural Genera-
tion and Translation (WNGT) for ACL 2020. The
shared task involves generating multiple transla-
tions for a given source text in English and a target
language. The five target languages in the task are
Hungarian (hu), Portuguese (pt), Japanese (ja), Ko-
rean (ko) and Vietnamese (vi). We competed in
the Hungarian and Portuguese tracks. A goal of
the shared task, hosted by Duolingo, is to enable
development of automated grading processes and
curation systems for language learners’ responses.
A high-coverage and precise multi-output transla-
tion and paraphrasing system would vastly help
such automated efforts. For the task, participants
were provided with hand-crafted and field-tested
sets of several possible translations for each En-
glish sentence. Each of these translations were also
ranked and weighted according to actual learner re-
sponse frequency and these weights were provided
as additional features. Along with these, transla-
tions from AWS were provided as a baseline and
additional data. The challenges associated with

the shared task are two-fold: i) Translating from
English to target languages and ii) Producing multi-
ple valid translations (paraphrases) while balancing
precision with the coverage. We conduct several
experiments to address these two challenges and
develop a simple system that leverages pre-trained
transformer Vaswani et al. (2017) models and a
wide beam search strategy. Furthermore, we lever-
age the provided translation scores and experiment
with multiple training distribution strategies to de-
velop a simple oversampling strategy that produces
improvements over the vanilla method of using one
translation one time.

2 Related work

Paraphrasing and machine translation are well-
studied research areas in general but there’s
not much research specifically in the context of
multi-output translation systems, especially for
low resource languages. Tan et al. (2019) train
a Transformer-based Neural Machine Transla-
tion model for Hungarian-English and Portugese-
English translation. However, their goal was to
assess the benefits of multilingual modeling by
clustering languages and is different from that of
a multi-output translation system. For English-
Portuguese, Aires et al. (2016) build a phrase-
based machine translation system to translate
biomedical texts. For multilingual parahrasing,
Ganitkevitch and Callison-Burch (2014) release
a database consisting of paraphrases for several
languages, including Hungarian and Portuguese,
at lexical, phrasal and syntactic level. Guo et al.
(2019) build a zero-shot multilingual paraphrase
generation model to show mixed results. However,
their end goal was to generate paraphrases in the
same language (English) as opposed to our shared
task which requires generating paraphrases in a
different language.

198

https://www.aclweb.org/anthology/D19-56%2d

Target Language
Train Dev Test

Prompts Pairs MSL MTL 99p SL 99p TL Prompts Pairs
Hungarian (hu) 4000 251442 21 21 11 14 500 500

Portuguese (pt) 4000 526466 33 21 25 15 500 500

Table 1: Dataset statistics. MSL=Maximum Source Length. MTL=Maximum Target Length. 99p SL=99th
percentile Source Length. 99p TL=99th percentile Target Length.

Ippolito et al. (2019) study diverse decoding meth-
ods on conditional language models and show
promising results on movie dialogue corpus and
image captioning tasks.

3 Task

We describe dataset statistics and evaluation met-
rics in this section.

3.1 Data

There are two phases of the competition - Dev
and Test. Table 1 shows data statistics for all
phases. There were 4000 train prompts provided,
in English, for both Hungarian and Portuguese lan-
guages. However, each of these prompts were
accompanied with multiple translations leading
to 251,442 English-Hungarian (en-hu) pairs and
526,466 English-Portuguese (en-pt) pairs. There
were 500 prompts in both dev and test phases. Af-
ter tokenization, for en-hu, most of the source sen-
tences were shorter than 11 tokens and target sen-
tences were shorter than 14 tokens. For en-pt, most
of the source sentences were shorter than 25 tokens
and target sentences were shorter than 15 tokens.

3.2 Evaluation Metrics

The main scoring metric for the competition is the
weighted macro F1 score. This is a measure of how
well the system returns all human-curated transla-
tions weighted by the likelihood that an English
learner would respond with each translation. For
each prompt p, weighted macro F1 is calculated
as the harmonic mean of precision and weighted
recall (note that the precision is unweighted). To
calculated weighted recall for each example, we
first calculate Weighted True Positives (WTP) and
Weighted False Negatives (WFN) as:

WTPp =
∑

t∈TPp

weight(t)

WFNp =
∑

t∈FNp

weight(t)

Then, weighted recall (WR) is calculated as:

WRp =
WTPp

WTPp +WFNp

The weighted Macro F1 (WF) over all prompts P
is then calculated by averaging over all prompts in
the corpus as:

WF =
∑

p∈P

WFp

|P |

4 System Design

We now describe the final submitted system design
in detail. We have experimented with several other
variants and describe these in a later section 5.

4.1 Data sampling
For the final system, we chose to use weighted sam-
pling of the data where the weights correspond to
the provided learner response frequency. Specifi-
cally, we multiply the frequency of the translation
(a number between 0 and 1) with a heuristic value
of 50 and duplicate the source-translation pair that
many number of times. In effect, this would create
repeated samples of certain pairs whose frequency
is greater than 0.02 while eliminating pairs whose
frequency is less than 0.02. With this sampling, we
end up with 40,500 en-hu pairs and 42,000 en-pt
pairs. We separate 15% of the provided prompts as
a validation set. The performance on this validation
set is used to pick the best model.

4.2 Preprocessing
For text pre-processing, we use sentencepiece to-
kenization Kudo and Richardson (2018) for en-hu
and byte-pair encoding Sennrich et al. (2016) for
en-pt data. We use pre-trained tokenization models
provided in OPUS-MT.

4.3 Model Architecture
The final submitted model architecture, shown in
Figure 1, uses the standard Transformer sequence-
to-sequence model. This has 6 encoder and 6 de-
coder layers and an 8-headed attention mechanism

199

Transformer Beam Search Post-processingEnglish Prompt

N-best
hypotheses

 Multi-output
translations

Figure 1: Architecture of the final system

in both encoder and decoder. We initialize the
model with the pre-trained representations obtained
from the OPUS-MT data. This model is then fine-
tuned on the task data. We tie the encoder, decoder
and output embedding weights and use a shared vo-
cab size of 60,522. For position-wise feed-forward
layers, the Swish activation function Ramachan-
dran et al. (2018) is used. The whole model is
fine-tuned, through an early stopping mechanism,
on the dataset constructed as detailed in 4.1 .

For fine-tuning, we use the standard cross-
entropy loss objective on the target sequence along
with a label smoothing loss Szegedy et al. (2016).

For decoding, we use beam search with a beam
size of 10 and select top 10 hypotheses for en-hu
track. For en-pt track, we use a beam size of 28 and
select top 28 hypotheses. We implement the model
in Marian NMT Junczys-Dowmunt et al. (2018).

4.4 Postprocessing

The beam search outputs scores for each individ-
ual token. These scores represent the log likeli-
hood of that token in the output sentence. As a
post-processing step, we remove all translation
predictions where the maximum of these token-
level scores is less than -3.5. This value was de-
termined by studying the impact of the maximum
score thresholding on validation set performance.

4.5 Hyperparameters

We use the following hyperparameters. Batch size
is set to 500. Dropout is set to 0.1. Label smoothing
is set to 0.1. We use Adam optimizer with learning
rate of 3e-4, β1=0.9, β2=0.98 and epsilon = 1e-9.
We decay the learning rate by an inverse square
root mechanism for 16000 steps. The gradient clip
norm is set to 5. And patience for early stopping is
set to 5.

5 Ablations

5.1 Ablations

We have performed several ablation studies on the
en-hu task. The results of all these studies are listed
in Table 3. We list the experiment methodologies

below.
No fine-tuning: Here, we applied the pre-trained
translation model directly on the task without any
fine-tuning. The decoding was done using beam
search beam size of 12 and by selecting top 12
hypotheses (determined based on validation perfor-
mance).
No oversampling: Here, we use all provided trans-
lation pairs without any filtering based on the
learner response frequency. We fine-tune the pre-
trained model on this dataset and decode using
beam search with a beam size of 15 and selecting
top 15 hypotheses.
No post-processing: This is the same as the final
submitted model without the post-processing (max-
imum score thresholding).

6 Other Modeling Variants

We experimented with different modeling alterna-
tives for the shared task. We describe them in this
section. The results of these variations are listed in
Table 4.

6.1 Multi-output sequence formulation

Here, we re-formulate the task as a multi-output
prediction task by taking the top 5 translation pairs
(based on the learner response frequency) and
concatenating them into a single target sequence.
The pre-trained model is then fine-tuned on this
dataset.
Nucleus sampling: Here, we use the above
multi-output sequence model and add Nucleus
sampling Holtzman et al. (2019) while decoding
with p value set to 0.95.

6.2 Back Translation

Here, we start with a pre-trained hu-en translation
model. We then construct a hu-en dataset from the
provided en-hu translation pairs. The pre-trained
model is fine-tuned on this dataset. We apply this
fine-tuned hu-en model on the provided reference
AWS translations of the target hu sentences. With
a beam size of 15 and top-5 hypotheses selection,

200

Model
Validation Dev Test

P WR WF P WR WF P WR WF
Fairseq Baseline
(en-hu)

- - - 19.35 12.47 13.02 18.3 11.8 12.17

AWS Baseline (en-
hu)

- - - 84.6 19.9 29.85 86.8 18.9 28.1

Fine-tuned Trans-
former (en-hu)

75.14 50.34 56.72 75.2 55.2 59.8 75.5 49.2 55.08

Fairseq Baseline
(en-pt)

- - - 29.86 13.3 15.14 28.2 11.7 13.57

AWS Baseline (en-
pt)

- - - 86.8 14.09 21.15 87.8 13.9 21.3

Fine-tuned Trans-
former (en-pt)

72.14 49.22 54.25 69.96 52.55 55.03 72.06 50.11 54.39

Table 2: Final submission results. Bold indicates best performance. P=Precision. WR=Weighted Recall.
WF=Weighted Macro F1.

Model
Validation

P R WR MiF MaF WMiF WMaF
No fine-tuning 52.41 6.32 41.18 11.28 19.21 46.12 41.31

No oversampling 58.40 13.26 46.70 21.62 32.34 51.90 45.98

No post-processing 74.04 9.28 49.71 16.49 28.81 59.49 54.93

Table 3: Performance of various en-hu ablations on validation dataset. Bold indicates best
performance. R=Recall. MiF=Micro F1. MaF=Macro F1. WMiF=Weighted Micro F1.
WMaF=Weighted Macro F1.

Model
Validation

P R WR MiF MaF WMiF WMaF
Multi-output
sequence

74.44 7.33 44.35 13.35 23.58 55.59 52.29

Nucleus sampling 72.98 7.70 45.13 13.93 24.27 55.77 52.67

Back Translation 70.98 7.42 44.45 13.43 23.63 54.67 52.08

Model-based
Prediction Filtering

72.71 10.60 51.90 18.51 31.01 60.56 56.10

Table 4: Performance of modeling variants on en-hu validation dataset. Bold indicates best
performance.

we generate 5 English paraphrases for each given
English prompt. Now, the en-hu fine-tuned model
from the “Multi-output sequence formulation”
ablation is made to predict separately for each
of the generated English paraphrases and all the
outputs are combined into the final prediction.

6.3 Model-based Prediction Filtering

Here, we start with the final submission model and
build a binary XGBoost classifier on top of it to
filter predictions (accept vs reject). The features
of the XGBoost model are the token-level scores,
as described in Section 4.4, that are obtained from
the final submission model. As different sequences
have different lengths, we build a fixed size feature

201

vector by truncating or padding all sequences to a
length of 11. This is the 99 percentile source length
listed in Table 1. The binary labels for training are
obtained by comparing output translation with the
provided gold translations. We do a randomized
search on “max depth”, “colsample bytree”, “col-
sample bylevel” and “n estimators” hyperparame-
ters of the XGBoost model to find the best set of
values. We then perform a 5-fold cross-validation
to identify the best model. The F1 score of this
model on the “accept” class is 0.81 and on the “re-
ject” class is 0.48. The overall accuracy is about
72%.

7 Results & Discussion

Table 2 shows results of the final submission, for
en-hu and en-pt tracks, along with a comparison
to the baseline. As per the main evaluation metric
(Weighted Macro F1 score), our model outper-
forms the strong AWS baseline by a significant
margin on both en-hu and en-pt tracks. For en-hu,
the improvement is about 30 absolute points on
the dev dataset and 27 points on the test dataset.
For en-pt, the improvement is about 34 absolute
points on the dev dataset and 33 absolute points on
the test dataset. This model ranked 1st on the dev
leaderboard and 2nd on the test leaderboard for
en-hu track. It ranked 2nd on the dev leaderboard
and 3rd on the test leaderboard for en-pt track.

Table 3 shows the results for several ablations for
en-hu model listed in section 5. And Table 4 shows
results for several modeling variants listed in sec-
tion 6. There are several interesting observations
to be made from these ablations and variants. First,
there’s a clear improvement of about 15.4 points
in Weighted Macro F1 from fine-tuning the pre-
trained model on the provided dataset. The sim-
ple post-processing strategy of score thresholding
yielded a gain of about 1.79 absolute points. Simi-
larly, there’s also a big improvement of about 10.7
absolute points from the oversampling strategy we
used (as opposed to no oversampling). However,
this gap seemed to have been closed by a big mar-
gin (about 7 absolute points) through the multi-
output sequence formulation and slightly more by
adding Nucleus sampling on top of it. A sepa-
rate approach that uses back translation seemed to
also have yielded similar gains upon the “No over-
sampling” approach. The model-based prediction
filtering yielded an improvement of about 4 abso-

lute points. Interestingly, all of these variants still
ended up inferior (by varying levels) to the sim-
ple oversampling + fine-tuning + post-processing
strategy that was used for the final submission.

8 Summary

We describe the system for our submission to
the shared task on simultaneous translation and
paraphrasing for language education at the 4th
workshop on Neural Generation and Translation
(WNGT) for ACL 2020. The final submitted
system leverages pre-trained translation models,
with Transformer architecture, and an oversam-
pling strategy to achieve competitive performance.
For future, it’d be interesting to see if initializing
the model with latest state-of-the-art sequence-to-
sequence pre-trained models such as BART Lewis
et al. (2019) and T5 Raffel et al. (2019) and fine-
tuning could help boost performance. It would
also be a promising direction to explore the ben-
efit of using cross-lingual models such as XLM-
Roberta Conneau et al. (2019). One way to use
them would be to initialize the encoder part of
the architecture with pre-trained representations.
Given the shared representations, it might be in-
teresting to see if concatenating several language
pairs’ train datasets and training a joint model pro-
duces additional benefits.

Acknowledgments

We thank the Duolingo team for providing the
dataset and organizing the competition and thank
reviewers for providing valuable feedback.

References
José Aires, Gabriel Lopes, and Luı́s Gomes. 2016.

English-Portuguese biomedical translation task us-
ing a genuine phrase-based statistical machine trans-
lation approach. In Proceedings of the First Con-
ference on Machine Translation: Volume 2, Shared
Task Papers, pages 456–462, Berlin, Germany. As-
sociation for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014), pages 4276–

202

4283, Reykjavik, Iceland. European Languages Re-
sources Association (ELRA).

Yinpeng Guo, Yi Liao, Xin Jiang, Qing Zhang, Yibo
Zhang, and Qun Liu. 2019. Zero-shot paraphrase
generation with multilingual language models.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degener-
ation. ArXiv, abs/1904.09751.

Daphne Ippolito, Reno Kriz, Joao Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Com-
parison of diverse decoding methods from condi-
tional language models. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3752–3762, Florence, Italy.
Association for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension.

Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill
McDowell, Will Monroe, and Burr Settles. 2020. Si-
multaneous translation and paraphrase for language
education. In Proceedings of the ACL Workshop on
Neural Generation and Translation (WNGT). ACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.
2018. Searching for activation functions.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826.

Xu Tan, Jiale Chen, Di He, Yingce Xia, Tao Qin, and
Tie-Yan Liu. 2019. Multilingual neural machine
translation with language clustering.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

203

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 204–210
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

The NiuTrans System for WNGT 2020 Efficiency Task

Chi Hu† Bei Li† Ye Lin† Yinqiao Li†
Yanyang Li† Chenglong Wang†

Tong Xiao†‡ Jingbo Zhu†‡
†NLP Lab, Northeastern University, Shenyang, China

‡NiuTrans Reasearch, Shenyang, China
huchinlp@gmail.com, libei neu@outlook.com,
{xiaotong,zhujingbo}@mail.neu.edu.com,

Abstract

This paper describes the submissions of the Ni-
uTrans Team to the WNGT 2020 Efficiency
Shared Task. We focus on the efficient imple-
mentation of deep Transformer models (Wang
et al., 2019; Li et al., 2019) using NiuTensor1,
a flexible toolkit for NLP tasks. We explored
the combination of deep encoder and shal-
low decoder in Transformer models via model
compression and knowledge distillation. The
neural machine translation decoding also ben-
efits from FP16 inference, attention caching,
dynamic batching, and batch pruning. Our sys-
tems achieve promising results in both transla-
tion quality and efficiency, e.g., our fastest sys-
tem can translate more than 40,000 tokens per
second with an RTX 2080 Ti while maintain-
ing 42.9 BLEU on newstest2018.

1 Introduction

In recent years, the Transformer model and its vari-
ants (Vaswani et al., 2017; Shaw et al., 2018; So
et al., 2019; Wu et al., 2019; Wang et al., 2019)
have established state-of-the-art results on machine
translation (MT) tasks. However, achieving high
performance requires an enormous amount of com-
putations (Strubell et al., 2019), limiting the deploy-
ment of these models on devices with constrained
hardware resources.

The efficiency task aims at developing MT sys-
tems to achieve not only translation accuracy but
also memory efficiency or translation speed across
different devices. This competition constraints sys-
tems to translate 1 million English sentences within
2 hours. Our goal is to improve the quality of trans-
lations while maintaining enough speed. We partic-
ipated in both CPUs and GPUs tracks in the shared
task.

Our system was built with NiuTensor, an open-
source tensor toolkit written in C++ and CUDA

1https://github.com/NiuTrans/NiuTensor

based on dynamic computational graphs. NiuTen-
sor is developed for facilitating NLP research and
industrial deployment. The system is lightweight,
high-quality, production-ready, and incorporated
with the latest research ideas.

We investigated with a different number of en-
coder/decoder layers to make trade-offs between
translation performance and speed. We first trained
several strong teacher models and then compressed
teachers to compact student models via knowledge
distillation (Hinton et al., 2015; Kim and Rush,
2016). We find that using a deep encoder (up to
35 layers) and a shallow decoder (1 layer) gives
reasonable improvements in speed while maintain-
ing high translation quality. We also optimized the
Transformer model decoding in engineering, such
as caching the decoder’s attention results and using
low precision data type.

We present teacher models and training details
in Section 2, then in Section 3 we describe how
to obtain lightweight student models for efficient
decoding. Optimizations for the decoding across
different devices are discussed in Section 4. We
show the details of our submissions and the results
in Section 5. Section 6 summarizes this paper and
describes future work.

