
Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 119–128
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

119

Training and Inference Methods for High-Coverage Neural Machine
Translation

Michael Yang Yixin Liu

Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, U.S.A.
{myang2,yixinl2,rmayuran}@cs.cmu.edu

Rahul Mayuranath

Abstract

In this paper, we introduce a system built
for the Duolingo Simultaneous Translation
And Paraphrase for Language Education (STA-
PLE) shared task at the 4th Workshop on
Neural Generation and Translation (WNGT
2020). We participated in the English-to-
Japanese track with a Transformer model pre-
trained on the JParaCrawl corpus and fine-
tuned in two steps on the JESC corpus and then
the (smaller) Duolingo training corpus. First,
during training, we find it is essential to de-
liberately expose the model to higher-quality
translations more often during training for op-
timal translation performance. For inference,
encouraging a small amount of diversity with
Diverse Beam Search to improve translation
coverage yielded marginal improvement over
regular Beam Search. Finally, using an auxil-
iary filtering model to filter out unlikely can-
didates from Beam Search improves perfor-
mance further. We achieve a weighted F1
score of 27.56% on our own test set, outper-
forming the STAPLE AWS translations base-
line score of 4.31%.

1 Introduction

Currently, state of the art machine translation sys-
tems generally produce a single output translation.
However, human evaluators of translation tasks will
often accept multiple translations as correct. We
introduce a neural machine translation (NMT) sys-
tem that generates high-coverage translation sets
for a single given prompt in the source language.

Our system was prepared for the English-to-
Japanese track1 of the Duolingo Simultaneous
Translation And Paraphrase for Language Educa-
tion (STAPLE) shared task (Mayhew et al., 2020) at
the 4th Workshop on Neural Generation and Trans-
lation (WNGT 2020). The shared task datasets

1There were five tracks of target languages in total, the
others being Hungarian, Korean, Portuguese and Vietnamese.

consist of English prompts and a weighted set of
target language translations for each prompt. The
task requires systems to produce translation sets
for given English prompts that are evaluated on
weighted F1 score, defined in Appendix A. We
have made our code publicly available.2

We experimented with models trained and fine-
tuned on the provided Duolingo English-Japanese
prompt-translation data (Mayhew et al., 2020), the
JParaCrawl web-crawled corpus (Morishita et al.,
2019), as well as the Japanese-English Subtitle
Corpus (JESC) (Pryzant et al., 2018). The sizes of
each dataset are summarized in Table 1.

Our system uses a Transformer-based (Vaswani
et al., 2017) NMT model and we began with
weights pretrained on the large JParaCrawl cor-
pus (Morishita et al., 2019). Section 4 describes in
detail how the model was pretrained. Our system’s
NMT model was then obtained by fine-tuning first
on the Japanese-English Subtitle Corpus (JESC)
(Pryzant et al., 2018) before further fine-tuning on
the Duolingo training set (Mayhew et al., 2020).
We outline these datasets in more detail in Section
2.

Given the small size of the Duolingo data, this
multi-step fine-tuning helped the model generalize
and outperformed single-step fine-tuning and no
fine-tuning. High-coverage translation bitext data
is not easy to mine or create, so we expect that in
other settings, the size of such available training
data will also be small. Therefore, it is very likely
that adopting a multi-step fine-tuning method may
be advantageous more generally. The fine-tuning
procedure is described in Section 6.

Outputting the entire beam of candidates from
150-width Beam Search, scored on per token log
likelihood, this two-step fine-tuned system pro-
duced the translations that we submitted to the

2Our code can be found at https://github.com/
michaelzyang/high-coverage-translation.

https://github.com/michaelzyang/high-coverage-translation
https://github.com/michaelzyang/high-coverage-translation

120

Dataset English Sentences Japanese Sentences

JParaCrawl 8,763,995 8,763,995
JESC 2,801,388 2,801,388
Duolingo 2,500 855,940

Table 1: Number of sentence-pairs in the datasets (Duolingo pairs have a one-to-many correspondence)

shared task leaderboard. It achieved 25.69 %
weighted F1 score on the shared task blind devel-
opment set and 26.0% on the blind test set.

After the leaderboard closed, we conducted fur-
ther experiments and discovered several notable
optimizations.