2 Deep Transformer Teachers

2.1 Deep Transformer Architectures

Recent years have witnessed the success of
transformer-based models in MT tasks. Many
works (Dehghani et al., 2019; Zhang et al., 2019;
Li et al., 2020) focus on designing new attention
mechanisms and Transformer architectures. Shaw
et al. (2018) extended the self-attention to con-
sider the relative position representations or dis-
tances between words. Wu et al. (2019) replaced
the self-attention components with lightweight and
dynamic convolutions. Deep Transformer mod-

204

https://www.aclweb.org/anthology/D19-56%2d

els also attracted a lot of attention. Wang et al.
(2018) proposed a multi-layer representation fu-
sion approach to learn a better representation from
the stack. Wang et al. (2019) analyzed the high
risk of gradient vanishing or exploring in the stan-
dard Transformer, which place the layer normal-
ization (Ba et al., 2016) after the attention and
feed-forward components. They showed that a
deep Transformer model can surpass the big one
by proper use of layer normalization and dynamic
combinations of different layers. In their method,
the input of layer l + 1 is defined by:

xl+1 = G (y0, . . . , yl) (1)

G (y0, . . . , yl) =
l∑

k=0

W
(l+1)
k LN (yk) (2)

where yl is the output of the lth layer and W is the
weights of different layers.

We employed the dynamic linear combination of
layers Transformer architecture incorporated with
relative position representations as our teacher net-
work, call it Transformer-DLCL-RPR.

2.2 Training Details

We followed the constrained condition of the WMT
2019 English-German news translation task and
used the same data filtering method as (Li et al.,
2019). We also normalized punctuation and to-
kenized all sentences with the Moses tokenizer
(Koehn et al., 2007). The training set contains
about 10M sentences pairs after processed. In
our systems, the data was tokenized, and jointly
byte pair encoded (Sennrich et al., 2016) with 32K
merge operations using a shared vocabulary. Af-
ter decoding, we removed the BPE separators and
de-tokenize all tokens.

We trained four teacher models using new-
stest2018 as the development set with fairseq (Ott
et al., 2019). Table 1 shows the results of all
teacher models and their ensemble, where we re-
port SacreBLEU (Post, 2018) and the model size.
The difference between teachers is the number of
encoder layers and whether they contain a dynamic
linear combination of layers. All teachers have
6 decoder layers, 512 hidden dimensions, and 8
attention heads. We shared the source-side and
target-side embeddings with the decoder output
weights. The maximum relative length was 8, and
the maximum position for both source and target
was 1024. We used the Adam optimizer (Kingma

Model Param. BLEU
Transformer-35-6 152M 43.3
Transformer-35-6+DLCL 152M 43.7
Transformer-40-6 168M 44.5
Transformer-40-6+DLCL 168M 43.9
Ensemble 640M 45.5

Table 1: Results on newstest18 - Teacher Models. 35-6
means that the model contains 35 encoder layers and 6
decoder layers.

and Ba, 2015) with β1 = 0.9, β2 = 0.997 and
ε = 10−8 as well as gradient accumulation due
to the high GPU memory footprint. Each model
was trained on 8 RTX 2080Ti GPUs for up to 21
epochs. We batched sentence pairs by approximate
length and limited input/output tokens per batch to
2048/GPU. Following the method of (Wang et al.,
2019), we accumulated every two steps for a better
batching. This resulted in approximately 56000
tokens per training batch. The learning rate was
decayed based on the inverse square root of the
update number after 16000 warm-up steps, and the
maximum learning rate was 0.002. Furthermore,
we averaged the last five checkpoints in the training
process for all models.

As shown in Table 1, the best single teacher
model achieves 44.5 BLEU (beam size 4) on new-
stest2018. Then we obtained an improvement of 1
BLEU via a simple ensemble strategy used in (Li
et al., 2019).

3 Lightweight Student Models

After the training of deep Transformer teachers, we
compressed the knowledge in an ensemble into a
single model through knowledge distillation (Hin-
ton et al., 2015; Kim and Rush, 2016). Then we
analyzed the decoding time of each part in the deep
Transformer. We further pruned the encoder and
decoder layers to improve the decoding efficiency.

3.1 Knowledge Distillation

Knowledge distillation approaches (Hinton et al.,
2015; Kim and Rush, 2016) have proven success-
ful in reducing the size of neural networks. They
learn a smaller student model to mimic the orig-
inal teacher network by minimizing the loss be-
tween the student and teacher output. We applied
the sequence-level knowledge distillation on the
teacher ensemble described in Section 2. We used
the ensemble to generate multiple translations of

205

35%
54%

11%

Encoder Decoder Others

Figure 1: Profiling of the throughput during inference
on newstest2018 using a 35-6 model.

the raw English sentences. In particular, we col-
lected the 4-best list for each sentence against the
original target to create the synthetic training data.
Our base student model consists of 35 encoder lay-
ers and six decoder layers (call it 35-6) with nearly
150M parameters. It achieves 44.6 BLEU on the
test set.

3.2 Fast Student Models

Although the deep model can obtain high-quality
translations, its speed is not satisfactory. For ex-
ample, it costs 6.7 seconds to translate 2998 sen-
tences on a 2080Ti GPU using a 35-6 model with
the greedy search. Statistics show that the most
time-consuming part of the decoding process is the
decoder, as presented in Figure 1, so the most effi-
cient optimization is to use a lightweight decoder.
To make a comparison, we kept the 35 encoder lay-
ers and reduced the decoder layer to 1. In practice,
we copied the bottom layers’ parameters from big
models to small models for initialization. Then we
trained the small models as usual. Similar to (Wang
et al., 2019), the encoder has a more significant in-
fluence on the translation quality than the decoder.
Reducing the number of decoder layers brings us a
speedup of more than 30% with a slight loss of 0.3
BLEU.

We further compressed the model by shrinking
the encoder. Unless otherwise stated, the follow-
ing student models have only one decoder layer.
We copied the bottom layer parameters from big
models to initialize small models to stabilize the
training. We trained two small models with an 18-
layer encoder and a 9-layer encoder, respectively.
Table 2 shows the comparison of different teach-
ers and students. Compared with the 35-1 model,

Model Param. Speedup BLEU
Teacher-40-6 168M 1x 44.5
Student-35-6 152M 1.1x 44.6
Student-35-1 131M 1.6x 44.3
Student-18-1 77M 2.0x 43.4
Student-9-1 49M 2.4x 42.9
Student-tiny 25M 2.9x 37.2

Table 2: Results on newstest18. The students were
trained by sequence-level knowledge distillation. The
tiny setting keeps the 9-1 model’s configurations except
for using a model size of 256. We report the translation
speed on a single 2080Ti.

cutting off half of the encoder layer reduces the pa-
rameters by nearly half and gives a speedup of 20%
with a decrease of 0.2 BLEU. The 9-1 model is the
fastest model we run on the GPU. It can translate
newstest2018 within 3 seconds on a 2080Ti GPU
and obtain 42.9 BLEU.

All models mentioned above can translate 1 mil-
lion sentences on the GPU in 2 hours. However,
using a CPU to achieve this goal is not easy, so we
need smaller models. We set the 9-1 model size to
256 for the CPU version, namely 9-1-tiny, which
has only half the 9-1 model parameters. This model
achieves 37.2 BLEU on newstest2018 and reduces
90% parameters compared to the 35-6 model.

4 Optimizations for Decoding

4.1 General Optimizations

First, we discuss some device-independent opti-
mization methods.
Caching We can cache the output of the top
layer of the encoder and each step of the decoder
since we use an autoregressive model. More specif-
ically, we cache the linear transformations for
keys and values before the self-attention and cross-
attention layers.
Faster Beam Search Beam search is a common
approach in sequence decoding. The standard beam
search strategy generates the target sequence in a
self-regression manner and keeps a fixed amount
of active candidates during decoding. We adopt a
basic strategy to accelerate beam search: the search
ends when any candidate predicts the EOS sym-
bol, and there are no candidates with higher scores.
This strategy brings us up to a 20% speedup on
the WMT test set. Other threshold-based pruning
strategies (Freitag and Al-Onaizan, 2017) are not
appropriate due to the complex hyper-parameters.

206

Batch Pruning The length of target sequences
may vary for different sentences in a batch, which
makes the computation inefficient. We prune the
finished hypotheses in a batch during decoding but
only gain little accelerations on CPUs.

4.2 Optimizing for GPUs

For the GPU-based decoding, we mainly explored
dynamic batching, FP16 inference, and profiling.
Dynamic Batching Unlike the CPU version, the
easiest way to reduce the translation time on GPUs
is to increase the batch size within a specific range.
We implemented a dynamic batching scheme that
maximizes the number of sentences in the batch
while limiting the number of tokens. This strategy
significantly accelerates decoding compared to us-
ing a fixed batch size when the sequence length is
short.
FP16 Inference Since the Tesla T4 GPU sup-
ports calculations under FP16, our systems execute
almost all operations in 16-bit floating-point. All
model parameters are stored in FP16, which re-
duces the model size on disk by half. We tried to
run all operations at a 16-bit floating-point. How-
ever, in our test, some particular inputs will cause
numerical instability, such as large batch size or se-
quence length. To escape overflow, we convert the
data type around some potentially problematic op-
erations, i.e., all operations related to reduce sum.

4.3 Optimizing for CPUs

As mentioned above, the goal we set for the CPU
version is to translate 1 million sentences in 2 hours.
We used the same settings as the 9-1 model except
that the model size is 256 and therefore sacrifice
about 6 BLEU on the WMT test set. We employed
two methods to speed up the decoding on CPUs.
Using of MKL To make the full use of the In-
tel architecture and to extract the maximum per-
formance, the NiuTensor framework is optimized
using the Intel Math Kernel Library for basic oper-
ators. We can take advantage of this convenience
with only minor changes to the configuration.
Decoding in Parallel The target machine in
this task has 96 logical processors (with hyper-
threading) and 192 GB RAM so that we can run
our multi-threading system. We split the input into
several parts according to the number of lines and
start multiple processes to translate simultaneously.
Then we merge each part of translations to one file
in the original order.

4.4 Other Optimizations

In addition to the methods above, we also tried to
find the optimal settings for our system.
Greedy Search In the practice of knowledge dis-
tillation, we find that our systems are insensitive to
the beam size. It means that the translation quality
is good enough even we use greedy search in all
submissions.
Better decoding configurations As mentioned
earlier, our GPU versions use a large batch size,
but the number on the CPU is much smaller. We
use a fixed batch size (number of sentences) of 512
on the GPU and 64 on the CPU. We also set the
number of processes on the CPU as 24 and use
2 MKL threads for each process. The maximum
sequence length is 120 for the source and 200 for
the target.
Profile-guided optimization To further im-
prove our systems’ efficiency, we identified and op-
timized the performance bottlenecks in our imple-
mentation. There are many off-the-shelf tools for
performance profiling such as the gprof2 for C++
and the nvprof3 for CUDA. We run our systems on
the WMT test set for ten times and collect profile
data for all functions. Figure 2(a) shows the pro-
filing results for different operations on GPUs be-
fore optimizing. Before optimizing, the most time-
consuming functions on CPUs is pre-processing
and post-processing. We gain 2x speedup on CPUs
by using multi-threads for Moses (4 threads) and
replacing the Python subword tool with the C++
implementation4.

For GPU-based decoding, the bottleneck is
matrix multiplication and memory management.
Therefore we use a memory pool to control allo-
cation/deallocation, which dynamically allocates
blocks during decoding and releases them after the
translation finished. Compared with the on-the-fly
mode, this strategy significantly improves the ef-
ficiency of our systems by up to 3x speedup and
slightly increases the memory usage. We further
remove the log softmax in the output layer for
greedy search and other data transfers with a slight
acceleration of about 10%. Figure 2(b) shows the
statistics of optimized operations. The data type
conversion overhead takes about 12% of the decod-
ing time.

2https://ftp.gnu.org/old-gnu/Manuals/
gprof-2.9.1/html_node/gprof_toc.html

3http://docs.nvidia.com/cuda/
profiler-users-guide/index.html

4https://github.com/glample/fastBPE

207

37%

12%11%

8%

4%

11%

17%
MM

Memcpy

Softmax

CopyBlocks

TopK

Add

Others

(a) Operations before optimizing.

18%

14%

10%

9%7%
6%

24%

12%
MM

Memcpy

Softmax

CopyBlocks

TopK

Add

Others

Conversion

(b) Operations after optimizing

Figure 2: Profiling results of all operations during inference before or after optimizing on newstest2018 using a 9-1
model on a 2080Ti. We performed decoding for ten times to get more convincing results. Before optimizing, the
decoding time is 76.9 seconds. The combination of different optimizations reduces the time to 24.9 seconds. MM
is matrix multiplication, and CopyBlocks is used in the tensor copy.

5 Submissions and Results

We submitted five systems to this shared task, one
for the CPU track and four for the GPU track, sum-
marized as Table 3. We report file sizes, model
architectures, configurations, metrics for transla-
tion, including BLEU on newstest2018 and the real
translation time on a combination of test sets. The
BLEU and translation time were measured by the
shared-task organizers on AWS c5.metal (CPU)
and g4dn.xlarge (GPU) instances.

For the GPU tracks, our systems were measured
on a Tesla T4 GPU. GPU versions were compiled
with CUDA 10.1, and the executable file is about
96 MiB. Our models differ in encoder and decoder
layers. The base model (35-6) has 35 encoder lay-
ers and six decoder layers and achieves 44.6 BLEU
on the newstest2018. Then we see a speedup of
more than one-third and a slight decrease of only
0.2 BLEU by reducing the decoder layer to 1 (35-
1). We continue to reduce the number of encoder
layers for more accelerations. The 18-1 system
reduces the translation time by one-third with only
half of the encoder layers compared to the 35-1
model. Our fastest system consists of 9 encoder
layers and one decoder layer, which has one-third
parameters of the 35-6 model, achieves 40 BLEU
on the WMT 2019 test set, and speeds up the base-
line by 3x.

For the CPU track, we used the entire machine,
which has 96 virtual cores. Our CPU version is
compiled with MKL static library, and the exe-
cutable file is 22 MiB. We used a tiny model for the
CPU with 256 hidden dimensions and kept other

hyper-parameters as the 9-1 model in the GPU ver-
sion. Interestingly, using half of the hidden size
significantly reduces the translation quality. The
main reason is that the parameters of large models
cannot be reused when using smaller dimensions.
This also proves that reducing the number of en-
coder and decoder layers is a more effective com-
pression method. The CPU system achieves 37.2
BLEU on the newstest2018 and is 1.2x faster than
the fastest GPU system.

We made fewer efforts to reduce the model size
and memory footprint. Our systems use a global
memory pool, and we sort the input sentences in
descending order of length. Thus the memory con-
sumption will reach a peak in the early stage of
decoding and then decrease. Our base model con-
tains 152 million parameters, and the file size is 291
MiB when stored in 16-bit floats. The docker im-
age size ranges from 724 MiB to 930 MiB for our
GPU systems, while the CPU version is 452 MiB.
All systems running in docker are slightly slow
down, and we plan to improve this in subsequent
versions.

6 Conclusion

To maximize the decoding efficiency while en-
suring sufficiently high translation quality, we ex-
plored different techniques, including knowledge
distillation, model compression, and decoding al-
gorithms. The deep encoder and shallow decoder
networks achieve impressive performance in both
translation quality and speed. We speed up the de-
coding by 3x with lightweight models and efficient

208

Model MiB Time BLEU

Student-35-6 305 3166.4 44.6
Student-35-1 264 2023.3 44.3
Student-18-1 156 1355.0 43.4
Student-9-1 99 977.6 42.9

Student-9-1-tiny† 67 810.9 37.2

Table 3: Results of all submissions. † indicates the
CPU system. All student systems were running with
greedy search. The time was measured by the organiz-
ers on their test set and we only report the BLEU on the
newstest2018.

implementations.
For the GPU system, we plan to optimize the

FP16 inference by reducing the type conversion
and applying kernel fusion (Wang et al., 2010) for
Transformer models. For the CPU system, we will
further speed up the inference by restricting the
output vocabulary to a subset of likely candidates
given the source (Shi and Knight, 2017; Senellart
et al., 2018) and using low precision data type
(Bhandare et al., 2019; Kim et al., 2019; Lin et al.,
2020).

Acknowledgements

This work was supported in part by the National
Science Foundation of China (Nos. 61876035 and
61732005) and the National Key R&D Program of
China (No.2019QY1801). The authors would like
to thank anonymous reviewers for their comments.

References

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.
2016. Layer normalization. ArXiv, abs/1607.06450.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi
Karkada, Vivek Menon, Sun Choi, Kushal Datta,
and Vikram A. Saletore. 2019. Efficient 8-bit quan-
tization of transformer neural machine language
translation model. ArXiv, abs/1906.00532.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. ArXiv, abs/1807.03819.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 56–60, Vancouver. Associ-
ation for Computational Linguistics.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280–288, Hong Kong. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Bei Li, Yinqiao Li, Chen Xu, Ye Lin, Jiqiang Liu,
Hui Liu, Ziyang Wang, Yuhao Zhang, Nuo Xu,
Zeyang Wang, Kai Feng, Hexuan Chen, Tengbo Liu,
Yanyang Li, Qiang Wang, Tong Xiao, and Jingbo
Zhu. 2019. The NiuTrans machine translation sys-
tems for WMT19. In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 257–266, Florence, Italy.
Association for Computational Linguistics.

Yanyang Li, Qiang Wang, Tong Xiao, T Liu, and
Jingbo Zhu. 2020. Neural machine translation with
joint representation. ArXiv, abs/2002.06546.

Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran
Liu, and Jingbo Zhu. 2020. Towards fully 8-bit inte-
ger inference for the transformer model. In Proceed-
ings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

209

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Jean Senellart, Dakun Zhang, Bo Wang, Guillaume
Klein, Jean-Pierre Ramatchandirin, Josep Crego,
and Alexander Rush. 2018. OpenNMT system de-
scription for WNMT 2018: 800 words/sec on a
single-core CPU. In Proceedings of the 2nd Work-
shop on Neural Machine Translation and Genera-
tion, pages 122–128, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Xing Shi and Kevin Knight. 2017. Speeding up neu-
ral machine translation decoding by shrinking run-
time vocabulary. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 574–579,
Vancouver, Canada. Association for Computational
Linguistics.

David R. So, Chen Liang, and Quoc V. Le. 2019. The
evolved transformer. ArXiv, abs/1901.11117.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

G. Wang, Y. Lin, and W. Yi. 2010. Kernel fusion:
An effective method for better power efficiency on
multithreaded gpu. In 2010 IEEE/ACM Int’l Con-
ference on Green Computing and Communications
Int’l Conference on Cyber, Physical and Social Com-
puting, pages 344–350.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual

Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yin-
qiao Li, and Jingbo Zhu. 2018. Multi-layer repre-
sentation fusion for neural machine translation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3015–3026, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay less attention with
lightweight and dynamic convolutions. ArXiv,
abs/1901.10430.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2019.
Improving deep transformer with depth-scaled ini-
tialization and merged attention. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 898–909, Hong
Kong, China. Association for Computational Lin-
guistics.

210

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 211–217
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Efficient and High-Quality Neural Machine Translation with OpenNMT

Guillaume Klein, Dakun Zhang, Clément Chouteau, Josep Crego, Jean Senellart

SYSTRAN, 5 rue Feydeau, 75002 Paris, France
firstname.lastname@systrangroup.com

Abstract

This paper describes the OpenNMT submis-
sions to the WNGT 2020 efficiency shared
task. We explore training and acceleration of
Transformer models with various sizes that are
trained in a teacher-student setup. We also
present a custom and optimized C++ inference
engine that enables fast CPU and GPU decod-
ing with few dependencies. By combining ad-
ditional optimizations and parallelization tech-
niques, we create small, efficient, and high-
quality neural machine translation models.

1 Introduction

This paper describes the OpenNMT (Klein et al.,
2017) submissions to the Workshop on Neural Gen-
eration and Translation 2020 efficiency shared task.
For WNMT 2018, we explored training and opti-
mizations of small LSTM translation models com-
bined with a customized runtime (Senellart et al.,
2018). While this resulted in interesting decoding
speed, there was still room for improvements in
terms of quality, memory usage, and overall effi-
ciency.

For this 2020 edition, we focus on the standard
Transformer architecture (Vaswani et al., 2017)
that is now commonly used in production machine
translation systems. Similar to our first participa-
tion, we train smaller models using the teacher-
student technique (Kim and Rush, 2016). We ex-
periment with several encoder and decoder sizes
following the work by Hongfei et al. (2020) which
shows that reducing the number of decoder lay-
ers can improve decoding speed at a very limited
accuracy cost.

We also keep the approach of running the models
with a custom C++ runtime. This year we present
CTranslate21, an optimized and production-grade

1https://github.com/OpenNMT/
CTranslate2

inference engine for OpenNMT models that en-
ables fast CPU and GPU decoding with few de-
pendencies. This library implements several opti-
mizations for decoding neural machine translation
models such as 8-bit quantization, parallel trans-
lations, caching, and dynamic target vocabulary
reduction.

Section 2 of this paper describes the data prepa-
ration and the training procedures we apply to train
the candidate models. Section 3 presents the vari-
ous optimizations we implemented to reduce model
size and improve runtime efficiency. Finally, Sec-
tion 4 details the accuracy and efficiency results
achieved by the submitted models.

2 Teacher-student training

We train our systems using a teacher-student ap-
proach (Kim and Rush, 2016). First, a large
model (the teacher) is trained on all available bilin-
gual data, including synthetic data such as back-
translations of monolingual target sentences (Sen-
nrich et al., 2016; Edunov et al., 2018) and transla-
tions of monolingual source sentences (Zhang and
Zong, 2016). Model ensembles are also typically
used to build stronger teacher systems.

Then, a small model (the student) is trained by
means of minimizing the loss between the stu-
dent and teacher systems with the goal of distill-
ing the knowledge of the teacher (Kim and Rush,
2016; Zhang et al., 2018) into a smaller model with
comparable accuracy results. Crego and Senellart
(2016) show that student models can even outper-
form to some extent their teacher counterparts.

Knowledge distillation is an effective approach
to reduce the model size, thus lowering memory
and computation requirements.

2.1 Teacher system
As suggested in the task description and given the
limited amount of time available, we use Face-

211

https://www.aclweb.org/anthology/D19-56%2d

book’s WMT 2019 system as our teacher model
(Ng et al., 2019). The system is trained as an en-
semble of big Transformer models for both direc-
tions, English-German and German-English. Table
1 shows the BLEU (Papineni et al., 2002) evalu-
ation results of this model over newstest public
evaluation datasets.

newstest2018 newstest2019
Facebook WMT 2019 49.1 42.1
Microsoft-Marian 48.3 44.9

Table 1: Evaluation of the teacher system on the
English-German newstest files as reported by Sacre-
BLEU (Post, 2018). The results for Microsoft-Marian
are reported for comparison and retrieved from the
WMT matrix2.

2.2 Training data
We limit our training data to the WMT 2019
English-German translation task3. Table 2 sum-
marizes the data provided by the task organizers
which consist of more than 38M parallel sentences
and 808M monolingual English sentences.

Corpora # sents

Parallel

Europarl v9 1,838,568
Common Crawl corpus 2,399,123
News Commentary v14 338,285
Wiki Titles v1 1,305,141
Document-split Rapid 1,531,261
ParaCrawl v3 31,358,551
Total 38,770,929
news-crawl 2007-2018 199,900,557

Mono news-discuss 2011-2018 605,540,239
(Eng) europarl-v9 2,295,044

news-commentary-v14 545,919
Total 808,281,759

Table 2: English-German parallel data and English
monolingual data provided by the WMT 2019 transla-
tion task.

We use the following data to be translated by
the Facebook’s WMT 2019 teacher system: (a)
English part of the bilingual data, (b) English part
of ParaCrawl v3, and (c) English monolingual data.

Before translation, data is cleaned following sev-
eral rules: sentences that are empty or longer than
100 tokens without considering tokenization are
filtered out. We also use the language identification

2http://matrix.statmt.org/
3http://statmt.org/wmt19/

translation-task.html

(LID) toolkit langid (Lui and Baldwin, 2012) to
further clean ParaCrawl and the English monolin-
gual corpora which are known to contain a large
number of noisy sentences. Nearly 5% of the sen-
tences are discarded by the LID toolkit.

The cleaned data is then translated by the teacher
model and the resulting synthesized parallel data is
used to train the student systems4.

2.3 Vocabulary
We build a joint subword segmentation model from
the synthesized parallel data using SentencePiece
(Kudo and Richardson, 2018). The vocabulary size
is set to 32, 000 tokens. We removed the non-latin
characters before building the vocabulary.

2.4 Student models
We train 4 different student systems based on the
Transformer architecture (Vaswani et al., 2017).
The candidate configurations are presented in Ta-
ble 3. In addition to the base Transformer config-
uration, we train 3 model variants with different
number of encoder layers NEnc, decoder layers
NDec, hidden size dmodel, and feed-forward net-
work size dff . We share both the source and target
word embeddings and softmax weights in the 3 vari-
ants while the base configuration considers them
as separate weights.

2.5 Student training
Since the amount of synthetic data is relatively
large, we define an epoch as a random sampling
of 5M sentences. We set the sampling weights of
the selected data (a), (b), and (c) to 5, 2, and 2
respectively. That is, we consider a larger number
of sentences synthesized from the English part of
the bilingual data than from ParaCrawl or from the
monolingual English data set.

We use the OpenNMT-tf5 toolkit to train our stu-
dent systems. Training is run on a single NVIDIA
Tesla V100 GPU with an effective batch size of
25,000 tokens for the early epochs. Just before the
final release, we train 10 additional epochs with a
larger batch size by increasing the gradient update
delay by a factor of 16 (Ott et al., 2018). Figure 1
shows the comparison with a larger batch size. We
achieve an additional 0.1 to 0.2 BLEU using this

4Due to the long decoding time of the teacher system, the
English monolingual data was partially translated. The final
data pool used for training consists of: (a) 7.4M bilingual data,
(b) 26.1M ParaCrawl data, and (c) 127M English monolingual
data.

5https://github.com/OpenNMT/OpenNMT-tf

212

Transformer NEnc NDec h dmodel dff # params newstest2018 newstest2019
Base 6 6 8 512 2048 93324544 46.7 43.0
(4:3 2xFFN) 4 3 8 256 2048 18221568 43.2 40.8
(6:3) 6 3 8 256 1024 16123904 43.0 40.3
(4:3) 4 3 8 256 1024 14544384 42.0 39.7

Table 3: Transformer configurations and their BLEU scores on newstest2018 and newstest2019. Evaluation is
performed without inference optimizations using OpenNMT-tf and a beam size of 4.

technique. Finally, we average the weights of the
last 10 checkpoints to produce the final models.

260 262 264 266 268
41

41.5

42

42.5

epochs

batch = 16x
batch = 1x

Figure 1: BLEU evaluations on larger batch size on
newstest2018.

2.6 Evaluation
We list the number of parameters of the 4 trained
models in Table 3 and their evaluation scores on the
English-German newstest2018 and newstest2019
before any inference optimizations. The results cor-
relate well with the expectation that more model
parameters lead to better performance. The base
Transformer model achieves better results on new-
stest2019 than the Facebook’s WMT 2019 model
used as a teacher (43.0 vs. 42.1). This confirms
the finding in Crego and Senellart (2016) that stu-
dent systems can sometimes outperform their cor-
responding teacher networks.

3 Inference optimizations

All models are converted and executed with CTrans-
late2. We use the version 1.10.0 of the library.

3.1 CTranslate2 technical overview
CTranslate2 is a standalone C++ library that imple-
ments the complete logic of executing and decod-

ing neural machine translation models with a focus
on Transformer variants. This custom implemen-
tation supports CPU and GPU execution with the
goal of being faster, lighter, and more customizable
than a general-purpose deep learning framework.
Key features of this project include model quantiza-
tion, parallel translations, dynamic memory usage,
and interactive decoding. Some of these features
are difficult to implement effectively with standard
deep learning frameworks and are the motivation
for this project.

The CPU runtime is backed by Intel MKL, a
popular math computation library optimized for
Intel processors. We specialize operators with
BLAS routines and Vector Mathematical functions
whenever possible to benefit from vectorization.
We also use the caching allocator provided by
mkl malloc and align allocated memory to 64
bytes. Other operations not available in Intel MKL
are implemented in plain C++ using the STL and
OpenMP.

The GPU runtime minimally requires the
cuBLAS and Thrust libraries. Basic transforma-
tions are defined using Thrust while more complex
layers such as layer normalization and softmax are
using CUDA kernels ported from PyTorch (Paszke
et al., 2019). We also integrate a caching allocator
from the CUB library to reuse previously allocated
buffers and minimize device synchronization.

3.2 8-bit quantization (CPU)

Quantization is a standard technique to reduce the
model size in memory and accelerate its execu-
tion. We quantize the weights of linear and embed-
ding layers to 8-bit signed integers after complet-
ing training. Experimental results show that model
quantization can achieve high translation accuracy
without making the training quantization-aware.
We use the equation from Wu et al. (2016) to com-
pute the quantized weight WQ from the original
weight W :

213

Quantization Model size
None 373MB
16-bit 187MB
8-bit 94MB

Table 4: Effect of weight quantization on the model
size on disk. The model is a base Transformer without
shared embeddings.

si = max
j
|Wi,j |

WQ
i,j =

⌊127
si

Wi,j

⌋ (1)

Table 4 shows the effect of weight quantization
on the final model size.

On CPU, we dynamically quantize the in-
put of the linear layer using Equation 1, multi-
ply the quantized input and weight with MKL’s
cblas gemm s8u8s32 function, and dequan-
tize the result before adding the bias term. In addi-
tion, we employ two notable techniques:

Weights pre-packing. On model load, we re-
place the quantized linear weights with the packed
representation returned by MKL’s packed GEMM
API.

Unsigned compensation term. In row major
mode, Intel MKL expects the input matrix a to
be unsigned while the quantization Equation 1 pro-
duces signed values. To overcome this constraint,
we shift a to the 8-bit unsigned domain and add
a compensation term c to the output matrix. This
compensation term only depends on the quantized
weight matrix and can be computed once:

ci = −128×
k∑

j=1

WQ
i,j (2)

On GPU, 8-bit computation is disabled as our
implementation still requires some efficiency im-
provements regarding repetitive quantization and
dequantization. In this case the weights are dequan-
tized on load to single precision floating points.

3.3 Greedy decoding
To maximize speed and reduce memory usage, we
use greedy search instead of beam search. During
decoding, we also skip the final softmax layer and
simply get the maximum from the output logits.

2 4 8 16

2

4

6

8

Sp
ee

du
p

Batch-level File-level

2 4 8 16

200

400

600

800

Num. threads

M
em

or
y

us
ag

e
(M

B
)

Figure 2: Speedup and memory usage for a base Trans-
former model when increasing the number of threads
for batch translation, either at the batch level (left blue
bars) or at the file level (right red bars).

3.4 Decoder projections caching

We apply the common technique of caching linear
projections in the Transformer decoder layers. In
particular, at step t the decoder self-attention layers
compute Attention(QtW

Q, Q1..tW
K , Q1..tW

V).
As the matrix Q1..t−1 is constant, we only compute
QtW

K and QtW
V and concatenate the results to

previous projections before calling the attention.
We also cache the encoder output projections

KWK and VW V in the encoder-decoder attention
layers as K and V remain constant during decod-
ing.

For both cases, we transpose the matrices to de-
limit the attention heads before saving them in the
cache.

3.5 File-level parallelism (CPU)

Figure 2 compares the observed speedup when in-
creasing the number of threads at the batch level–
the number of OpenMP threads–or at the file level–
the number of batches processed in parallel. We
use the same batch size in both cases.

214

As the number of threads increases, the first ap-
proach looses efficiency because not all operators
within the model scale linearly and some of them
are not parallelized at all. On the other hand, the
second approach continues to improve as we add
more threads because all batches are independent
and the full decoding can be executed in parallel.
However, the duplicated internal state of parallel
translators increases memory usage. To mitigate
this issue, we share the static model data among all
parallel translators and read and write batches in a
streaming manner while ensuring that the original
order is preserved.

Given the large number of CPU cores available
for this task, we chose to exploit parallelism at the
file level to maximize the overall throughput. The
number of parallel translators is set to the number
of physical cores. Each translator is using a sin-
gle thread so the decoding algorithm is executed
sequentially and without OpenMP.

3.6 Sorted and dynamic batches

When setting the maximum batch size to N tokens,
each consumer reads 8N contiguous tokens, sorts
the sentences from the longest to the shortest, and
then splits by batch of N tokens before running the
model. The correct order is restored when returning
the translation results. This local sorting makes the
batches contain sentences of similar sizes which
reduces the amount of padding and increases the
computation efficiency.

We use N = 6000 for the GPU task, N = 512
for the single-core CPU task, and N = 256 for the
multi-core CPU task.

During decoding we remove finished translations
from the batch to avoid unnecessary computation.
We also exploit the prior knowledge that short sen-
tences finish early: by moving shorter sentences at
then end of the batch, we reduce memory copies
when updating the decoder cache in place.

3.7 Target vocabulary reduction

We generate a static source-target vocabulary map-
ping using the technique described in Senellart et al.
(2018). We first train an alignment model with
fast align to align source and target words. To
increase the coverage of this mapping, we build a
phrase table from these alignments to extract the
N -best translation hypotheses of 1-gram, 2-gram,
..., n-gram source sequences and include all target
words in the mapping. We set n = 3 to generate

Speed BLEU
OpenNMT-tf 214.0 26.00
CTranslate2 242.5 26.00
+ int8 845.2 25.88
+ local sorting 1054.0 25.88
+ packed GEMM 1167.4 25.84
+ vocabulary reduction 1687.1 25.42

Table 5: Single-core greedy decoding speed (target to-
kens per second) for a base Transformer model. The
BLEU scores are computed on an undisclosed test set
and show the impact on quality (if any) of the enabled
optimization.

the vocabulary mapping that are included in the
models of this submission.

During decoding, we consider all 1-gram, 2-
gram, and 3-gram sequences in the input batch
and select the target tokens that are likely to appear
in the translation according to the pretrained map-
ping as well as the 50 most frequent target tokens.
These candidates are used to mask the weights of
the final linear layer and effectively reduce its com-
putational cost.

3.8 Docker images
The Docker images entrypoint is a small C++ main
function that wraps the CTranslate2 and Sentence-
Piece libraries and sets the decoding options that
are relevant for this task.

We submit separate Docker images for
CPU and GPU to only include the re-
quired dependencies. The images are
based respectively on ubuntu:18.04 and
nvidia/cuda:10.2-base-ubuntu18.04.
Without the model, the CPU image size is 104MB
and the GPU image size is 210MB.

4 Optimization results

Table 5 shows the impact of selected optimizations
when decoding a base Transformer model on a sin-
gle CPU core. The CTranslate2 library combined
with few optimizations can lead to a 8× speedup
with limited accuracy loss over a baseline Tensor-
Flow program.

Finally, Table 6 summarizes the global impact
of the optimizations described above that we com-
pare against a baseline beam search decoding with
OpenNMT-tf. For a base Transformer model,
single-core CPU translation is 13× faster while
only loosing 0.8 BLEU points and GPU translation
is 7× faster for the same quality.

215

Transformer variant Time (s) BLEU
Baseline (single-core CPU)

Base 522.1 43.0
(4:3 2xFFN) 251.5 40.8
(6:3) 238.7 40.3
(4:3) 238.0 39.7

Optimized (single-core CPU)
Base 39.5 42.2
(4:3 2xFFN) 11.2 39.8
(6:3) 10.1 39.5
(4:3) 8.8 38.7

Optimized (multi-core CPU)6

Base 5.2 42.0
(4:3 2xFFN) 2.5 39.7
(6:3) 2.5 39.3
(4:3) 2.3 38.5

Baseline (GPU)
Base 57.6 43.0
(4:3 2xFFN) 40.7 40.8
(6:3) 41.6 40.3
(4:3) 42.1 39.7

Optimized (GPU)
Base 7.7 43.0
(4:3 2xFFN) 4.0 40.1
(6:3) 3.9 39.9
(4:3) 3.8 39.0

Table 6: Time in seconds to translate newstest2019 and
BLEU scores as returned by SacreBLEU. The time in-
cludes model loading and tokenization. Baseline mod-
els are decoded with OpenNMT-tf using a beam of size
4; Optimized models are decoded with the final images
submitted for this task. The runs were executed on a
c5.metal AWS instance for CPU and a g4dn.xlarge in-
stance for GPU.

5 Conclusion

We demonstrated that the OpenNMT ecosystem
can be used to train efficient and high-quality
neural machine translation models. The train-
ing frameworks–OpenNMT-tf and OpenNMT-py–
include all features and procedures that are com-
monly applied to reach competitive translation
scores. This year we presented CTranslate2, an
optimized and production-grade inference engine
for OpenNMT models that enables fast CPU and
GPU decoding with few dependencies. By combin-
ing several optimizations and parallelization tech-
niques, the library can drastically improve decod-

6The difference in BLEU score with the single-core runs
comes from the smaller batch size which changes the candi-
dates selected for reducing the target vocabulary.

ing speed and reduce memory usage over a general-
purpose deep learning toolkit.

References
Josep Maria Crego and Jean Senellart. 2016. Neu-

ral machine translation from simplified translations.
CoRR, abs/1612.06139.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Xy Hongfei, Deyi Xiong, Joseph van Genabith, and Liu
Qiuhui. 2020. Analyzing word translation of trans-
former layers. arXiv preprint arXiv:2003.09586v1.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67–72, Vancouver, Canada. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 System Demonstrations,
pages 25–30, Jeju Island, Korea. Association for
Computational Linguistics.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
fair wmt19 news translation task submission. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day
1), pages 314–319, Florence, Italy. Association for
Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of

216

the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Jean Senellart, Dakun Zhang, Bo Wang, Guillaume
Klein, Jean-Pierre Ramatchandirin, Josep Crego,
and Alexander Rush. 2018. OpenNMT system de-
scription for WNMT 2018: 800 words/sec on a
single-core CPU. In Proceedings of the 2nd Work-
shop on Neural Machine Translation and Genera-
tion, pages 122–128, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

Dakun Zhang, Josep Crego, and Jean Senellart. 2018.
Analyzing knowledge distillation in neural machine
translation. In 15th International Workshop on Spo-
ken Language Translation.