The most effective optimization was using the
ground truth weights that indicate variations in
translation quality during training. We find that
it is essential to deliberately expose the model to
higher-quality translations more often during train-
ing. Otherwise, overexposure to low-quality trans-
lations harms the model’s translation performance.

Secondly, Diverse Beam Search with a very
small penalty outperformed Beam Search. How-
ever, too much diversity begins to introduce minor
semantic shifts that deviate from correct transla-
tions.

We also explored introducing an auxiliary fil-
tering model for post-processing candidates. Our
proposed filtering model is able to refine the can-
didates generated by the NMT model, which im-
proved the system’s performance with respect to
the weighted F1 score.

We share our results in Section 7. Our best result
was a weighted F1 score of 27.56% on our own
test set of 200 prompts randomly selected from the
training data.

2 Corpora

2.1 Duolingo High-coverage Translations

Duolingo provided training, development and test
sets (Mayhew et al., 2020). However, the devel-
opment and test datasets were ‘blind’ and did not
contain ground truth translations, so we did not use
these for training or development.

The training set consists of 2,500 English
prompts, each of which are paired with a vari-
able number of Japanese translations (Table 1).
Duolingo provides weights for each translation,
which can be interpreted as a quality score. For
our experiments, we randomly split the the 2,500
prompts into 2,100, 200 and 200-prompt training,

development and test sets respectively. For the
shared task submission, we retrained a model over
all 2,500 prompts with our best hyperparameters.

2.2 JParaCrawl

As our base model, we use a model pre-trained
on the JParaCrawl corpus (Morishita et al., 2019).
This corpus contains over 8.7 million sentence pairs
which were crawled from the web and then auto-
matically aligned, similar to European corpora in
the ParaCrawl project3. Though noisy due to an
imperfect alignment method, this is currently the
largest publicly-available English-Japanese bitext
corpus.

2.3 Japanese-English Subtitle Corpus

The Japanese-English Subtitle Corpus (JESC)
(Pryzant et al., 2018), is a large parallel training
corpus that contains 2.8 million pairs of TV and
movie subtitles. With an average length of 8, the
corpus mostly consists of short sentences, which is
similar to the data present in the Duolingo training
corpus. Even though JESC contains some noise,
it captures sufficient information that is useful for
downstream NMT tasks.

3 Related work

Machine Translation Machine translation (MT)
involves finding a target sentence y = y1, ...ym
with the maximum probability conditioned on a
source sentence x = x1, ...xn, i.e argmax

y
P (y|x).

There are various neural approaches to tackle ma-
chine translation. These include utilizing recur-
rent neural networks (Cho et al., 2014b), con-
volutional neural networks (Kalchbrenner et al.,
2016), attention-based models (Luong et al., 2014;
Bahdanau et al., 2015) and transformer networks
(Vaswani et al., 2017). Sequence to sequence mod-
els deal with the task of mapping an input sequence
to an output sequence. These were first introduced
by Sutskever et al. (2014) and typically use an RNN

3https://paracrawl.eu/

https://paracrawl.eu/

121

based encoder-decoder architecture, where the en-
coder outputs a fixed length representation of the
input which is fed into the decoder to get a target
translation. RNN and LSTM based approaches
struggle to handle long sequences and long-range
dependencies since the encoder network is tasked
with encoding all relevant information in a fixed-
length hidden state vector. Bahdanau et al. (2015)
overcome this by utilizing attention, an alignment
model that can attend to important parts of the input
during translation. Luong et al. (2014) used the at-
tention mechanism to great effect, observing gains
of 5.0 BLEU over non-attention based techniques
for NMT.

The Transformer Architecture For our experi-
ments, we used the the Transformer architecture
proposed by Vaswani et al. (2017). It is a self-
attention based model that produces superior re-
sults for machine translation tasks compared to
CNN and LSTM based models. By stacking multi-
ple layers of multi-head self-attention blocks, they
demonstrate that the attention mechanism by itself
is very powerful for sequence encoding and decod-
ing. Recently, Transformer-based models that are
pre-trained on large-scale datasets have produced
superior performance on various Natural Language
Processing (NLP) tasks (Rajpurkar et al., 2016;
Talmor and Berant, 2019; Mayhew et al., 2019).
In Section 4 we further describe the transformer
architecture and our pretraining procedure.