Jiajun Zhang and Chengqing Zong. 2016. Exploit-
ing source-side monolingual data in neural machine
translation. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1535–1545, Austin, Texas. Association
for Computational Linguistics.

217

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 218–224
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Edinburgh’s Submissions to the 2020 Machine Translation Efficiency Task

Nikolay Bogoychev† Roman Grundkiewicz† Alham Fikri Aji† Maximiliana Behnke†

Kenneth Heafield† Sidharth Kashyap‡ Emmanouil-Ioannis Farsarakis‡ Mateusz Chudyk††

†University of Edinburgh
{n.bogoych,rgrundki,a.fikri,maximiliana.behnke,kenneth.heafield}@ed.ac.uk

‡Intel Corporation ††Samsung R&D Institute Poland
{sidharth.n.kashyap,manos.farsarakis}@intel.com m.chudyk@samsung.com

Abstract

We participated in all tracks of the Workshop
on Neural Generation and Translation 2020 Ef-
ficiency Shared Task: single-core CPU, multi-
core CPU, and GPU. At the model level, we
use teacher-student training with a variety of
student sizes, tie embeddings and sometimes
layers, use the Simpler Simple Recurrent Unit,
and introduce head pruning. On GPUs, we
used 16-bit floating-point tensor cores. On
CPUs, we customized 8-bit quantization and
multiple processes with affinity for the multi-
core setting. To reduce model size, we ex-
perimented with 4-bit log quantization but use
floats at runtime. In the shared task, most of
our submissions were Pareto optimal with re-
spect the trade-off between time and quality.

1 Introduction

This paper describes the University of Edinburgh’s
submissions to the Workshop on Neural Gener-
ation and Translation (WNGT) 2020 Efficiency
Shared Task1 using the Marian machine transla-
tion toolkit (Junczys-Dowmunt et al., 2018a). The
task has GPU, single-core CPU, and multi-core
CPU tracks. Our submissions focus on the trade-
off between translation quality and speed; we also
address model size after submission.

Starting from an ensemble of 4 transformer-big
teacher models, we trained a variety of student
configurations and on top of that sometimes pruned
transformer heads. For the decoding process, we
explored the use of lower precision GEMM for both
our CPU and GPU submissions. Small models
appear to be more sensitive to quantization than
large models.

Most of our single-CPU submissions had a mem-
ory leak, which also impacted speed; we report
results before and after fixing the leak.

1https://sites.google.com/view/wngt20/
efficiency-task

2 Shared Task Summary

The task measures quality approximated by BLEU
(Papineni et al., 2002), speed, model size, Docker
image size, and memory consumption of a machine
translation system from English to German for the
WMT 2019 data condition (Barrault et al., 2019).
We did not optimize Docker image size (using stock
Ubuntu) or memory consumption (preferring large
batches for speed).

The task intentionally did not specify a test set
until after submissions were made. This was later
revealed to be the average of BLEU from WMT test
sets from 2010 through 2019, inclusive. However,
the 2012 test set was excluded because it contains
English sentences longer than 100 words and par-
ticipants were promised input would be at most 100
words. We refer to the task’s metric as WMT1*.
All BLEU scores are reported using sacrebleu.2

The CPU tracks used an Intel Xeon Platinum
8275CL while the GPU track used an NVIDIA T4.
For speed, the official input has 1 million lines of
text with 15,048,961 space-separated words.

3 Teacher-student training

Following Junczys-Dowmunt et al. (2018b) and
Kim et al. (2019), all our optimized models are
students created using interpolated sequence-level
knowledge distillation (Kim and Rush, 2016), and
trained on data generated from a teacher system.

Teacher We used the sentence-level English-
German system from Microsoft’s constrained sub-
mission to the WMT’19 News Translation Task
(Junczys-Dowmunt, 2019). It is an ensemble of
four deep transformer-big models (Vaswani et al.,
2017), each with 12 blocks of layers in encoder
and decoder, model size of 1024, filter size of 4096,

2BLEU+case.mixed+lang.en-de+numrefs.1+s
mooth.exp+test.wmt*+tok.13a+version.1.4.8
for various WMT test sets.

218

https://www.aclweb.org/anthology/D19-56%2d

Enc./Dec. BLEU
Model Emb. FFN Depth Voc. Params. Size WMT16 WMT19 WMT1*

Teacher ×4 1024 4096 12/12 32k 385.5M 1.5GB 42.4 42.5 36.4

Large 1024 3072 6/6 tied 32k 108.4M 414MB 41.0 43.0 35.3
Base 512 2048 6/2 tied 32k 39.0M 149MB 40.0 42.7 34.6
Tiny.Untied 256 1536 6/2 32k 16.9M 65MB 39.0 42.1 33.4
Tiny 256 1536 6/2 tied 32k 15.7M 61MB 38.7 41.5 33.0

Tiny.8k 256 1536 6/2 tied 8k 9.6M 37MB 37.4 40.6 31.7
Micro.8k 256 1024 4/2 tied 8k 7.0M 27MB 35.7 38.8 30.0

Table 1: Architectures and reference BLEU scores (on a GPU) for the teacher and student models. Reported values
are: size of embedding and filter layers, the number of encoder/decoder layers, vocabulary size, the total number
of parameters, and model size on disk. WMT1* is defined in Section 2.

and 8 transformer heads.3 The ensemble achieved
42.5 BLEU on the official WMT19 test set when
decoded with beam size of 8. We refer the reader
to the original paper for more details on how this
system has been built.

Data and training Our student models were
trained on pairs of original source and teacher-
translated target sentences generated from parallel
English-German datasets and English News Crawl
data available for WMT19 (Barrault et al., 2019).
For parallel data, we generated 8-best lists and se-
lected translations with the highest sentence-level
BLEU to reference sentences. Monolingual data
was translated with beam size of 4. We filtered
the data with language identification using Fast-
Text4 (Joulin et al., 2017), and then scored all sen-
tence pairs with a German-English transformer-
base model trained on a subset of original parallel
data, about 7 million sentences. The obtained log
probabilities were normalized with exp(0.1 ·p) and
used for data weighting during training. We also
removed ca. 5% of examples with worst scores
from each dataset, except Paracrawl (Bañón et al.,
2020), from which we used only 15M sentences
with highest scores for processing. This procedure
is similar to the single-direction step of the dual
cross-entropy filtering method (Junczys-Dowmunt,
2018). The final training set consisted of 185M sen-
tences, including 20M of originally parallel data.

All student models were trained using the con-
catenated English-German WMT test sets from
2016–2018 as a validation set5 until BLEU has
stopped improving for 20 consecutive validations,

3This system refers to the (4×c) configuration in Table 2
from the original paper.

4https://fasttext.cc/blog/2017/10/02/
blog-post.html

5The validation sentences were not teacher-translated.

and select model checkpoints with highest BLEU
scores. Since a student model should mimic the
teacher as closely as possible, we did not use regu-
larization like dropout and label smoothing. Other
training hyperparameters were Marian defaults for
training a transformer-base model.6

Student models All our students have standard
transformer encoders (Vaswani et al., 2017) and
light-weight RNN-based decoders with Simpler
Simple Recurrent Unit (SSRU) (Kim et al., 2019),
and differ in number of encoder and decoder blocks,
and sizes of embedding and filter layers. Most
models use shared vocabulary with 32,000 sub-
word units created with SentencePiece (Kudo and
Richardson, 2018), but we also experimented with
a smaller vocabulary with only 8,000 units for
model size optimized systems. Used student ar-
chitectures are summarized in Table 1.

Interestingly, our student models do much better
with originally English input, resulting in gener-
ally higher BLEU on the WMT19 test set w.r.t. the
teacher’s performance than on test sets from previ-
ous years, which consist of both translations and
translationese. For example, the teacher achieves
42.4 and 42.2 BLEU on originally English and
originally German subsets of the WMT16 test set,
respectively, while the Base student model has 42.5
and only 35.6 BLEU. We think the reason for this is
that student models were trained solely on teacher-
translated data without back-translations.

4 Attention pruning

Attention is one of the most expensive operations in
the transformer architecture, yet many of the heads
can be pruned after training (Voita et al., 2019).
Moreover, the lottery ticket hypothesis (Frankle

6Available via --task transformer-base.

219

BLEU
Model Enc. heads Params. Size WMT19 WMT1* WPS

Tiny 8 8 8 8 8 8 15.7M 61MB 41.5 32.9 2050

Tiny.Steady.i12 2 0 1 2 3 4 14.5M 56MB 41.1 32.4 2282
Tiny.Steady.i14 0 0 1 1 1 3 14.3M 55MB 40.8 32.1 2350

Tiny.Pushy.i6 2 2 2 2 2 2 14.5M 56MB 41.4 32.4 2298
Tiny.Pushy.i7 1 1 1 1 1 1 14.3M 55MB 40.2 31.5 2346

Table 2: Students with pruned encoder attention. Words per second (WPS) is evaluated in float32 with a single
CPU core on the official input (Section 2).

and Carbin, 2018) and subsequent work on pruning
optimisation (Frankle et al., 2019) suggests that
pruning is less damaging during training rather than
after training. Hence we combine these two ideas
to prune attention heads during training.

Since we are starting from a relatively optimized
model (Tiny in Table 1) whose decoder has one
tied layer with SSRU self-attention, our pruning
approach focuses on the 48 encoder heads. We ap-
ply a late resetting strategy that iteratively removes
heads in short training loops (Frankle et al., 2019).
This method starts by training the full model for
25k batches to create a checkpoint. Then we repeat-
edly train for 15k updates, remove N heads and
revert the rest of the parameters to their value from
the aforementioned checkpoint. Inspired by Voita
et al. (2019), we calculate attention “confidence”.
Each time a head appears, we take the maximum
of its attention weights. These maximums are then
averaged across all appearances of the head to form
a confidence score. Attention heads with high con-
fidence are considered to contribute the most to the
overall network performance. Thus, we remove the
N least confident heads in each pruning iteration.

We try removing N = 3 or N = 6 heads per it-
eration, dubbing these Steady and Pushy in system
names, respectively. Since the algorithm usually
picks one head from each layer, the final architec-
ture differs. For example, removing 6 heads per
iteration results in a monotonic attention distribu-
tion across the 6 encoder layers. For submissions,
we pruned 36 of the 48 heads; as an additional ex-
periment we tried removing 42 of the 48 heads. The
final attention distribution, size and BLEU scores
for those models are presented in Table 2.

Considering that our students perform better on
newer testsets, the pruning results show that it is
possible to remove at least 75% of self-attention
heads in an encoder with an average 0.4 BLEU loss.
With harsher pruning, the model with even num-

bers of heads performs better than the one missing
any from the first two layers. This indicates that,
in extreme cases, it is better to have at least one
head per layer than none. Since the dimension of
each head was small (256 / 8 = 32), pruning has not
reduced the overall size of the models drastically.
The speed-up is about 10% on CPU with 75% en-
coder heads removed. In terms of on GPU, our best
pruned model gains 15% speed-up w.r.t. words per
second (WPS) losing 0.1 BLEU in comparison to
an unpruned model (Tab. 4).

5 CPU optimizations

For our CPU optimization we build upon last year
submission (Kim et al., 2019). We use the same
lexical shortlist, but we extend the usage of 8bit
integer quantized GEMM operations to also cover
the shortlisted output layer in order to have faster
computation and even smaller model size.

5.1 8-bit quantization

Quantization from 32-bit floats to 8-bit integers
is well known (Kim et al., 2019; Bhandare et al.,
2019; Rodriguez et al., 2018) and reportedly has
minimal quality impact. For this year’s submis-
sion, we used intgemm7 instead of FBGEMM8 as
our 8bit GEMM backend. Vocabulary shortlisting
entails selecting columns from the output matrix
and intgemm can directly extract columns in its
packed format. The packed format reduces mem-
ory accesses during multiplication. Users can also
specify arbitrary postprocessing of the output ma-
trix while it is still in registers before writing to
RAM. Currently we use this to add the bias term in
a streaming fashion, saving a memory roundtrip on
the common A ∗B + bias operation in neural net-
work inference; in the future we plan to integrate
activation functions.

7https://github.com/kpu/intgemm/
8https://github.com/pytorch/FBGEMM

220

BLEU Words per second
Model Size xzip Size WMT19 WMT1* 1 core Leak 1 core Fixed Multi-core Fixed

Base + float32 149MB 135.0MB 42.6 34.53 843 843 19849
+ 8bit-untuned 38MB 25.4MB 42.5 34.29 Out of RAM 1648 39100
+ log-4bit 19MB 15.8MB 42.3 34.10 Run as float32

Tiny + float32 65MB 58.9MB 41.5 32.91 2220 2220 47030
+ 8bit 17MB 11.2MB 41.6 32.89 1028 3135 70037
+ log-4bit 8MB 6.7MB 40.0 31.46 Run as float32

Tiny.8k + float32 37MB 33.4MB 40.6 31.70 1956 1956 42085
+ 8bit 9MB 7.0MB 39.5 30.61 Not submitted 2664 60011
+ log-4bit 5MB 4.1MB 37.5 28.51 Run as float32

Micro.8k + float32 27MB 21.6MB 38.8 30.03 2459 2459 53204
+ 8bit 7MB 4.4MB 37.5 29.01 2094 3229 79992

Table 3: Model sizes, average BLEU scores and speed for quantized models. For the official submission we only
used the 8-bit quantized models. More information about the unquantized models can be found in Table 1. The
suffix “-untuned” means the model was quantized without continued training. In the multi-core setting, fixing the
memory leak had minor impact on speed so we only report fixed numbers. Here, size excludes a 315 KB sentence
piece model and an optional (but useful for speed) 11 MB lexical shortlisting file.

Last year (Kim et al., 2019), parameters were
quantized and packed offline from a fully trained
model. This year, we noticed quality degradation
when quantizing smaller models and therefore in-
troduced continued training. Continued training
ran for 5000–7000 mini-batches, emulating 8-bit
GEMM by quantizing the activations and weights
then restoring them to 32-bit values, borrowing
from methods used for 4-bit quantization (Aji and
Heafield, 2019).

Quantization entails computing a scaling fac-
tor to collapse the range of values to [−127, 127].
For parameters, this scaling factor is computed of-
fline using the maximum absolute value9 but ac-
tivation tensors change at runtime. This year, we
changed from computing a dynamic scaling fac-
tor on the fly for activations to computing a static
scaling factor offline. We decoded the WMT16
dataset and recorded the scaling factor α(Ai) =
127/max(|Ai|) for each instance Ai of an acti-
vation tensor A. Then, for production, we fixed
the scaling factor for activation tensor A to the
mean scaling factor plus 1.1 standard deviation:
α(A) = µ({α(Ai)}) + 1.1 ∗ σ({α(Ai)}). These
scaling factors were baked into the model file so
that statistics were not computed at runtime.

All parameter matrices are prepared either of-
fline, or when decoding the first word (in the case
of the output layer) and later on they are reused for
the GEMM operations (or in the case of the output
layers, columns associated with vocabulary items

9We tried a variety of statistics, including minimizing mean
squared error, but none worked as well as continued training.

are extracted from the prepared matrix).
For the GEMM operations at the attention layer,

we used cblas sgemm batched from Intel’s MKL
Library. Model sizes, translation quality and speed
are reported in Table 3.10

Memory leak Most of our CPU submissions had
a memory leak due to failing to clear a cache of
shortlisted output matrices. Hence our official
CPU submissions using intgemm had unreasonable
memory consumption after translating 1 million
lines as specified in the shared task. In one case,
this exceeded 192 GB RAM on the c5.metal in-
stance and a submission was disqualified; in other
cases the submissions ran but used too much RAM
and likely more CPU time as a consequence. In
practise, the negative effect on speed was only evi-
dent in the single core submissions because multi-
core submissions divided work across processes.

5.2 Log 4-bit quantization
Model parameters follow normal distribution: most
of them are near-zero. Therefore, a fixed-point
quantization mechanism such as in Section 5.1 is
not suitable when quantizing to lower precision.
We can achieve a better model size compression
by using a logarithmic 4-bit quantization (Aji and
Heafield, 2019).

We start by quantizing a baseline model into 4-
bit precision. We leave the biases unquantized as
they do not follow the same distribution as the rest

10Code for these models is at https://github.
com/marian-nmt/marian-dev/tree/intgemm_
reintegrated_computestats

221

of the parameters matrices and therefore quantize
poorly. Moreover, the compression rate is practi-
cally unaffected since the biases are small in terms
of number of parameters. Finally, the model must
be fine tuned under 4-bit precision to restore the
quality lost by quantization.

With 4-bit precision, we can achieve around 8x
model size reduction. While 4-bit log quantization
is in principle hardware-friendly since it uses only
adds and shifts, current CPUs and GPUs do not na-
tively support it (GPUs do support 4-bit fixed-point
quantization, but this reduced quality compared
to log quantization). The additional instructions
required to implement 4-bit arithmetic made in-
ference slower than with native 8-bit operations.
Therefore, we focus on model size, useful for down-
loading, and dequantize before running the model
in float32.

Model sizes and BLEU scores are reported in
Table 3. Generally, quantizing the model is a better
choice when aiming for lower model size, com-
pared to reducing model parameters. For example,
Base + log-4bit is as small as 19MB, while losing
just 0.4 BLEU compared to the baseline. In con-
trast, the Tiny model is 65MB, but loses 1.5 BLEU
compared to the float32 and the int8 settings.

We see that 4-bit log quantization achieves the
best size and performance trade-off. For example,
our Base + log-4bit (19MB) achieves the highest
average BLEU of 34.1 among other models of sim-
ilar size, such as Tiny + 8bit (17MB, 32.89 BLEU).
Similarly, Our Tiny + log-4bit (8MB) achieves an
average BLEU of 31.46, compared to others with
similar range, for example Micro.8k + 8bit (9MB,
30.61 BLEU). However, larger models are more
robust towards extreme quantization, compared to
smaller models. Our Tiny.8k + log-4bit degrades
significantly in terms of quality.

5.3 Multi-core configuration

For the multi-core track, we swept configurations
of multiple processes and threads, settling on 24
processes with 2 threads each. The input text is
simply split into 24 pieces and parallelized over
processes. The mini-batch sizes did not impact
performance substantially and 32 was chosen as
the mini-batch size. The code profile under VTune
revealed that the performance was limited by mem-
ory bandwidth, hence, the Hyperthreads available
on the platform were not put into use and the 48
cores were saturated using 24 processes (Tange,

BLEU
Model WMT19 WMT1* WPS

Large (?) 43.0 35.27 2748
- w/o 16-bit 43.0 35.29 1764

- w/o shortlist 43.0 35.29 1775
Base (?) 42.7 34.54 6138
Tiny.Untied (?) 41.9 33.27 7602
Tiny 41.5 32.90 8210

Tiny.Steady.i12 41.4 32.36 9518
Tiny.Pushy.i6 (?) 41.0 32.40 9508

Table 4: Performance of student models measured on
an AWS g4dn.xlarge instance with one NVidia T4
GPU. BLEU scores, total translation times, and word
per seconds (WPS). Models with (?) have been submit-
ted to the GPU track.

2011) running 2 threads each. Each process was
bound to two cores assigned sequentially and to the
memory domain corresponding to the socket with
those cores using numactl. Output from the data-
parallel run is then stitched together to produce the
final translation.

6 GPU systems

This year, we did not implement any GPU-specific
optimizations and focused on comparing the per-
formance of student architectures, developed for
CPU decoding, on the GPU. We made 4 submis-
sions to the GPU track. The results for all student
models, averaged across 3 runs are reported in Ta-
ble 4. We decode on GPU using batched translation
with mini-batch of 256 sentences, pervasive FP16
inference, and lexical shortlists (Kim et al., 2019).
These are features already available in Marian 1.9.

The average speed-up from decoding in 16-bit
floats is 21%, depending on the model architecture.
The larger the model size, the larger speed improve-
ment, with as high as 56% improvement for the
Large student model, through 32% for Base, and
only 13-18% for Tiny models. This is with barely
any change in BLEU, lower than ±0.1. Models
with pruned transformer heads are faster than the
original Tiny model by 15% on GPU, but decrease
the accuracy by 0.1-0.5 BLEU on the WMT19 test
set. On this relatively small data set, we notice
a small translation speed decrease of up to 2%
from using lexical shortlists. Running concurrent
streams on a single GPU did not yield significant
improvements for us.

222

28

30

32

34

36

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

W
M

T
1*

B
L

E
U

Thousand words per real second

Our submissions
Ours after submission

Others’ submissions

(a) Speed on one CPU core

28

30

32

34

36

0 20 40 60 80 100 120

W
M

T
1*

B
L

E
U

Thousand words per real second

Our submissions
Ours after submission

Others’ submissions

(b) Speed on all CPU cores

28

30

32

34

36

0 5 10 15 20 25

W
M

T
1*

B
L

E
U

Thousand words per real second

Our submissions
Others’ submissions

(c) Speed on GPU

28

30

32

34

36

0 100 200 300 400 500

W
M

T
1*

B
L

E
U

Model size (MB)

Our submissions
Ours after submission

Others’ submisions

(d) Model size for CPU and GPU

Figure 1: Performance of our models compared to other teams. Not all models sought to optimize both speed and
space. For example, models stored in 4 bits ran with float32.

7 Results and discussion

All submissions and select experiments are de-
picted in Figure 1.

We explored a variety of ways to optimize the
trade-off between quality, speed, and model size.
We use an ensemble of 4 transformer-big teacher
models to train a number of different student con-
figurations. Smaller student models are faster to
decode, but also further degrade the performance
compared to the ensemble of teachers. Further-
more, we apply gradual transformer head pruning
to the student models. While pruning the number
of heads does not reduce the number of param-
eters significantly, it has a major impact on the
computational cost and is beneficial for increasing
translation speed, at a small penalty in BLEU score.

On the software side, we experiment with a num-
ber of methods that reduce the precision for the
GEMM operations. For our GPU submissions, we
decode using 16-bit floats and for CPU ones we use

8-bit integers. We note that the smaller (in terms
of number of parameters) the model is, the more
impacted quality is by quantization, and the bigger
the model is, the larger the speed increase is. We
found that fine tuning with a quantized GEMM can
recover some of the quality loss from quantization.

We also experimented with logarithmic 4-bit
model compression, which did not yield increased
translation speed due to hardware, but produced
the smallest model sizes.

Acknowledgements
We would like to thank Marcin Junczys-Dowmunt for sharing
his English-German WMT’19 NMT system that we used as a
teacher for our experiments.

This work was supported by funding from the Euro-
pean Union’s Horizon 2020 research and innovation

programme under grant agreement No 825303 (Bergamot)
and by the Connecting Europe Facility (CEF) - Telecommuni-
cations from the project No 2019-EU-IA-0045 (User-focused
Marian).

This work was performed using resources provided by the
Cambridge Service for Data Driven Discovery (CSD3) op-

223

erated by the University of Cambridge Research Computing
Service (http://www.csd3.cam.ac.uk/), provided by Dell EMC
and Intel using Tier-2 funding from the Engineering and Phys-
ical Sciences Research Council (capital grant EP/P020259/1),
and DiRAC funding from the Science and Technology Facili-
ties Council (www.dirac.ac.uk).

References
Alham Fikri Aji and Kenneth Heafield. 2019. Neural machine

translation with 4-bit precision and beyond. arXiv preprint
arXiv:1909.06091.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian
Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof
Monz, Mathias Müller, Santanu Pal, Matt Post, and Marcos
Zampieri. 2019. Findings of the 2019 conference on ma-
chine translation (wmt19). In Proceedings of the Fourth
Conference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. Associa-
tion for Computational Linguistics.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L. For-
cada, Amir Kamran, Faheem Kirefu, Philipp Koehn, Ser-
gio Ortiz Rojas, Leopoldo Pla Sempere, Gema Ramı́rez-
Sánchez, Elsa Sarrı́as, Marek Strelec, Brian Thompson,
William Waites, Dion Wiggins, and Jaume Zaragoza.
2020. ParaCrawl: web-scale acquisition of parallel cor-
pora. In Proceedings of the 2020 Annual Conference of
the Association for Computational Linguistics, Seattle.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada, Vivek
Menon, Sun Choi, Kushal Datta, and Vikram Saletore.
2019. Efficient 8-bit quantization of transformer neural
machine language translation model.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Training pruned neural networks. CoRR,
abs/1803.03635.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy,
and Michael Carbin. 2019. Stabilizing the lottery ticket
hypothesis. CoRR, abs/1903.01611.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. 2017. Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 427–431, Valencia, Spain.
Association for Computational Linguistics.

Marcin Junczys-Dowmunt. 2018. Microsoft’s submission to
the WMT2018 news translation task: How I learned to
stop worrying and love the data. In Proceedings of the
Third Conference on Machine Translation: Shared Task
Papers, pages 425–430, Belgium, Brussels. Association for
Computational Linguistics.

Marcin Junczys-Dowmunt. 2019. Microsoft translator at
WMT 2019: Towards large-scale document-level neu-
ral machine translation. In Proceedings of the Fourth
Conference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 225–233, Florence, Italy. Asso-
ciation for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz
Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann,
Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay

Bogoychev, et al. 2018a. Marian: Fast neural machine
translation in C++. In Proceedings of ACL 2018, System
Demonstrations, pages 116–121.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu Hoang,
Roman Grundkiewicz, and Anthony Aue. 2018b. Mar-
ian: Cost-effective high-quality neural machine translation
in C++. In Proceedings of the 2nd Workshop on Neural
Machine Translation and Generation, pages 129–135.

Yoon Kim and Alexander M Rush. 2016. Sequence-level
knowledge distillation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 1317–1327.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Al-
ham Fikri Aji, Kenneth Heafield, Roman Grundkiewicz,
and Nikolay Bogoychev. 2019. From research to produc-
tion and back: Ludicrously fast neural machine translation.
In Proceedings of the 3rd Workshop on Neural Generation
and Translation, pages 280–288, Hong Kong. Association
for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 66–
71.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania, USA. Associ-
ation for Computational Linguistics.

Andres Rodriguez, Eden Segal, Etay Meiri, Evarist Fomenko,
Young Jin Kim, Haihao Shen, and Barukh Ziv. 2018. Lower
numerical precision deep learning inference and training.

O. Tange. 2011. Gnu parallel - the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. 2017. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich,
and Ivan Titov. 2019. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be
pruned. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 5797–
5808, Florence, Italy. Association for Computational Lin-
guistics.

224

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 225–231
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Improving Document-Level Neural Machine Translation with Domain
Adaptation

Sami Ul Haq1, Sadaf Abdul Rauf2,3, Arslan Shoukat1 and Noor-e-Hira2

1 National University of Sciences and Technology, Pakistan
2 Fatima Jinnah Women University, Pakistan

3 LIMSI-CNRS, France
{sadaf.abdulrauf,noorehira94}@gmail.com

{sami.ulhaq,arslanshaukat}@ceme.nust.edu.pk

Abstract

Recent studies have shown that translation
quality of NMT systems can be improved by
providing document-level contextual informa-
tion. In general sentence-based NMT mod-
els are extended to capture contextual infor-
mation from large-scale document-level cor-
pora which are difficult to acquire. Domain
adaptation on the other hand promises adapt-
ing components of already developed systems
by exploiting limited in-domain data. This
paper presents FJWU’s system submission at
WNGT, we specifically participated in Docu-
ment level MT task for German-English trans-
lation. Our system is based on context-aware
Transformer model developed on top of orig-
inal NMT architecture by integrating contex-
tual information using attention networks. Our
experimental results show that providing pre-
vious sentences as context significantly im-
proves the BLEU score as compared to a
strong NMT baseline. We also studied the im-
pact of domain adaptation on document level
translation and were able to improve results by
adapting the systems according to the testing
domain.

1 Introduction

In past few years, machine translation systems have
witnessed remarkable growth due to increasing
amount of multilingual information. Neural Ma-
chine Translation (NMT) has become one of the
powerful and de-facto approaches recognized for
its generality and effectiveness (Li et al., 2018).
Due to better accuracy of deep neural models, it
has quickly achieved state of the art performance
in machine translation (Shen et al., 2015).

Standard neural machine translation model
works on individual sentences and focuses on short
context windows for improving translation quality
while ignoring cross-sentence links and dependen-
cies (Xiong et al., 2019). Sentence-by-sentence

translation of well-formed documents may gener-
ate an incoherent target text which is unable to
span the entire document. This largely limits the
success of NMT, as document context is totally ig-
nored. Intuitively, to generate coherent translation
of source document, machine learning models ex-
pect cross-sentence dependencies and linkages. To
this end, several models (Voita et al., 2018; Wang
et al., 2017; Tu et al., 2018; Maruf and Haffari,
2017; Bawden et al., 2017; Jean et al., 2017) have
been proposed for document-wide translation.

Adapting NMT models for context-aware trans-
lations has the biggest challenge of limited avail-
ability of bilingual document-level corpora. Since,
only few resources are available for training, the
application domain of NMT may greatly vary from
domain of training data. Consequently, the perfor-
mance of NMT system may quickly degrade as
soon as the testing conditions deviate from training
conditions.

Domain adaptation has been an active research
topic in the field of machine translation to improve
translation performance often for low resource set-
tings (Koehn and Schroeder, 2007). The quality of
neural machine translation heavily depends upon
domain-specificity of test data and the amount of
parallel training data. The demand for high quality
domain specific MT systems has significantly in-
creased over the years but the bilingual corpora for
relevant languages still lack in quantity (Chu and
Wang, 2018).

In this work, we aim to demonstrate performance
optimization in a particular domain by training
document-level models on large out-of domain par-
allel corpus combined with small in-domain corpus
using domain adaptation techniques. Our exper-
iments on German-English data using document-
level translation model (Miculicich et al., 2018) an
extension of standard NMT Transformer (Vaswani
et al., 2017) reveals the importance of contextual

225

https://www.aclweb.org/anthology/D19-56%2d

information and domain adaptation on translation
quality.

By comparing the performance with standard
NMT baseline models trained on bilingual data, we
show that NMT models exposed to random and
actual contextual information are more sensitive
to translation quality. We also demonstrate the
impact of domain adaptation on translation quality
by adapting document-level system to the testing
domain.

2 Models

We use two types of models, sentence level and
document-level context aware model, both built us-
ing Transformer architecture (Vaswani et al., 2017).
For our primary submission we train document-
level models on parallel corpus with document
boundaries. The document level model consists
of hierarchical attention encoder and decoder to
capture both source and target side contextual in-
formation during training and testing.

2.1 Sentence-level Models

Our baseline for sentence-level models is
OpenNMT-py (Klein et al., 2017) implementation
of the Transformer architecture. To be able to
establish comparison with document-level mod-
els, strong sentence-level baseline is defined with
the same architecture (Vaswani et al., 2017) and
training data as used for document-level models.
Model configurations and training/evaluation data
for sentence-level models are discussed in sec-
tion 3.2.

2.2 Document-level Models

The motivation behind this research work is to test
document-level NMT models on sports domain
for WNGT20 shared task. The standard Trans-
former encoder and decoder are extended to take
additional sentences as contextual input (Miculi-
cich et al., 2018). Hierarchical attention networks
(Yang et al., 2016) are employed on both sides of
the NMT model to capture larger context. HAN
encoder and decoder can be used jointly to provide
dynamic access for selecting previous sentences or
predicting most appropriate words.

3 Experimental Setup

The baseline and document-level models are
trained on English-German parallel data of differ-

ent domains (i.e. news, press and sports) provided
by WMT191 and WNGT202.

Corpus Split Sentences Documents

Europarl v9
train 1.64M 109.9K
valid 0.19M 12.93K
test 0.09M 6.46K

Rapid
train 1.31M 42.9K
valid 0.14M 5.04K
test 0.07M 2.52K

News train 0.28M 7.16K
Commentary valid 0.03M 0.84K
v14 test 0.01M 0.42K

Rotowire
train 3.24K 242
valid 3.32K 240
test 3.24K 241

Table 1: Dataset statistics in terms of number of sen-
tence pairs and documents and the corresponding train,
test and development split.

3.1 Dataset

Document level models require parallel data with
document boundaries for training and testing. Par-
allel data without document boundaries can not be
directly used to train document level models, if it is
imperative to use, then artificial document bound-
aries need to be generated. Our training corpus is
also constrained to use only English-German data
from the WMT19 shared task.

As mentioned earlier, one of the main constraints
in training document-level models is limited avail-
ability of document-level corpora. WMT19 pro-
vides document split version of Europarl v9, New-
Commentary v14 and Rapid corpus. Rotowire
dataset, made available by WNGT20 DGT task
also contains parallel data with document distinc-
tions. For document-parallel data, we preserve the
document boundaries during data filtering and con-
catenation as to get original documents back after
translation. For DGT shared task submission, Ro-
towire test set is provided by WNGT20. Since, the
models are trained on data from multiple domains,
we create standard test set by selecting chunk of
data from each domain to generate a more fair rep-
resentation of each domain in standard test set. This
was done by selecting multiple documents from a

1http://www.statmt.org/wmt19/
2https://sites.google.com/view/wngt20/

226

particular domain based on size of the dataset3.
All datasets are tokenised using script provided
by WNGT organizers4. Table 1 summarizes the
corpus details.

3.1.1 In-domain data
RotoWire (Wiseman et al., 2017) is sports data con-
sisting of article summaries about NBA basket ball
games. RotoWire dataset is available in two for-
mats, json and plain text. Both formats contain
identical split for train/development and test sets.
We used plain text format that contains separate
files according to IDs of documents, each game
summary is taken as a separate document.

3.1.2 Out-of-domain data
Major portion of training data includes out-of-
domain parallel corpora taken from WMT19.
We used English-German set of Rapid, News-
commentary and Europarl with document bound-
aries. Document boundaries of Europarl v9 dataset
resulted in very long documents, therefore we de-
cided to redefine the document boundaries while
keeping the same order of sentences5. For this,
we take the average document size of Rotowire
training data which gave us 14 sentences per doc-
ument. After discarding original space split doc-
ument boundaries from Europarl v9, we add new
boundaries to keep a reasonable size of context.

3.2 Model Configuration and Training

Since our baseline and document-level MT systems
use OpenNMT-py (Klein et al., 2017) implementa-
tion of Transformer model, we used similar config-
uration parameters are as reported in original trans-
former paper (Vaswani et al., 2017). Transformer
model incorporates 6-hidden layers for encoder and
decoder. All the hidden states have dropout of 0.1
and 512 dimensions. Model is trained with 8000
warm-up steps with a learning rate of 0.01. We
checkpoint the model every 1000 steps for vali-
dation. Batch size is set to 2048 and modes are
trained for 50K steps.

As in the original paper (Miculicich et al.,
2018), two step process is followed for training
the document-level models. In the first step, NMT

3For sentence based models, we can select sentences ran-
domly but for document-level models entire document is con-
sidered for standard test set.

4https://github.com/neulab/ie-eval
5In the original approach for document-level NMT, they

failed to obtain significant improvements when context in-
creases beyond 3 sentences.

model is optimized without context-aware HAN.
After that, we optimize the parameter’s for HAN en-
coder, decoder and joint model. HAN Transformer
models gave best performance for 1-3 previous sen-
tences, we use k=3 previous sentences for both
source and target side context.

4 Experimental Results

We present the results of experimentation from our
models on German-English translation in Tables 2,
3 and 4.

4.1 Domain adaptation: Sentence level

In our initial experiments, we investigate the im-
pact of domain adaptation on translation results at
sentence-level. Since the NMT models are adapted
for sports domain (RotoWire), so following (Hira
et al., 2019) we gave more weightage to RotoWire
corpus by replicating the corpus twice and thrice to
study the impact.

Dataset English German BLEU

rap 29.3M 30.0M 5.87
roto-rap 29.5M 30.2M 9.37
roto-rap-nc 35.2M 35.8M 7.90
roto2-rap-nc 35.4M 36.0M 16.33
roto3-rap-nc 35.6M 36.2M 20.01

Table 2: Table summarizing corpora size and BLEU
scores for Transformer based NMT systems.

The results in Table 2 are reported on NMT
model scores for Rotowire (roto), Rapid (rap) and
News-Commentary (nc) corpus, here roto is the
in-domain corpus. Adding only 0.2M of in-domain
roto corpus to 30M rap German corpus yields
a substantial improvement of around +4 BLEU
points (Table 2: row 2). On the other hand, addi-
tion of 5.6M German nc corpus to previous sys-
tems, gives around +1.5 points improvement (row
3). This is an obvious demonstration of the positive
effect of domain adaptation on translation quality.

We further explore this effect by replicating
twice the roto corpus, this gives a big improvement
of 8.43 BLEU points on roto2−rap−nc (Table 2:
row 4). Replicating roto 3 times, however gives
+3.68 points improvement from previous system
and an overall improvements of +12.11 BLEU
points from roto − rap − nc. Clearly, by adapt-
ing to the testing domain by updating the model
weights, substantial improvements are achieved.

227

4.2 Document-level Adaptation with Context
Aware Translation Experiments

For document-level models, taking a strong base-
line of sentence level models, we achieved remark-
able improvements by incorporating context as
shown in Table 3. We report the results for 4 cor-
pus combinations. The first column is a combina-
tion of four document segmented corpora. Starting
with a baseline of 32.18 Bleu points on sentence
level Transformer model on Rotowire+Rapid+
News−Commentary+Euro corpus, a gain of
3.79 points is achieved (32.18⇒ 35.97). This is
achieved by incorporation of contextual informa-
tion by HAN encoder. We have used a context of
3 sentences as this was reported to be the best for
capturing context by (Miculicich et al., 2018). This
shows a superiority of context based models on
standard NMT models. With the joint model we
get a score of 38.32 BLEU points.