Domain Adaptation Domain adaptation in-
volves making use of out-of-domain data in situa-
tions where high quality in-domain data are scarce.
This fine tuning approach has been shown to be ef-
fective for NMT (Luong and Manning, 2015; Sen-
nrich et al., 2015; Freitag and Al-Onaizan, 2016).
Morishita et al. (2019) show that pre-training
with JParaCrawl vastly improves in-domain perfor-
mance for English-Japanese translations. We make
use of these ideas in our multi-step fine-tuning ex-
periments.

Inference with Beam Search Beam Search is an
approximate search algorithm used for finding high
likelihood sequences from sequential decoders. At
every time step, the top k outputs are traversed
and the rest are discarded. A common issue with
beam search is that it generates similar outputs that
only differ by a few words or minor morphologi-
cal variations (Li and Jurafsky, 2016). Vijayaku-
mar et al. (2016) propose Diverse Beam Search, a

method that reduces redundancy during decoding
in NMT models to generate a wider range of can-
didate outputs. This is achieved by splitting the
beam width into evenly-sized groups and adding
a penalty term for the presence of similar candi-
dates across groups. The authors find most success
with the Hamming Diversity penalty term, which
penalizes the selection of tokens used in previous
groups proportionally to the number of times it was
selected before. We detail our experiments using
both search strategies in Section 6.

Post-processing in NLP For tasks that require
sets of outputs rather than single outputs, post-
processing or reranking methods are often used as a
downstream step after a model generates an initial
set. They have proven to be useful techniques for
various NLP tasks, such as Question Answering
(Kratzwald et al., 2019), Named Entity Recogni-
tion (Yang et al., 2017) and Neural Summarization
(Cao et al., 2018). The basic methodology is to first
generate an initial candidate set and rerank or prune
these candidates to generate the final set. This set
up reduces reliance on generators by introducing
an auxiliary discriminator to refine the outputs of
the generator. Section 6 describes our experiments
with pruning or filtering Beam Search candidates
during decoding.

4 Pretrained Base Model

As our base model, we used a model pretrained
by Morishita et al. (2019) on the JParaCrawl data
using the fairseq framework (Ott et al., 2019).

Data Preprocessing Morishita et al. (2019) pre-
processed the JParaCrawl English and Japanese
text using sentencepiece (Kudo and Richard-
son, 2018) to obtain 32,000-token vocabularies on
both the English and Japanese sides.

Architecture The pretrained model follows the
Transformer ‘base’ architecture (Vaswani et al.,
2017), with a dropout probability of 0.3 (Srivas-
tava et al., 2014).

Transformer is a multi-layer self-attention model.
Both its encoder and its decoder contain multiple
similar sub-modules which include a multi-head
attention layer (MultiHead) and a position-wise
feed-forward network (FFN).

122

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i) (2)

MultiHead(Q,K, V)

= Concat(head1, ..., headh)WO (3)

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Here, Q, K, V are the matrix representation
of the query, key, and value separately. W and b
denote the weights and biases of the linear layers.
dk denotes the dimension of the key matrix.

Optimizer The pretrained model was trained us-
ing the Adam optimizer (Kingma and Ba, 2014)
with the hyperparameters β1 = 0.9, β2 = 0.98,
α = 10−3 and ε = 10−9. The loss function used
was cross entropy loss with εls = 0.1 loss smooth-
ing (Szegedy et al., 2016). To improve update sta-
bility, gradients were clipped to a maximum norm
of 1.0 (Pascanu et al., 2013).

Learning rate scheduling The learning rate
schedule adopted for the pretrained model was the
so-called ‘Noam’ schedule (Vaswani et al., 2017).
This schedule linearly increases the learning rate
for 4000 ‘warm-up’ steps from a starting learning
rate of 10−7 to the target learning rate of 10−3, then
decreases it from that point proportionally to the
inverse square root of the step number.

5 Filtering Model

Apart from the NMT model, we additionally intro-
duce a neural filtering model to post-process the
NMT model’s candidates. Instead of designing a
model that will assign a real-value score to each of
the candidates, we simplify the task by formulat-
ing it as a binary classification problem. Namely,
the filtering model is trained to classify a given
candidate sentence as a valid sample (in the gold-
standard list) or an invalid sample. The intuition
is that the gold-standard candidate list contains a
small number of high-quality sentences (with larger
weights) and a large number of lower-quality sen-
tences. Thus it is more important to distinguish
the hits from misses than high-quality hits from
low-quality hits.

To construct the dataset for the filtering model,
we augmented the Duolinguo dataset with the re-
sults of NMT model. Specifically, we labeled those

result sentences that appear in the gold-standard
list as True and labeled others as False.

As for the model architecture, we encode the
source sentence and the candidate sentence sepa-
rately with a one-layer bidirectional LSTM model.
The encoding is the concatenation of the hidden
vectors in both directions after complete traversal
of the sequence, along with a (learned) positional
embedding vector. This embedding encodes the
position of the candidate sentence in the candidate
list generated by the NMT model, which is sorted
by descending score order.4 Lastly, we use a multi-
layer perception (MLP) to classify the concatenated
vector.

vs = LSTMs(s) (5)

vci = LSTMc(ci) (6)

pi = MLP(Dropout([vs : vci : vi])) (7)

Here, s denotes the source sentence, ci denoted
the i-th candidate, vi denotes the positional encod-
ing, and pi denotes the predicted likelihood. The fil-
tering model is optimized with binary cross-entropy
loss.

6 Experiments

6.1 Multi-step Fine-tuning

We experiment with several different fine-tuning
scenarios, each time evaluating the models us-
ing the Weighted F1 metric on our 200-prompt
Duolingo test set. First as a baseline, we directly
evaluate the JParaCrawl pretrained model without
fine-tuning. Then we evaluate the performance of
models fine-tuned on either JESC or on all English-
Japanese pairs in our 2,100-prompt Duolingo train-
ing set.5 Finally, we experiment with first fine-
tuning on the JESC data and then on the Duolingo
training set.

Before training, we preprocessed the JESC and
Duolingo data using the same 32,000-token En-
glish and Japanese sentencepiece models as
Morishita et al. (2019) used on the JParaCrawl data.

4In our experiments, we scored candidates using per token
log likelihood (see Section 6.2 for further details.)

5The given English and Japanese sentences are unbalanced
as there are multiple reference Japanese translations per En-
glish prompt. We balanced the training data by repeating the
corresponding prompts over all reference translations to create
English-Japanese pairs.

123

Training procedure We adopted the same opti-
mizer settings as they used for the pretrained model,
described in Section 4. Using mini-batches of up
to 5,000 tokens, we made an update step every 16
mini-batches with mixed precision computation for
increased training speed (Micikevicius et al., 2018).
While the pretrained model was trained for 24,000
steps, each time we fine-tuned the model, we did so
for 2,000 steps, continuing the inverse square root
learning rate schedule from the pretraining. We
saved the model parameters every 100 steps and
for each fine-tuning experiment, we averaged the
last eight parameter checkpoints to obtain our final
model weights. For the model with two-step fine-
tuning, we use the averaged checkpoint from the
JESC fine-tuning experiment as the starting point
for further fine-tuning on the Duolingo dataset.

6.2 Decoding Strategies

For producing multiple translations for each
prompt, we output the entire beam width of can-
didates from the Beam Search or Diverse Beam
Search (Vijayakumar et al., 2016) algorithms. Our
motivation for experimenting with using Diverse
Beam Search is to improve the coverage of our
translation sets. In all our experiments, we capped
the generated sequence length at 200 tokens.

Beam Search scoring Beam Search using se-
quence log likelihood (or likelihood) as scores re-
sults in a well-known length bias towards shorter
sequences, with worsening bias for wider beams
(Murray and Chiang, 2018). To address this, we
scored beam candidates based on the mean log like-
lihood per token (Cho et al., 2014a). Further work
could involve the use of more complex adjustments
for length bias and including a coverage penalty
over the source prompt (Wu et al., 2016).