In columns (3, 4) of Table 3, the effect of domain
adaptation to test domain is reported on document-
level systems. This years test data were the doc-
uments in the test folder provided by the organ-
isers. We experimented by building systems by
replicating the Rotowire training corpus, twice
and thrice in an attempt to enable the translation
model to learn parameter closer to the testing do-
main. We can clearly see that models with repli-
cated in-domain corpus outperformed and achieved
better score than previous document-level and
sentence-based models. The best score of 43.08
is obtained when Rotowire is replicated thrice i.e.
RotoWire(∗3) +Rapid+NC + Euro.

All of our document-level models preformed bet-
ter than sentence-level models but most importantly
encoder models gave best scores which clearly in-
dicates that source side provides correct contextual
information as compared to target side. The high-
est score is achieved by combining HAN encoder
and HAN decoder model for corpus in second and
third two columns. Joint model for last column
performed poorly, this can be attributed to the fact
that HAN decoder is not contributing complemen-
tary information to further improve translations.
Another reason can be our selection of decoder’s
context, as due to limited availability of time we
only use decoded states of previous sentences for
target side context while other configurations (Mi-
culicich et al., 2018) are also available.

4.3 Other Context Integration Experiments

Table 4 presents results from our different context
integration experiments. We have been interested
to check how much improvement is due to addi-
tional contextual information, therefore we created
a similar setup (Scherrer et al., 2019) for analysis
of context. For this, we create three variants of our
train and test set to evaluate context aware systems:

• Regular context: The order of sentences in
train and test set is kept same as they appear
in original documents to evaluate consistent
contextual setting.

• Random context: The train and test set
is shuffled such that the document bound-
aries now represent inconsistent contextual
sentences.

• No context: Document boundaries of test
set is modified such that one sentence now
presents one document, which means no addi-
tional context is made available during trans-
lations. We are forcing document level model
to avoid context by providing single sentence
document during testing.

We report Blue score for context integration ex-
periments in Table 4. Document-level models are
expected to perform better when contextual infor-
mation is available. The BLEU score decreases
when we move from regular context to random and
no context as indicated by row 1 and column 3-5
of Table 4. Context aware models when trained on
inconsistent training data, it hardly effects their per-
formance when actual context is random or missing
during testing. Model in row 2 is trained on ran-
dom or inconsistent document level data, column
3-5 represent scores for regular, random and non-
contextual test data. Model trained on data with
random context is insensitive to context during test-
ing.

5 Related Work

5.1 Context-aware NMT

Improving machine translation systems by develop-
ing document-level models for SMT (Garcia et al.,
2015; Hardmeier et al., 2013; Gong et al., 2011)
and NMT(Maruf and Haffari, 2017; Tu et al., 2018;
Voita et al., 2018; Kuang et al., 2017; Wang et al.,
2017) has been an important research area. These
contributions are briefly discussed in this section.

228

BLEU Score
Models Roto+Rapid+NC+Euro Roto(*2)+Rapid+NC+Euro Roto(*3)+Rapid+NC+Euro

NMT Transformer 32.18 36.40 37.08

+ HAN encoder 35.97 39.31 43.08
+ HAN decoder 35.37 39.33 42.76
+ HAN encoder + HAN decoder 38.32 40.82 38.13

Table 3: Table summarizing HAN & NMT Transformer results (Rotowire official test) for adding document context
and domain adaptation.

Models Tokens BLEU Score
EN DE Reg Rand None

HAN reg 420M 489M 39.31 39.25 39.08
+HAN rand 188M 224M 37.76 37.76 37.75

Table 4: BLEU for EN⇒DE translations using Regular,
Random and None contextual settings of corpus.

(Miculicich et al., 2018) proposed document-
level approach with Hierarchical Attention Net-
work (HAN) to provide contextual information dur-
ing translation. Two HANs are considered for inte-
grating source and target context in NMT. HAN are
believed to provide dynamic access to contextual
information as compared to Hierarchical Recurrent
Neural Networks (HRNN). However, the approach
is restrictive for incorporating large contextual in-
formation by only considering a limited number of
previous source/target sentences.

Cache-based memory approach is proposed by
(Tu et al., 2018) to provide document context dur-
ing translation. Memory networks keep the repre-
sentation of a set of words in cache to provide con-
textual information to NMT in the form of words.
However, the stored representations are consid-
ered irrespective of sentences in which they occur
and do not provide actual context to NMT. Cache
based memory models have been used in both SMT
(Gong et al., 2011) and NMT to store rich repre-
sentations of source and target text. (Kuang et al.,
2017) use two caches, dynamic cache to capture
dynamic context by storing words of translated sen-
tence and topic cache which stores topical words
of target side from entire document. Through a gat-
ing mechanism, the probability of NMT model and
cache based neural model is combined to predict
the next word.

Memory network-based approach presented by
(Maruf and Haffari, 2017) is used to integrate
global source and target context to sentence-based
NMT. Keeping the source and target context in
memory can be very time consuming and mem-

ory inefficient as the sentence pairs in document
could be enormous. Another study by (Xiong et al.,
2019) is based on deliberation networks to capture
the cross-sentence context by improving the trans-
lation of baseline NMT system in the second pass.
Generation of discourse coherent output is largely
dependent upon the performance of the canonical
NMT model.

The approach proposed by (Zhang et al., 2018)
implemented with document-level context outper-
forms existing cache based RNN search model.
Extending Transformer model has achieved better
context awareness and a low computational over-
head. (Voita et al., 2018) introduce a context aware
NMT model in which they control and analyze the
flow of information from the extended context to
the translation model. They show that using the
previous sentence as context their model is able to
implicitly capture anaphora.

Both source and target side contextual infor-
mation plays important role in document-level
translation. Inspired from previous sentence-based
context-aware approaches (Voita et al., 2018; Sto-
janovski and Fraser, 2019; Zhang et al., 2018), we
are using extended Transformer model (Miculicich
et al., 2018) with ability to use dynamic context for
document-level experiments.

5.2 Domain Adaptation

The basic concept behind domain adaptation in
NMT is utilizing large amount of available par-
allel data for training NMT models and adapting
these to novel domains with small in-domain data
(Freitag and Al-Onaizan, 2016). In the simplest
approach, in-domain data can be used to fine-tune
models trained on large-scale out-of-domain data.
Training NMT models from scratch on combined
data can take several weeks and may suffer from
performance degradation on in-domain test data.

Fine-tuning is a fast and efficient method to in-
tegrate in-domain data, and does not need build-
ing systems from scratch. Fine tuning for NMT

229

(Dakwale and Monz, 2017; Freitag and Al-Onaizan,
2016; Luong and Manning, 2015) is achieved by
further training a neural model on in-domain data
which is already trained on large general domain
training data. Adoption to new domain is achieved
by (Sennrich et al., 2015) by using synthetic data
through back-translation of target in-domain mono-
lingual text and retraining on combined training
corpus by adding new data.

For domain adaptation, we use data augmenta-
tion method similar to (Chu et al., 2017) by over-
sampling small in-domain corpus. This simple
data augmentation approach does not require any
modification in NMT architecture and forces NMT
to pay equal/more attention to in-domain training
data.

6 Conclusion

In this study, we present methods to improve
document-level neural machine translation. Fol-
lowing recently reported results on the task, our
experiments also reiterate the fact that incorporat-
ing context in translation helps considerably im-
prove the quality. Taking a strong Transformer
based baseline model trained on substantial corpus
(a concatenation of four corpora RotoWire, Rapid,
Euro and News Commentary), context aware docu-
ment models result in significant improvement in
BLEU points. We have also experimented with the
effects of corpus replication to adapt to the domain
of test corpus. We find it an effective method to
improve translation quality and domain adaptation.

We have submitted results of our best model
(HAN encoder) for German-English direction as
reported in Table 3 , for official evaluation. Han
encoder model with domain adaptation techniques
achieved 43.08 BLEU score. We have computed
BLEU scores using Moses multi − blue.perl
script.

Acknowledgments

This study is funded by Higher Education Com-
mission of Pakistan’s project: National Research
Program for Universities (NRPU) (5469/Pun-
jab/NRPU/R&D/HEC/2016).

References
Rachel Bawden, Rico Sennrich, Alexandra Birch, and

Barry Haddow. 2017. Evaluating discourse phenom-
ena in neural machine translation. arXiv preprint
arXiv:1711.00513.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of domain adaptation
methods for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 385–391, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Chenhui Chu and Rui Wang. 2018. A survey of domain
adaptation for neural machine translation. arXiv
preprint arXiv:1806.00258.

Praveen Dakwale and Christof Monz. 2017. Fine-
tuning for neural machine translation with limited
degradation across in-and out-of-domain data. Pro-
ceedings of the XVI Machine Translation Summit,
117.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
domain adaptation for neural machine translation.
CoRR, abs/1612.06897.

Eva Martı́nez Garcia, Cristina España-Bonet, and Lluı́s
Màrquez. 2015. Document-level machine transla-
tion with word vector models. In Proceedings of
the 18th Annual Conference of the European Asso-
ciation for Machine Translation, pages 59–66.

Zhengxian Gong, Min Zhang, and Guodong Zhou.
2011. Cache-based document-level statistical ma-
chine translation. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 909–919. Association for Computational
Linguistics.

Christian Hardmeier, Sara Stymne, Jörg Tiedemann,
and Joakim Nivre. 2013. Docent: A document-level
decoder for phrase-based statistical machine transla-
tion. In ACL 2013 (51st Annual Meeting of the Asso-
ciation for Computational Linguistics); 4-9 August
2013; Sofia, Bulgaria, pages 193–198. Association
for Computational Linguistics.

Noor-e Hira, Sadaf Abdul Rauf, Kiran Kiani, Ammara
Zafar, and Raheel Nawaz. 2019. Exploring transfer
learning and domain data selection for the biomed-
ical translation. In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 3: Shared
Task Papers, Day 2), pages 156–163, Florence, Italy.
Association for Computational Linguistics.

Sebastien Jean, Stanislas Lauly, Orhan Firat, and
Kyunghyun Cho. 2017. Does neural machine trans-
lation benefit from larger context? arXiv preprint
arXiv:1704.05135.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M Rush. 2017. Opennmt: Open-
source toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810.

Philipp Koehn and Josh Schroeder. 2007. Experiments
in domain adaptation for statistical machine trans-
lation. In Proceedings of the Second Workshop on
Statistical Machine Translation, StatMT ’07, pages
224–227, Stroudsburg, PA, USA. Association for
Computational Linguistics.

230

Shaohui Kuang, Deyi Xiong, Weihua Luo, and
Guodong Zhou. 2017. Modeling coherence for
neural machine translation with dynamic and topic
caches. arXiv preprint arXiv:1711.11221.

Qiang Li, Derek F Wong, Lidia S Chao, Muhua Zhu,
Tong Xiao, Jingbo Zhu, and Min Zhang. 2018. Lin-
guistic knowledge-aware neural machine translation.
IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP), 26(12):2341–2354.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion, pages 76–79.

Sameen Maruf and Gholamreza Haffari. 2017. Docu-
ment context neural machine translation with mem-
ory networks. arXiv preprint arXiv:1711.03688.

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas,
and James Henderson. 2018. Document-level neural
machine translation with hierarchical attention net-
works. arXiv preprint arXiv:1809.01576.

Yves Scherrer, Jörg Tiedemann, and Sharid Loáiciga.
2019. Analysing concatenation approaches to
document-level nmt in two different domains. In
Proceedings of the Fourth Workshop on Discourse
in Machine Translation (DiscoMT 2019), pages 51–
61.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2015. Minimum
risk training for neural machine translation. arXiv
preprint arXiv:1512.02433.

Dario Stojanovski and Alexander Fraser. 2019. Com-
bining local and document-level context: The lmu
munich neural machine translation system at wmt19.
In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 2: Shared Task Papers,
Day 1), pages 400–406.

Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang.
2018. Learning to remember translation history with
a continuous cache. Transactions of the Association
for Computational Linguistics, 6:407–420.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-aware neural machine trans-
lation learns anaphora resolution. arXiv preprint
arXiv:1805.10163.

Longyue Wang, Zhaopeng Tu, Andy Way, and Qun
Liu. 2017. Exploiting cross-sentence context
for neural machine translation. arXiv preprint
arXiv:1704.04347.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. arXiv preprint arXiv:1707.08052.

Hao Xiong, Zhongjun He, Hua Wu, and Haifeng Wang.
2019. Modeling coherence for discourse neural ma-
chine translation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
7338–7345.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 1480–1489.

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei
Zhai, Jingfang Xu, Min Zhang, and Yang Liu.
2018. Improving the transformer translation
model with document-level context. arXiv preprint
arXiv:1810.03581.

231

Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 232–243
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

Simultaneous Translation and Paraphrase for Language Education

Stephen Mayhew, Klinton Bicknell, Chris Brust,
Bill McDowell, Will Monroe, and Burr Settles

Duolingo
Pittsburgh, PA, USA

{stephen, klinton, chrisb, mcdowell, monroe, burr}@duolingo.com

Abstract

We present the task of Simultaneous Transla-
tion and Paraphrasing for Language Educa-
tion (STAPLE). Given a prompt in one lan-
guage, the goal is to generate a diverse set of
correct translations that language learners are
likely to produce. This is motivated by the
need to create and maintain large, high-quality
sets of acceptable translations for exercises in
a language-learning application, and synthe-
sizes work spanning machine translation, MT
evaluation, automatic paraphrasing, and lan-
guage education technology.

We developed a novel corpus with unique prop-
erties for five languages (Hungarian, Japanese,
Korean, Portuguese, and Vietnamese), and re-
port on the results of a shared task challenge
which attracted 20 teams to solve the task. In
our meta-analysis, we focus on three aspects
of the resulting systems: external training cor-
pus selection, model architecture and training
decisions, and decoding and filtering strategies.
We find that strong systems start with a large
amount of generic training data, and then fine-
tune with in-domain data, sampled according
to our provided learner response frequencies.

1 Introduction

Machine translation systems are typically trained
to produce a single output, but in certain cases, it
is desirable to have many possible translations of
a given input text. For example, Duolingo—the
world’s largest language-learning platform—uses
translation-based exercises for some of its lessons.
For any given translation prompt there may be hun-
dreds or thousands of valid responses, so we use a
set of human-curated translations in order to grade
learner responses. The manual process of main-
taining these sets is laborious, and we believe it
can be improved with the aid of rich multi-output
translation and paraphrase systems.

Prompt
is my explanation clear?

Reference Translation
a minha explicação está clara?

Accepted Translations Weight
minha explicação está clara? .267
minha explicação é clara? .162
a minha explicação está clara? .111
a minha explicação é clara? .088
minha explanação está clara? .057
está clara minha explicação? .044
minha explanação é clara? .039
a minha explanação está clara? .036
... ...

Table 1: An example from the Portuguese dataset. In
this task, teams are given an English prompt and a
reference translation, and are required to produce as
many variants in the accepted translations as possible.
The evaluation favors translations with higher weight,
which is a measure of learner response frequency.

To this end, we introduce a new task called Si-
multaneous Translation and Paraphrasing for Lan-
guage Education (STAPLE). From the perspective
of the research community, we believe this poses an
interesting exercise that is similar to machine trans-
lation (MT), but also provides data with new and
unique properties that we expect to be of interest
to researchers in MT evaluation, multilingual para-
phrasing, and even language education technology.
It is our hope that this new task can help synthesize
efforts from these various subfields to further the
state of the art, and broaden their applications.

2 Shared Task Description

For the STAPLE task, participants begin with En-
glish prompts and generate high-coverage sets of
plausible translations in five different languages.
For training and evaluation, each prompt is paired
with a relatively comprehensive set of handcrafted,

232

https://www.aclweb.org/anthology/D19-56%2d

Figure 1: Screenshots from the Duolingo app (iOS, circa 2020), showing translation exercises for English prompts
into Portuguese. The first two examples show correct student translations, with Duolingo suggesting an alternate,
preferred translation in the second case. The third and fourth responses show incorrect translations.

field-tested accepted translations, each weighted
and ranked according to their empirical frequency
among Duolingo learners. We also provide a high-
quality automatic reference translation of each
prompt that may (optionally) be used as a refer-
ence or anchor point, in the event that researchers
want to explore paraphrase-only approaches (this
also serves as a strong baseline). See Table 1 for
an example from the Portuguese dataset.

2.1 Corpus Collection

Data for the task are derived from Duolingo, a free,
award-winning, online language-learning platform.
Since launching in 2012, hundreds of millions of
learners worldwide have enrolled in Duolingo’s
game-like courses via the website1 or mobile apps.
Learning happens through a variety of interactive
exercise types, combining reading, writing, listen-
ing, and speaking activities.

One such format is a translation exercise—
shown in Figure 1—in which the learner is shown
a prompt in one language, and asked to translate
it into the other. Since English is by far the most
popular language to learn on Duolingo, we created
a task corpus by sampling prompts from English
courses, in which users are shown an English sen-
tence, and then asked to translate it into a language
they already know. For instance, the examples
in Figure 1 come from the course for Portuguese
speakers learning English.

1https://www.duolingo.com

Naturally, some prompts have more accepted
translations (valid learner responses) than others,
depending on such factors as polysemy, synonymy,
or prompt length. We filtered out prompts for
which the number of accepted translations was in
the top or bottom deciles of a course, to avoid out-
liers. Although each accepted translation is techni-
cally correct, usually a small number of them are
considered most fluent or idiomatic. To estimate
this distribution empirically, we gathered learner
response data from October–November 2019. For
each translation, we counted the number of times
that learners produced that translation (with some
allowances for punctuation and capitalization).

This provided a count ct for each translation t
in the set of accepted translations A. Since many
translations were never attested in learner data, we
then smoothed and normalized these counts to pro-
duce a learner response frequency (LRF) weight
wt for each translation, such that they sum to 1 for
each prompt:

wt =

√
ct + 1∑

t′∈A
√
ct′ + 1

These weights are a unique feature of the STAPLE
corpus, and found in almost no other datasets.

Having gathered prompts from each course, we
shuffled the prompt set and selected 500 prompts
for development and 500 for test. Of the remaining
prompts for each course, we created a training set
by sampling according to course size, so smaller
courses (e.g., Vietnamese) have fewer prompts.
Statistics on the datasets can be found in Table 2.

233

Train Dev Test

Language prompts trans. ratio prompts trans. ratio prompts trans. ratio

Hungarian 4,000 251,442 62.9 500 27,647 55.3 500 33,578 67.2
Japanese 2,500 855,941 342.4 500 172,817 345.6 500 165,095 330.2
Korean 2,500 700,410 280.2 500 140,353 280.7 500 150,477 301.0
Portuguese 4,000 526,466 131.6 500 60,294 120.6 500 67,865 135.7
Vietnamese 3,500 194,720 55.6 500 29,637 59.3 500 28,242 56.5

Table 2: Dataset sizes by number of prompt sentences, and total number of accepted translations.

2.2 Five Language Tracks

We provide data for translating English prompts
into five languages: Hungarian, Japanese, Korean,
Portuguese (Brazilian), and Vietnamese. These
span five different language families, three dif-
ferent writing systems, and represent a wide va-
riety of popular Duolingo courses. For example,
as of this writing, English from Portuguese is the
fourth-largest Duolingo course overall, whereas En-
glish from Korean is median-sized, with the others
falling in between. As such, much effort has gone
into developing their accepted translation sets, but
there is probably still room for improvement. These
five languages also vary widely in their status as
high-to-low-resource languages in NLP research.