6.3 Training Data Augmentation

Aligning data distributions The ground truth
weights of the Duolingo reference translations in-
variably follow skewed distributions, with long
tails of low weight translations (Figure 1). Conse-
quently, one drawback of training with all English-
Japanese pairs in the Duolingo data is that each
pair is essentially provided to the model with equal
weight. In other words, the distribution over ref-
erence translations at training time is uniform,
whereas the distribution when evaluating weighted
F1 score is skewed.

To address this, we sampled the training data

0 4 8 12 16 20 24

0.04

0.08

0.12

0.16

0.20

Reference translations (ordered by weight)

R
ef

er
en

ce
w

ei
gh

ts

Figure 1: Typical distribution of ground truth weights

such that the model was trained on prompts with
equal probability but for each prompt, reference
translations were sampled according to the distri-
bution given by the ground truth weights. In effect,
this aligns the distribution over reference transla-
tions during training time and evaluation time.

Loss smoothing to improve coverage Aside
from helping NMT models generalize, Müller et al.
(2019) show that use of loss smoothing also bet-
ter calibrates NMT models, preventing them from
becoming over-confident. To encourage our NMT
model to produce high-coverage translations, we
hypothesize that increasing loss smoothing to de-
crease the model’s confidence will improve its per-
formance in producing a wider variety of correct
translation candidates.

6.4 Filtering Model

Since our filtering model is trained with the results
of the NMT model, we trained two filtering mod-
els with two different decoding strategies of the
NMT model, namely, Regular and Diverse Beam
Search with beam widths set such that approxi-
mately 100 unique candidates are output for each
prompt. The NMT model is trained with the best
hyper-parameters we found with the weighted sam-
pling technique. We use the same train/dev/test
splits as the NMT model and select the checkpoint
with the best classification accuracy on the devel-
opment set.

We used the Adam optimizer with initial learning
rate 0.0001 and halved the learning rate when the
validation accuracy plateaued for 2 epochs. The
word embedding dimension, positional embedding
dimension, the hidden dimension of the LSTM and
MLP are all set to 128. The dropout rate was 0.2.

124

Fine-tuning Precision Recall Weighted Recall Weighted F1

None (JParaCrawl only) 18.57% 4.62% 16.97% 14.23%
JESC 13.37% 3.49% 13.12% 10.69%
Duolingo 34.59% 10.48% 26.90% 24.96%
JESC + Duolingo 35.98% 10.89% 27.85% 25.92%

Table 2: Results of different fine-tuning methods. Metrics evaluated on Beam Search beams of width 100 on our
200-prompt test set.

Beam Mean # Cands Precision Recall Weighted Recall Weighted F1

50 49.6 46.27% 7.04% 21.29% 24.75%
100 98.6 35.98% 10.89% 27.85% 25.92%
150 147.1 29.98% 13.54% 31.33% 24.98%
200 195.4 26.01% 15.61% 33.92% 23.98%

Table 3: Results of tuning Beam (beam width). Mean # Cands refers to the mean number of unique candidates
remaining after detokenizing subword tokens back into raw text and then removing duplicates. Metrics evaluated
on our 200-prompt test set.

The post-processing procedure involved pruning
all candidates with predicted likelihood less than
0.5.

7 Results

We conducted our experiments sequentially and
generally used the best results so far as a baseline
for subsequent experiments.

7.1 Multi-step Fine-tuning Results

Our best performing model was the one trained
using multi-step fine-tuning, as shown in Table
2. The performance of this model was superior
to the other fine-tuning settings on every metric,
suggesting this result was not simply a matter of
imbalance between precision and recall. This result
provides strong evidence that the first fine-tuning
step on the JESC data helped the model generalize
to the Duolingo test set. In contrast, the model only
fine-tuned on the Duolingo training set may not
have generalized as well due to the training set’s
small size.

In order to balance precision and (weighted) re-
call appropriately to maximize the weighted F1
metric, we experimented with tuning the number
of Beam Search candidates to output and found
that 100 was optimal (Table 3). Note that the num-
ber of unique candidates returned can be fewer
than the beam width as Beam Search searches over
sequences of subword tokens and sometimes deto-
kenization results in duplicates.

7.2 Diverse Beam Search Results

Our experiments with Diverse Beam Search show
that using 3 beam groups with a very low Ham-
ming diversity penalty can result in marginal per-
formance improvement (Table 4). The algorithm
evenly divides the total beam width between the
groups and although the algorithm penalizes du-
plicate sequences, high scoring candidates are still
often duplicated across groups. As such, we var-
ied the total beam widths so that the mean num-
ber of unique candidates per prompt were approxi-
mately 100.6 We conclude that encouraging a small
amount diversity can allow the model to capture
a wider range of variations without sacrificing too
much precision.

We found that performance deteriorates when
increasing the diversity penalty or the number of
groups further. These results suggest that standard
beam search by itself is relatively good at produc-
ing high-coverage translations and that acceptable
variations of translations are rather homogeneous
rather than diverse. To illustrate, Table 5 contains
some examples of error candidates produced by Di-
verse Beam Search. Even though they would back-
trackslate to the English prompt correctly, they nev-
ertheless introduce a minor semantic variation that

6This duplication makes the number of outputs from Di-
verse Beam Search more variable. Our result with beam width
225 outputted 62-182 unique results per prompt with a stan-
dard deviation of 19.6, compared to 72-100 unique results
with standard deviation of 4.0 from 100-width Regular Beam
Search.

125

Groups Penalty Beam Mean # Cands Precision Recall Weighted Recall Weighted F1

1 - 100 98.6 35.98% 10.89% 27.85% 25.92%
2 0.01 170 99.4 36.04% 11.00% 27.57% 26.18%
3 0.01 225 99.2 35.72% 10.88% 27.18% 26.29%
4 0.01 276 100.6 35.26% 10.90% 27.02% 26.23%
5 0.01 315 100.0 35.04% 10.76% 26.76% 26.21%
2 0.1 116 99.6 32.76% 10.03% 16.00% 24.42%
3 0.1 129 100.3 29.52% 9.10% 23.77% 22.59%

Table 4: Results of Diverse Beam Search on the test set. Beam refers to the beam width. Groups refers to the
number of Diverse Groups (use of 1 group is equivalent to regular Beam Search). Penalty refers to the Hamming
Diversity penalty in the Diverse Beam Search algorithm. Mean # Cands refers to the mean number of unique
candidates remaining after detokenizing subword tokens back into raw text and then removing duplicates. Metrics
evaluated on our 200-prompt test set.

Prompt my parents have money

Incorrect 僕の両親はお金を持ってる
Diverse 僕の両親はお金を持ってます
Candidates 僕の両親には金があります

Table 5: Example incorrect candidates from Diverse Beam Search with 3 groups and 0.1 Hamming Diversity
penalty. While the candidates would correctly back-translate to ‘my parents have money’, the first character of
each candidate sentence indicates that the speaker / subject must be male (a restriction that is absent in the prompt).

Sampling Smoothing 1-best BLEU Precision Recall Weighted Recall Weighted F1

Weighted 0 43.2 36.28% 10.95% 27.88% 26.88%
Weighted 0.05 42.5 37.41% 11.30% 28.31% 27.43%
Weighted 0.10 43.2 37.00% 11.27% 28.14% 27.21%
Unweighted 0.10 27.0 35.72% 10.88% 27.18% 26.29%
Weighted 0.15 41.8 36.84% 11.07% 28.01% 27.06%
Weighted 0.20 42.3 36.86% 11.09% 27.96% 27.04%

Table 6: Results of weighted sampling of input translation pairs and different loss smoothing rates on the test set.
1-best BLEU refers to corpus BLEU-4 score between the single highest-scoring Diverse Beam Search candidate
and the single highest weighted reference translation for each prompt, smoothed with the NIST method (Chen and
Cherry, 2014). The other metrics were evaluated over Diverse Beam Search with 225-width beams split across 3
groups and Hamming diversity penalty of 0.01. Metrics evaluated on our 200-prompt test set.

makes them unacceptable translations.

7.3 Training Data Augmentation Results

Sampling training data according to the ground
truth weights meaningfully improves performance,
as shown in Table 6. Our previous best weighted
F1 score using Diverse Beam Search was 26.29%,
and this improved to 27.21%. Moreover, evaluat-
ing the model on the standard machine translation
metric of BLEU-4 score between the single best
candidates and the single best ground truth transla-
tions, we observe a remarkable increase in BLEU
score if weighted sampling is used during train-

ing. From this result, we conclude that unweighted
sampling of training data overexposes the model to
poorer translations, which significantly reduces the
model’s effectiveness as a general-purpose NMT
model.