For the shared task, participants were allowed to
submit results to any or all of these language tracks.
Furthermore, there were no restrictions on the use
of external data; teams were encouraged to use any
available monolingual or parallel corpora.

2.3 Evaluation

The main scoring metric is (macro) weighted F1
with respect to the accepted translations. In short,
systems are scored based on how well they can
return all human-curated accepted translations, but
with lower penalties on recall for failing to produce
translations that learners rarely submit anyway.

For each prompt sentence s with accepted trans-
lation set As in the corpus, we evaluate the
weighted recall of a system’s predicted translation
set Ps as follows:

Weighted Recall(Ps) =
∑

t∈|Ps∩As|
wt

/ ∑

t∈|As|
wt

Precision is calculated in an unweighted fashion (as
there is no weight for false positives), and weighted
F1 for each Ps is simply the usual harmonic mean
of precision and weighted recall. These weighted

F1s for each prompt are then averaged over the
entire evaluation dataset D:

(Macro) Weighted F1 =
∑

s∈D

Weighted F1(Ps)
|D|

Since evaluation is done by matching predictions
with accepted translations, we ignore any differ-
ences due to punctuation, capitalization, or multi-
ple whitespaces.

2.4 Challenge Timeline
We announced the shared task on December 20,
2019, with information about the task timeline,
data, etc., published on a regular basis to a ded-
icated website2. We released the training data on
January 15, blind dev data on March 2, and blind
test data on March 30, 2020.

During the blind dev phase, participants were
able to submit up to five submissions per day to
an online evaluation leaderboard. Originally, we
had planned on closing the dev phase at the start
of the test phase, but upon request, we kept it open
so that teams could continue to experiment and
submit to the dev leaderboard even after the test
phase opened, without counting against their final
submission(s). We allowed up to three submissions
in total to the test leaderboard (to account for tech-
nical problems, etc.).

3 Results

A total of 20 teams participated during the dev
phase, 13 teams during the test phase, and 11 teams
submitted system description papers. Of the teams
with system descriptions, three of them (jbrem,
sweagraw, jindra.helcl) participated in all five
language tracks. One team (rakchada) submitted
to two tracks, and the remaining teams only submit-
ted to a single track, with Japanese and Portuguese
being the most popular.

2https://sharedtask.duolingo.com

234

Team

jbrem
nickeilf
rakchada
jspak3
sweagraw
masahiro
mzy
dcu
jindra.helcl
darkside
nagoudi
baseline_aws
baseline_fairseq

Hungarian
Rank F1

1 .555
–

1 .552
–

2 .469
–
–
–

3 .435
–
–

4 .281
5 .124

Japanese
Rank F1

1 .318
–
–
–

2 .294
2 .283
3 .260

–
4 .213
5 .194

–
6 .043
7 .033

Korean
Rank F1

1 .404
–
–

2 .312
3 .255

–
–
–

4 .206
–
–

5 .041
5 .049

Portuguese
Rank F1

1 .552
1 .551
1 .544

–
2 .525

–
–

3 .460
4 .412

–
5 .376
6 .213
7 .136

Vietnamese
Rank F1

1 .558
–
–
–

2 .539
–
–
–

3 .377
–
–

4 .198
5 .254

Table 3: F1 results for all systems, on all languages. Rank is assigned according to statistical significance (§3).

Official weighted F1 results are shown in Table 3.
Ranks are determined using an approximate per-
mutation test with 100,000 samples (Padó, 2006),
and adjacent-scoring systems are considered sig-
nificantly different at p < .05. Figure 3 provides
additional detail on precision and weighted recall.
Overall, teams outperformed our provided base-
lines by a wide margin, and submissions tended to
score higher on precision than weighted recall.

3.1 Baselines

We prepared two very different baselines. For base-
line_aws, we used Amazon Translate3 to generate
a single “best” machine translation from English
into the target language. These were also provided
as reference translations at each phase.

For baseline_fairseq, we used the fairseq frame-
work (Ott et al., 2019) trained solely on the STA-
PLE task data. We created bitexts by pairing En-
glish prompts with each of their target language
translations (making no use of the weights). The
baseline employs a convolutional neural network
(CNN) using byte-pair encoding (BPE) with a vo-
cabulary size of 20,000, and simply outputs default
n-best lists of size 10. While we ensured that the
output BLEU scores of this model were sensible,
we did not tune any parameters, instead treating
this as a baseline that should be attainable by any
team with minimal effort. Our baseline code was
provided as a starting point for participants, and
many chose to derive their systems from it.

3https://aws.amazon.com/translate/

Train High-Quality
MT Model

Fine Tune
MT Model

Generate
n-best lists

STAPLE
Data

Massive MT
data

Selection &
Sampling

Filtering
Reranking
Ensembling
Voting
Diverse Search

1. 2. 3.

Figure 2: Generalized pipeline used by most systems.

3.2 Submitted Systems

With few exceptions, participating teams followed
the generalized pipeline illustrated in Figure 2.
This consists of (1) training a high-quality machine
translation model using massive but mostly out-of-
domain corpora, (2) fine-tuning the model using
STAPLE task corpora (and sometimes others), and
then (3) employing various tricks for diverse output
generation and filtering.

jbrem (Khayrallah et al., 2020) took an ap-
proach involving score-based filtering of n-best
lists, from a Transformer model pre-trained on
large external corpora and then fine-tuned on the
STAPLE data. The authors describe benefits from
using various pre-training datasets, two different
filtering methods, and various ways of upweighting
of translations of high frequency (weight). The
resulting system was among the strongest in the
competition, ranking first in all five tracks.

nickeilf (Li et al., 2020) explored a family of
diversification approaches including beam expan-
sion, Monte Carlo random dropout, lexical substi-

235

0.0 0.2 0.4 0.6 0.8 1.0
weighted recall

0.0

0.2

0.4

0.6

0.8

1.0
pr

ec
is

io
n

Hungarian

0.0 0.2 0.4 0.6 0.8 1.0
weighted recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

Japanese

0.0 0.2 0.4 0.6 0.8 1.0
weighted recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

Korean

0.0 0.2 0.4 0.6 0.8 1.0
weighted recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

Portuguese

0.0 0.2 0.4 0.6 0.8 1.0
weighted recall

0.0

0.2

0.4

0.6

0.8

1.0
pr

ec
is

io
n

Vietnamese

jbrem
nickeilf
rakchada
jspak3
sweagraw
masahiro
mzy
dcu
jindra.helcl
darkside
nagoudi
baseline_aws
baseline_fairseq

Figure 3: Precision and weighted recall for each system and language. The dashed line represents equal precision
and weighted recall. Curved lines represent weighted F1 in increments of 0.1.

tution, and mixture of experts models, combined
through ensemble-based consensus voting to gen-
erate a high quality set of translation suggestions.
This tied for first place in the Portuguese track.

rakchada (Chada, 2020) used pre-trained Trans-
former models fine-tuned on the STAPLE data with
an oversampling trick that afforded more weight
to translations with higher frequency. They then
used a classifier to filter the n-best lists based on
predicted learner frequency. This tied for first place
in the Hungarian and Portuguese tracks.

jspak3 (Park et al., 2020) took a similar ap-
proach to the original BART setup (Lewis et al.,
2019), except they fine-tuned the model not only
on larger parallel corpora, but also on the STAPLE
data. This ranked second in the Korean track.

sweagraw (Agrawal and Carpuat, 2020) used a
Transformer model pre-trained on the OpenSub-
titles corpus, then fine-tuned on Tatoeba and the
STAPLE data (§4.1), with the STAPLE transla-
tions oversampled to capture frequency. Resulting
n-best lists were filtered with a two-layer neural
classifier optimized for a soft-F1 objective. This
ranked second or third in all five language tracks.

masahiro (Kaneko et al., 2020) took a simple
ensemble approach that requires no modification to

an off-the-shelf NMT system (fairseq). The authors
train multiple forward (L2R) and backward (R2L)
models using different initial seeds, first by pre-
training on general corpora and then fine-tuning
on STAPLE data. Their experiments show that
combining ensembling forward-backward models
yields more diversity and higher F1 than simply
using different seeds alone. This tied for second
place in the Japanese track.

mzy (Yang et al., 2020) explored three particu-
lar strategies: pre-training on larger corpora before
fine-tuning on in-domain corpora, using diverse
beam search, and finally reranking candidate trans-
lations. The authors found that first fine-tuning on
a similar intermediate corpus was better than fine-
tuning on the STAPLE data alone. Diverse beam
search provided modest further gains, although they
report no improvement from beam re-ranking. This
ranked third in the Japanese track.

dcu (Haque et al., 2020) compared both phrase-
based and neural models by extending the STAPLE
data with additional corpora (selected for similarity
to the task data under a language model), with the
neural model performing better. They generate
sets of high-scoring predictions according to beam
searches, majority voting, and other techniques,

236

and also run these initial translations through an
additional paraphrasing model, placing third in the
Portuguese track.

jindra.helcl (Libovický et al., 2020) trained a
Transformer model by combining STAPLE data
with additional parallel corpora and back-translated
monolingual corpora. They also employed a filter-
ing classifier that predicts whether their models’
beam search outputs within accepted translations.
This ranked third or fourth in all five tracks.

darkside (Nomoto, 2020) took a very different
approach, treating the task as a paraphrase genera-
tion problem and using no data beyond what was
provided for the shared task. They took two ap-
proaches, both based on autoencoders. The first
is a sequence-to-sequence model with Gaussian
noise added to the context vector, and the second
is based on a conditional Variational Autoencoder,
which has seen success in generating variations
of input content in the literature (Bowman et al.,
2015). This ranked fifth in the Japanese track.

nagoudi (Nagoudi et al., 2020) used a combi-
nation of data augmentation and ensembles. They
combined STAPLE data with additional parallel
corpora to train their models, finding (curiously)
that this outperformed the fine-tuning approach em-
ployed by many others. They generated multiple
translations by passing the source sentence through
an ensemble of model training checkpoints, taking
the n-best outputs from each and de-duplicating.
This ranked fifth in the Portuguese track.

4 Meta-Analyses

In this section, we analyze different facets of the
various approaches taken, in an effort to under-
stand which design choices were most impactful
on final results. We identified three major areas of
variance: use of external training corpora (§4.1),
model architecture and training procedures (§4.2),
and decoding and filtering strategies (§4.3).

4.1 External Training Corpora

The STAPLE dataset is relatively small compared
to many modern machine translation efforts. This
is by design: it is challenging to develop a parallel
corpus that is complete with many acceptable trans-
lations. One of our goals in organizing this task
was to see how teams could effectively leverage ex-
isting corpora, with a modest amount of in-domain
data, to bootstrap high-quality models for the task.

Corpus effects Precision W. Recall W. F1

(Intercept) .418 *** .293 ** .283 **
Tatoeba +.190 +.223 . +.214 .
ParaCrawl +.018 +.103 +.071
Europarl +.061 +.057 +.063
QED +.011 −.004 +.004
OpenSubtitles −.098 −.083 −.087
Wikipedia −.034 −.213 −.153

Random effects St.Dev. St.Dev. St.Dev.

Prompt ID ±.183 ±.210 ±.173
Track ID ±.085 ±.106 ±.103
Team ID ±.082 ±.080 ±.075

Table 4: Mixed-effects analysis of the most commonly-
cited external corpora used for training.

Most teams began with a generic MT system
pre-trained on massive but out-of-domain parallel
corpora, either before or in tandem with the STA-
PLE task data. These were largely drawn from the
Open Parallel Corpus (OPUS) project (Tiedemann,
2012). One natural question is whether the choice
to train on a particular dataset from this collection
had any meaningful impact on final results.

To answer this question, we coded each team
with features variables indicating each corpus they
reported using for their final submission, and used
a regression analysis to see if these data choices
significantly impacted precision, weighted recall,
and weighted F1 scores for each prompt in the test
set4. To analyze this properly, however, we need
to distinguish between effects among data choices
are actually meaningful versus those that can be ex-
plained by sampling error due to random variations
among prompts, tracks, or teams. To do this, we
use a linear mixed-effects model (cf., Baayen, 2008,
Ch. 7). In addition to modeling the fixed effects
of the various corpora, we can also model the ran-
dom effects represented by the prompt ID (some
sentences may be longer or harder), the track ID
(the languages inherently vary), and the team ID
(teams will differ in other aspects not captured by
these corpus variables).

Table 4 presents a mixed-effects analysis for
the most-cited corpora among participating teams,
each used by at least four different systems. The
intercepts can be interpreted as “average” metrics,
which then go up or down according to fixed and
random effects. Only the Tatoeba corpus appears
to have a significant positive impact on metrics.
In other words, we might expect that pre-training

4Thus, a team participating in all five tracks would yield
5 × 500 = 2,500 data points for this regression analysis.

237

Feature \ Team jb
re

m

ni
ck

ei
lf

ra
kc

ha
da

js
pa

k3

sw
ea

gr
aw

m
as

ah
ir

o

m
zy

dc
u

jin
dr

a.
he

lc
l

da
rk

si
de

na
go

ud
i

Model Transformer
Architecture CNN
& Training LRF Weights

Pre-train→Fine-tune
Train Combined

Decoding Diverse Beam Search
& Filtering Beam Reranking

Beam Filtering
Paraphrasing
Ensembling
Backtranslation

Table 5: Table of features used by team. Descriptions of features can be found in §4.2 and §4.3.

with Tatoeba would add +.214 to prompt-specific
F1 scores (p = .088), all else being equal. Since
Tatoeba is a collaborative online database5 of sen-
tences geared towards foreign language learners
(some of which even have multiple translations, al-
though no weights), it is extremely similar to the
STAPLE task domain. Thus it makes sense that
this corpus would be helpful; in fact, sweagraw
and jindra.helcl included it alongside the STAPLE
data in fine-tuning their models.

Other effects are smaller and statistically in-
significant, suggesting that the particular choice
of supplementary out-of-domain data may not mat-
ter as much as simply using a large amount. One
notable exception is the parallel Wikipedia corpus
(Wołk and Marasek, 2014), which exhibits a large
negative trend on recall and F1, possibly due to its
noisy, automatically-aligned provenance.

The volume of parallel training data may also
impact performance. For example, for the Ko-
rean track jbrem report internal results using simi-
lar datasets to sweagraw, and achieving the same
score. But further experiments extending the
training set yielded improvements of about +.1
F1. However, simply using larger corpora in pre-
training does not guarantee higher scores: nagoudi
apparently trained on all of OPUS, yet had the low-
est Portuguese scores among participants.

4.2 Model Architecture & Training

Decisions made on model architecture and training
procedures seemed to have more impact on final
system performance. We mapped many of these
design decisions into high-level system features,
summarized at the top of Table 5.

5https://tatoeba.org

Transformer vs. CNN. The baseline_fairseq
we provided is based on a convolutional neural
network (CNN) architecture, and a few teams
also went this route. However, top-ranking teams
largely opted for a Transformer-based architec-
ture (Vaswani et al., 2017) instead. jspak3 notably
used the BART architecture (Lewis et al., 2019)
to pre-train a decoder in particular, and dcu also
compared a phrase-based statistical MT approach
(Koehn et al., 2007) to a Transformer-based neural
MT system, with the latter performing better.

LRF Weights. When training on STAPLE task
data, teams had to decide how to convert the one-to-
many relationship of prompts and accepted trans-
lations into standard bitext for more conventional
MT training. Some teams simply repeated the En-
glish prompt for each target translation (as we did
for baseline_fairseq), while others used only the
highest-weighted translation. Some of the more
successful teams took advantage of the weights
associated with each accepted translation. In partic-
ular, jbrem included multiple copies of the highest-
weighted translation, nickeilf used only the top k,
and sweagraw and rakchada both sampled each
translation in proportion to its weight.

Pre-train→Fine-tune vs. Train Combined.
Top-performing teams also tended to pre-train a
generic MT model (e.g., trained on corpora from
§4.1) and fine-tune it using STAPLE task data.
This is opposed to pooling all data together for
joint training. The latter approach certainly outper-
formed STAPLE-only baselines, but lagged behind
fine-tuned pipeline approaches in most cases.

To measure the impact of these choices, we con-
ducted a second mixed-effects regression analysis,
coding each team with the model architecture and

238

Model effects Precision W. Recall W. F1

(Intercept) .351 *** .232 ** .221 **
Transformer +.107 +.098 . +.107 .
LRF Weights +.097 * +.060 * +.075 *
Pre-train→Fine-tune +.050 +.080 +.065

Random effects St.Dev. St.Dev. St.Dev.

Prompt ID ±.183 ±.210 ±.173
Track ID ±.085 ±.105 ±.102
Team ID ±.070 ±.049 ±.044

Table 6: Mixed-effects analysis of various model archi-
tecture and training procedure choices.

training decisions that describe their final submis-
sions. Results are presented in Table 6. Here we
see empirical confirmation that Transformer-based
systems tended to perform +.1 points better for all
three metrics, although only marginally statistically
significant (perhaps because it was also the most
common choice).

Incorporating LRF weights in the fine-tuning
strategy also appears to have a robust positive effect
(p < .05 across all metrics). The importance of
the weighting strategy can be further illustrated by
comparing jbrem with jindra.helcl. Both systems
submitted to all five tracks, and otherwise used
similar approaches. However, jbrem reports on an
ablation experiment using only the top-weighted
translation, the results of which are similar to those
of jindra.helcl, who used this very strategy.

Finally, there is also a positive trend favoring
pre-training on external corpora before fine-tuning,
as opposed to training on all data combined.

4.3 Decoding & Filtering

Since the STAPLE task requires multiple transla-
tions for each input prompt, all teams generated
n-best lists, and employed various strategies for
pruning them to contain only desirable translations.
The feature group at the bottom of Table 5 represent
these decoding and filtering steps.

Diverse Beam Search. Multiple teams at-
tempted to use diverse beam search (Vijayakumar
et al., 2016) to generate a more varied set of tran-
lation candidates. However, it proved either to be
only marginally helpful (nickeilf, mzy) or unhelp-
ful (jspak3) in various ablation experiments.

Beam Reranking. Two teams tried training an
auxiliary model to rank output candidates by pre-
dicted learner response frequencies. In both cases,
this approach performed poorly.

Beam Filtering. Several teams attempted to
filter candidate translations, which were applied
to candidate translations to decide if they should
be removed from final predictions. Approaches
to this varied significantly, from language-model
probabilities (jbrem) to binary classifiers including
gradient-boosted decision trees (rakchada), feed-
forward neural networks (sweagraw), and multilin-
gual transformers (jindra.helcl). nickeilf showed
improvements using consensus voting among an
ensemble of MT models, in which only sentences
attested by multiple subsystems are retained. Most
of these teams reported significant gains from fil-
tering in ablation studies.