As for loss smoothing, contrary to our hypoth-
esis, increasing the loss smoothing rate was detri-
mental. and, in fact, decreasing the rate from 0.1 to
0.05 even improved the weighted F1 score slightly
from 27.21% to 27.43%. This suggests that the
effect of loss smoothing on the high-coverage trans-
lation task is not necessarily different to the usual
machine translation task.

126

Filtering Decoding method Precision Recall Weighted Recall Weighted F1

None Regular Beam Search 37.49% 11.35% 28.93% 27.00%
Filtered Regular Beam Search 38.89% 10.87% 27.67% 27.43%
None Diverse Beam Search 37.41% 11.30% 28.31% 27.43%
Filtered Diverse Beam Search 38.08% 10.86% 26.94% 27.56%

Table 7: Results of filtering methods on our 200-prompt test set. Candidates were generated by the NMT models
fine-tuned on JESC then Duolingo data with weighted sampling technique. Regular Beam Search used beam width
100 and Diverse Beam Search used beam width 225 over 3 groups with Hamming diversity penalty of 0.01 to yield
approximately 100 candidates per prompt after deduplication. Candidates that have likelihoods greater than 0.5
assigned by the filtering model are selected as the results.

7.4 Beam Filtering Results

Table 7 shows the results of the filtering algorithm.
The filtering model can improve the weighted F1
score with both the diverse beam search and regu-
lar beam search, especially with the regular beam
search. This improvement results from a larger gain
in precision from filtering than the loss in recall.

One thing to note is that our filtering model suf-
fers from over-fitting. For example, with Regu-
lar Beam Search, our filtering model improves the
weighted F1 score by 0.43% on the test set (Ta-
ble 7). However, using the same technique on the
training set results in an improvement of 6.25%.7

This may result from the limited size of Duolinguo
dataset, and the fact that over-fitting introduced by
the NMT model would be amplified since the fil-
tering model is trained on the results of the NMT
model.

8 Conclusions and Future Work

Our machine translation system produces high-
coverage sets of target language translations from
single source language prompts.

We used multi-step fine-tuning to train a robust
NMT model. This involved first training or fine-
tuning a model on a large bitext dataset, then fine-
tuning on the bitext dataset with high coverage sets
of target language translations, which is likely to be
small. In our experiments, we find that fine-tuning
a pretrained model first on a corpus similar to our
intended domain and then fine-tuning further on
our smaller in-domain dataset produced the best
results.

During training, we find that if the ground truth
translations come with weights that indicate vari-
ations in their quality / likelihood, it is essential

7On the training set, the filtering algorithm improves the
weighted F1 score from 56.78% to 63.03%.

to expose the model to higher-quality translations
more often during training. One way to do this
is to to sample the training data with probabilities
commensurate to the ground truth weights. Doing
so will prevent overexposure to low-quality transla-
tions that ultimately harm the model’s translation
performance.

For decoding, we find that Beam Search scored
on per token log likelihood finds very good transla-
tion candidates on its own. Nevertheless, instead us-
ing Diverse Beam Search with a very small penalty
improves coverage.

We observed a further performance boost from
post-processing the translation candidates. This
was achieved by training an auxiliary filtering
model on the results of the NMT model to prune
unlikely candidates as a final step.

One idea for future work is to directly optimize
the weighted F1 score during training using rein-
forcement learning. As the weighted F1 score is not
a differentiable function, it is impossible to train
directly on this metric using maximum likelihood
estimation. Instead, one may use policy gradients
under a reinforcement learning paradigm to do so.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei.
2018. Retrieve, rerank and rewrite: Soft template
based neural summarization. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 152–161, Melbourne, Australia. Association
for Computational Linguistics.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/P18-1015
https://doi.org/10.18653/v1/P18-1015

127

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level bleu. In WMT@ACL.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation, pages 103–111, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014b. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
domain adaptation for neural machine translation.
CoRR, abs/1612.06897.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aäron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. CoRR, abs/1610.10099.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Bernhard Kratzwald, Anna Eigenmann, and Stefan
Feuerriegel. 2019. Rankqa: Neural question answer-
ing with answer re-ranking. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6076–6085.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Jiwei Li and Dan Jurafsky. 2016. Mutual information
and diverse decoding improve neural machine trans-
lation. CoRR, abs/1601.00372.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domain. In International Workshop on
Spoken Language Translation, Da Nang, Vietnam.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2014. Addressing
the rare word problem in neural machine translation.
arXiv preprint arXiv:1410.8206.

S. Mayhew, K. Bicknell, C. Brust, B. McDowell,
W. Monroe, and B. Settles. 2020. Simultaneous
translation and paraphrase for language education.
In Proceedings of the ACL Workshop on Neural Gen-
eration and Translation (WNGT). ACL.

Stephen Mayhew, Nitish Gupta, and Dan Roth. 2019.
Robust named entity recognition with truecasing pre-
training.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed preci-
sion training. In International Conference on Learn-
ing Representations.

Makoto Morishita, Jun Suzuki, and Masaaki Na-
gata. 2019. JParaCrawl: A large scale web-based
japanese-english parallel corpus. arXiv preprint
arXiv:1911.10668.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help?
In H. Wallach, H. Larochelle, A. Beygelzimer,
F. dAlché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
32, pages 4694–4703. Curran Associates, Inc.

Kenton Murray and David Chiang. 2018. Correct-
ing length bias in neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 212–223, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th In-
ternational Conference on International Conference
on Machine Learning - Volume 28, ICML’13, page
III–1310–III–1318. JMLR.org.

R. Pryzant, Y. Chung, D. Jurafsky, and D. Britz. 2018.
JESC: Japanese-English Subtitle Corpus. Language
Resources and Evaluation Conference (LREC).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation models
with monolingual data.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,
15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1612.06897
http://arxiv.org/abs/1612.06897
http://arxiv.org/abs/1610.10099
http://arxiv.org/abs/1610.10099
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
http://arxiv.org/abs/1601.00372
http://arxiv.org/abs/1601.00372
http://arxiv.org/abs/1601.00372
http://arxiv.org/abs/1912.07095
http://arxiv.org/abs/1912.07095
http://papers.nips.cc/paper/8717-when-does-label-smoothing-help.pdf
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1409.3215

128

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Alon Talmor and Jonathan Berant. 2019. Multiqa: An
empirical investigation of generalization and transfer
in reading comprehension. CoRR, abs/1905.13453.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. CoRR, abs/1610.02424.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural
reranking for named entity recognition. In Pro-
ceedings of the International Conference Recent Ad-
vances in Natural Language Processing, RANLP
2017, pages 784–792, Varna, Bulgaria. INCOMA
Ltd.

A Appendices

To evaluate the result, the weighted macroF1 (equa-
tion 8) with respect to the accepted translations is
the metric of interest. This is the average weighted
F1 score (equation 12) over all prompts s in the
corpus, where weighted F1 is calculated with (un-
weighted) precision and weighted recall.

WeightedMacro F1 =
∑
s∈S

Weighted F1(s)

|S|
(8)

Calculating the weighted recall requires the use
of weights included in the dataset. These weights
are associated with each human-curated acceptable
translation, which represent the likelihood that an
English learner would respond with that translation.

For each prompt s, the weighted true positives
(WTP) and weighted false negatives (WFN) are:

WTPs =
∑

t∈TPs

weight(t) (9)

WFNs =
∑

t∈FNs

weight(t) (10)

With these, the weighted recall for each s can be
calculated as follows

Weighted Recall(s) =
WTPs

WTPs +WFNs
(11)

Precision is calculated in the usual way, so the
weighted F1 score, Weighted F1(s), for a partic-
ular input s is given by

2 · Precision(s) ·WeightedRecall(s)

Precision(s) +WeightedRecall(s)
(12)

http://arxiv.org/abs/1905.13453
http://arxiv.org/abs/1905.13453
http://arxiv.org/abs/1905.13453
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.26615/978-954-452-049-6_101
https://doi.org/10.26615/978-954-452-049-6_101