Paraphrasing. Three teams implemented mono-
lingual paraphrasing models to increase the size
of their n-best list of candidates. jindra.helcl re-
ported experiments with a Levenshtein Transformer
(Gu et al., 2019), a model that learns to create new
paraphrases by editing candidate sentences. How-
ever, this produced output too noisy to be useful,
and was omitted from their final submission.

Ensembling. A number of teams employed an
ensemble of MT models, by combining either dif-
ferent training checkpoints, random initialization
seeds, or other training regimes (such as training
on reversed sequences, which was the main strat-
egy used by masahiro, who tied for second in the
Japanese track). Three teams also tried Backtrans-
lation (Sennrich et al., 2016), with mixed results.

We conducted a mixed-effects analysis of de-
coding and filtering techniques, however, the ef-
fect sizes and p-values were much less significant
than those from §4.1 and §4.2. These inconclusive
results suggest that decoding and filtering play a
smaller role in overall system performance than
pre-training and model architecture decisions.

4.4 Scoring the Top-k Test Translations

The learner response frequency weights tend to
have a tall head: a few common responses carry
most of the weight, and many more responses carry
much less weight (e.g., many human-curated ac-
cepted translations were not ever attested by learn-
ers during our data collection window). Since this
distribution determines weighted recall, and there-
fore our overall evaluation metric, it is instructive
to compare against a benchmark “oracle” that is
able to return the top-k gold translations. Table 7
shows results of such an oracle for several values
of k evaluated over the test set.

239

Hun. Jap. Kor. Por. Vie.

k = ∗ 1.0 1.0 1.0 1.0 1.0
k = 10 .735 .302 .350 .655 .789
k = 5 .643 .231 .266 .578 .692
k = 1 .372 .090 .101 .340 .387

jbrem .555 .318 .404 .552 .558
sweagraw .469 .294 .255 .525 539
jindra.helcl .435 .213 .206 .412 .377
baseline_aws .281 .043 .041 .213 .198

Table 7: Weighted F1 scores on the test set for an “or-
acle” that outputs the top k translations from gold data.
All translations (k = ∗) gives a perfect score of 1.0.
For comparison, we include teams who submitted to all
tracks, and one baseline. Underscores show the small-
est value of k to outperform jbrem (the top system).

At k = 1, macro weighted F1 is still relatively
low, showing that systems need to return more than
a single translation to do well. Comparing k = 1
to baseline_aws (both output a single translation)
shows that this high-quality baseline still does
not generally produce the translation favored by
Duolingo learners. It is also worth noting that top-
ranking systems output the k = 1 translation more
often than that of baseline_aws (83% vs. 69%).

The top-ranking teams performed on par with or
better than the k = 5 oracle, and much better for
languages with a higher translation-to-prompt ratio
(see Table 2). This suggests that high-performing
models for this task are consistently producing out-
put comparable to the five most commonly-attested
translations, and often beyond (at some expense to
precision, for which the oracle is perfect).

4.5 Error Analysis
So far we have discussed only quantitative out-
comes for the STAPLE task. Here we present a
qualitative analysis by inspecting the most common
recall errors and precision errors among partic-
ipating systems. These help us to get a sense for
how important typical errors are for our educational
use case, and shed light on what performance gaps
need to be closed in future work.

Alternative word order or synonym variations
were a challenge for all teams in all tracks. For
example, here are the top four accepted translations
for a prompt in the Portuguese test dataset:

1. please don’t smoke
por favor, não fume (w1 = .663)
não fume, por favor (w2 = .030)
por gentileza, não solte fumaça (w3 = .011)
não fume, se faz favor (w4 = .011)

Most teams produced the top-weighted translation,
several more identified other variants of please,
but few systems generated reorderings that place
it after the main clause (which, for this instance,
accounts for ≈ .184 of the total LRF weight). This
can be partially explained by the use of fixed beam
sizes. Since the number of translations grows expo-
nentially with the number of lexical and structural
variations, many correct combinations that the sys-
tem could be capable of generating may still fall
off the beam. One possible solution here would
be to explore lattice-based decoding strategies that
may avoid such bottlenecks.

Korean, Japanese, and Vietnamese have diverse
sets of pronouns for use with different registers and
relationships to the subject and the listener, as seen
in this example from Japanese:

2. i exercise
私私私は運動する (top translation)
僕僕僕は運動する (not in accepted translations)

Here私 (watashi) is the most common first person
pronoun, but about half the submissions instead
produced 僕 (boku) which carries with it more
youthful or masculine connotations. While the lat-
ter is arguably correct, learners (especially begin-
ners) are unlikely to use it, and it was also missing
from the human-curated set of translations.

Pronouns were difficult in general, for multiple
language tracks. All five languages allow some
level of pronoun-dropping, as per these examples
from Hungarian and Portuguese:

3. we run to the garden
[mi] futunk a kertbe

4. would you like to try on those shoes?
[você] gostaria de provar esses sapatos?

This resulted in both over- and under-use of pro-
nouns, both in system outputs and occasionally
gold data. While both variations (with or without
the pronoun) may be correct, the rules governing
which is more fluent or more appropriate for in-
struction are subtle, and remain challenging.

Systems often produced verb suffixes that convey
discourse nuances or speaker attitudes not neces-
sarily present in the English prompt or its accepted
translations, as per these Korean and Japanese trans-
lations generated by multiple teams:

5. the woman is pretty
그여자는예쁘네네네요

(“wow, that woman is pretty”)

240

6. you are not a victim
あなたは被害者ではないよよよ
(“you are not a victim, you know”)

One likely explanation for this is the pervasive use
of OpenSubtitles data in pre-training; such suffixes
are especially common in on-screen dialogue.

Mistranslation of numbers was a common prob-
lem for multiple languages, which is unacceptable
for education, or indeed most applications:

7. i have eighteen horses
tizenhárom lovam van
(“i have thirteen horses”)

8. she has sixteen cats
彼女は猫を六六六匹飼っています
(“she has six cats”)

Correct noun declension was also a struggle for
all systems, particularly the allative case in Hun-
garian (-hoz/-hez/-höz); the following example was
not produced by any system:

9. we run to the garden
elrohanunk a kerthez

Similarly, noun cases and postpositions in Korean
led some systems to alter the sentence meaning:

10. who do you love?
누가너를를를사랑하니

(“who loves you?”)

For Japanese, many systems frequently used En-
glish loanwords in their translations:

11. she makes me happy
彼女は私をハハハッッッピピピーーーにしてくれる
(uses phonetic English loan for happy)

These were generally missing from the gold data.
Such loanwords are not especially rare, although
one could also argue that using them is “cheating”
in a language-learning context!

5 Related Work

The STAPLE task is similar to machine translation
in that one takes input from one language, and pro-
duces output in another language. In fact, nearly
all of the models used by participating teams were
built using standard, off-the-shelf, modern machine
translation software. But machine translation sys-
tems typically produce only a single output.

Ultimately our goal for Duolingo—a robust sys-
tem for automatically grading learner translation
submissions—is closer to the world of machine
translation evaluation. Motivated by shortcomings
of the BLEU metric (Papineni et al., 2002), some
researchers have proposed alternative measures of
evaluating MT systems against many references
(Qin and Specia, 2015), or even exhaustive trans-
lation sets collected by human translators, as with
HyTER (Dreyer and Marcu, 2012).

We even considered using these alternatives as
official metrics for the STAPLE task. The main
challenge is the difficulty of gathering all possible
translations (the authors of HyTER estimate that
creating all translation variants for a single sentence
can take two hours or more), or the assumption that
the translations are all equally important. To ease
the burden of manually collecting references, there
have been proposals for automatically generating
them (Apidianaki et al., 2018) using paraphrase
databases such as PPDB (Pavlick et al., 2015).

This brings us to other areas of research that
are very related to our task: automatic paraphras-
ing (Wieting et al., 2015; Witteveen and Andrews,
2019), as well as research in diverse beam search
methods (Vijayakumar et al., 2016; Li et al., 2016)
for decoding multiple natural language outputs. We
are happy that this shared task can serve as a fo-
rum for studying the intersection of these problems,
and it is our hope that the STAPLE task data will
continue to foster research in all of these areas.

6 Conclusion and Future Work

We have presented the STAPLE task, described a
new and unique corpus for studying it, and reported
on the results of a shared task challenge designed
to explore this new domain. The task successfully
drew participation from dozens of research teams
from all over the world, synthesizing work in ma-
chine translation, MT evaluation, and automatic
paraphrasing to name a few.

We learned that a pipeline of strong machine
translation followed by fine-tuning on learner-
weighted STAPLE data produces strong results.
While the data for this task are geared toward lan-
guage learners (and are therefore simpler than more
commonly-studied domains such as newswire), it is
our hope that the STAPLE task provides a blueprint
for ongoing interdisciplinary work in this vein. All
task data, including dev and test labels, will remain
available at: https://doi.org/10.7910/DVN/38OJR6

241

Acknowledgements

The authors would like to thank Colin Cherry for
seeding the idea that ultimately became the STA-
PLE task. Thanks also to the organizers of the
Workshop on Neural Generation and Translation
(WNGT) for providing a forum for this work, as
well as all the participating teams. Special thanks
to Nathan Dalal and Andrew Runge for help re-
viewing and summarizing the system papers.

References

Sweta Agrawal and Marine Carpuat. 2020. Generating
diverse translations via weighted fine-tuning and hy-
potheses filtering for the Duolingo STAPLE task. In
Proceedings of the ACL Workshop on Neural Gener-
ation and Translation (WNGT). ACL.

Marianna Apidianaki, Guillaume Wisniewski, Anne
Cocos, and Chris Callison-Burch. 2018. Auto-
mated paraphrase lattice creation for HyTER ma-
chine translation evaluation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 480–485, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

R.H. Baayen. 2008. Analyzing Linguistic Data: A
Practical Introduction to Statistics using R. Cam-
bridge University Press.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2015. Generating sentences from a continuous
space. arXiv preprint arXiv:1511.06349.

Rakesh Chada. 2020. Simultaneous paraphrasing and
translation by fine-tuning transformer models. In
Proceedings of the ACL Workshop on Neural Gen-
eration and Translation (WNGT). ACL.

Markus Dreyer and Daniel Marcu. 2012. HyTER:
Meaning-equivalent semantics for translation evalu-
ation. In Proceedings of the 2012 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 162–171, Montréal, Canada. Association
for Computational Linguistics.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11179–11189.

Rejwanul Haque, Yasmin Moslem, and Andy Way.
2020. The ADAPT system description for the STA-
PLE 2020 English-to-Portuguese translation task. In
Proceedings of the ACL Workshop on Neural Gener-
ation and Translation (WNGT). ACL.

Masahiro Kaneko, Aizhan Imankulova, Tosho Hira-
sawa, and Mamoru Komachi. 2020. English-to-
Japanese diverse translation by combining forward
and backward outputs. In Proceedings of the ACL
Workshop on Neural Generation and Translation
(WNGT). ACL.

Huda Khayrallah, Jacob Bremerman, Arya D. Mc-
Carthy, Kenton Murray, Winston Wu, and Matt Post.
2020. The JHU submission to the 2020 Duolingo
shared task on simultaneous translation and para-
phrase for language education. In Proceedings of
the ACL Workshop on Neural Generation and Trans-
lation (WNGT). ACL.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. arXiv preprint arXiv:1611.08562.

Zhenhao Li, Marina Fomicheva, and Lucia Specia.
2020. Exploring model consensus to generate trans-
lation paraphrases. In Proceedings of the ACL
Workshop on Neural Generation and Translation
(WNGT). ACL.

Jindřich Libovický, Zdeněk Kasner, Jindřich Helcl, and
Ondřej Dušek. 2020. Expand and filter: CUNI and
LMU systems for the WNGT 2020 Duolingo shared
task. In Proceedings of the ACL Workshop on Neu-
ral Generation and Translation (WNGT). ACL.

El Moatez Billah Nagoudi, Muhammad Abdul-
Mageed, and Hasan Cavusoglu. 2020. Growing to-
gether: Modeling human language learning with n-
best multi-checkpoint machine translation. In Pro-
ceedings of the ACL Workshop on Neural Genera-
tion and Translation (WNGT). ACL.

Tadashi Nomoto. 2020. Meeting the 2020 Duolingo
challenge on a shoestring. In Proceedings of the
ACL Workshop on Neural Generation and Transla-
tion (WNGT). ACL.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and

242

Michael Auli. 2019. fairseq: A fast, extensi-
ble toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

Sebastian Padó. 2006. User’s guide to sigf: Signifi-
cance testing by approximate randomisation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Junsu Park, Hongseok Kwon, and Jong-Hyeok Lee.
2020. POSTECH submission on Duolingo shared
task. In Proceedings of the ACL Workshop on Neu-
ral Generation and Translation (WNGT). ACL.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 425–430, Beijing, China. As-
sociation for Computational Linguistics.

Ying Qin and Lucia Specia. 2015. Truly exploring mul-
tiple references for machine translation evaluation.
In Proceedings of the 18th Annual Conference of
the European Association for Machine Translation,
pages 113–120, Antalya, Turkey.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12), Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. Towards universal paraphrastic sen-
tence embeddings. CoRR, abs/1511.08198.

Sam Witteveen and Martin Andrews. 2019. Paraphras-
ing with large language models. In Proceedings of
the 3rd Workshop on Neural Generation and Trans-
lation, pages 215–220, Hong Kong. Association for
Computational Linguistics.

Krzysztof Wołk and Krzysztof Marasek. 2014. Build-
ing subject-aligned comparable corpora and mining
it for truly parallel sentence pairs. Procedia Technol-
ogy, 18:126–132.

Michael Yang, Yixin Liu, and Rahul Mayuranath. 2020.
Multi-step fine-tuning and encouraging diversity of
high-coverage neural machine translation. In Pro-
ceedings of the ACL Workshop on Neural Genera-
tion and Translation (WNGT). ACL.

243

Author Index

Abdul-Mageed, Muhammad, 169
Abdul Rauf, Sadaf, 225
Agrawal, Sweta, 178
Aji, Alham Fikri, 35, 218

Baumgartner, Simon, 79
Behnke, Maximiliana, 218
Bicknell, Klinton, 232
Birch, Alexandra, 1
Bogoychev, Nikolay, 218
Borgeaud, Sebastian, 97
Bremerman, Jacob, 188
Brust, Chris, 232

Carpuat, Marine, 178
Cavusoglu, Hasan, 169
Chada, Rakesh, 198
Chouteau, Clément, 211
Chudyk, Mateusz, 218
Crego, Josep, 211

Dabre, Raj, 24
Daumé III, Hal, 43
Dou, Zi-Yi, 60
Duh, Kevin, 110
Dušek, Ondřej, 153

Emerson, Guy, 97

Fadaee, Marzieh, 88
Farsarakis, Emmanouil-Ioannis, 218
Field, Anjalie, 79
Filippskikh, Elizaveta, 54
Finch, Andrew, 1
Fomicheva, Marina, 161
Fujita, Atsushi, 24

Gordon, Mitchell, 110
Grundkiewicz, Roman, 218
Gudkov, Vadim, 54

Haque, Rejwanul, 144
Hassan, Hany, 43
Hayashi, Hiroaki, 1
Heafield, Kenneth, 1, 35, 218
Helcl, Jindřich, 153

Hira, Noor-e-, 225
Hirasawa, Tosho, 134
Hu, Chi, 204

Imankulova, Aizhan, 134
Ittycheriah, Abe, 79

Jiang, Nan, 69

Kaneko, Masahiro, 134
Kashyap, Sidharth, 218
Kasner, Zdeněk, 153
Kautz, Jan, 10
Khayrallah, Huda, 188
Klein, Guillaume, 211
Komachi, Mamoru, 134
Konstas, Ioannis, 1
Kumar, Sachin, 60
Kwon, Hongseok, 139

Lee, Jong-Hyeok, 139
Li, Bei, 204
Li, Xian, 1
Li, Yanyang, 204
Li, Yinqiao, 204
Li, Zhenhao, 161
Libovický, Jindřich, 153
Lin, Kevin, 10
Lin, Ye, 204
Liu, Ming-Yu, 10
Liu, Yixin, 119

Mayhew, Stephen, 232
Mayuranath, Rahul, 119
McCarthy, Arya D., 188
McDowell, Bill, 232
Mitrofanova, Olga, 54
Monroe, Will, 232
Monz, Christof, 88
Moslem, Yasmin, 144
Murray, Kenton, 188

Nagoudi, El Moatez Billah, 169
Neubig, Graham, 1
Nomoto, Tadashi, 129

245

Oda, Yusuke, 1

Park, Junsu, 139
Post, Matt, 188

Rothe, Sascha, 79
Rubino, Raphael, 24

Senellart, Jean, 211
Settles, Burr, 232
Sharaf, Amr, 43
Shoukat, Arslan, 225
Specia, Lucia, 161
Sun, Ming-Ting, 10

Tsvetkov, Yulia, 60

Ul Haq, Sami, 225

Wang, Chenglong, 204
Way, Andy, 144
Wu, Winston, 188
Wu, Xiuyu, 69
Wu, Yunfang, 69

Xiao, Tong, 204

Yang, Michael, 119
Yu, Cong, 79

Zhang, Dakun, 211
Zhu, Jingbo, 204

	Program
	Findings of the Fourth Workshop on Neural Generation and Translation
	Learning to Generate Multiple Style Transfer Outputs for an Input Sentence
	Balancing Cost and Benefit with Tied-Multi Transformers
	Compressing Neural Machine Translation Models with 4-bit Precision
	Meta-Learning for Few-Shot NMT Adaptation
	Automatically Ranked Russian Paraphrase Corpus for Text Generation
	A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with Bilingual Semantic Similarity Rewards
	A Question Type Driven and Copy Loss Enhanced Frameworkfor Answer-Agnostic Neural Question Generation
	A Generative Approach to Titling and Clustering Wikipedia Sections
	The Unreasonable Volatility of Neural Machine Translation Models
	Leveraging Sentence Similarity in Natural Language Generation: Improving Beam Search using Range Voting
	Distill, Adapt, Distill: Training Small, In-Domain Models for Neural Machine Translation
	Training and Inference Methods for High-Coverage Neural Machine Translation
	Meeting the 2020 Duolingo Challenge on a Shoestring
	English-to-Japanese Diverse Translation by Combining Forward and Backward Outputs
	POSTECH Submission on Duolingo Shared Task
	The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Translation Task
	Expand and Filter: CUNI and LMU Systems for the WNGT 2020 Duolingo Shared Task
	Exploring Model Consensus to Generate Translation Paraphrases
	Growing Together: Modeling Human Language Learning With n-Best Multi-Checkpoint Machine Translation
	Generating Diverse Translations via Weighted Fine-tuning and Hypotheses Filtering for the Duolingo STAPLE Task
	The JHU Submission to the 2020 Duolingo Shared Task on Simultaneous Translation and Paraphrase for Language Education
	Simultaneous paraphrasing and translation by fine-tuning Transformer models
	The NiuTrans System for WNGT 2020 Efficiency Task
	Efficient and High-Quality Neural Machine Translation with OpenNMT
	Edinburgh’s Submissions to the 2020 Machine Translation Efficiency Task
	Improving Document-Level Neural Machine Translation with Domain Adaptation
	Simultaneous Translation and Paraphrase for Language Education

