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Abstract
We explore best practices for training small,
memory efficient machine translation models
with sequence-level knowledge distillation in
the domain adaptation setting. While both
domain adaptation and knowledge distillation
are widely-used, their interaction remains lit-
tle understood. Our large-scale empirical re-
sults in machine translation (on three language
pairs with three domains each) suggest dis-
tilling twice for best performance: once us-
ing general-domain data and again using in-
domain data with an adapted teacher. The code
for these experiments can be found here.1

1 Introduction

Machine translation systems rely on large amounts
of data to deduce the rules underlying translation
from one language to another. This presents chal-
lenges in some important niche domains, such as
patent and medical literature translation, due to
the high cost of hiring experts to generate suitable
training data. A cost-effective alternative is do-
main adaptation, which leverages large amounts
of parallel documents from less difficult and more
readily-available domains, such as movie subtitles
and news articles.

Domain adaptation works well in practice. How-
ever, these large datasets, which we call general
domain datasets, introduce some scalability prob-
lems. Large datasets require large models; neu-
ral machine translation systems can take days or
weeks to train. Some models require gigabytes of
disk space, making deployment to edge computing
devices challenging. They can also require exces-
sive compute during inference, making them slow
and costly to scale up in production environments
(Gordon, 2019).

To alleviate these issues, knowledge distillation
(aka Teacher-Student) (Hinton et al., 2015) is used

1https://git.io/Jf2t8

to compress models into a manageable form. But
although knowledge distillation is the most com-
monly used form of model compression in practice,
it is also one of the least understood.

In this work, we perform a large-scale em-
pirical analysis to attempt to discover best prac-
tices when using knowledge distillation in com-
bination with domain adaptation. Out of several
common-sense configurations, we find that two
stages of knowledge distillation give the best per-
formance: one using general-domain data and an-
other using in-domain data with an adapted teacher.
We perform experiments on multiple language
pairs (Russian-English, German-English, Chinese-
English), domains (patents, subtitles, news, TED
talks), and student sizes.

2 Background

Domain Adaptation helps overcome a lack of
quality training data in niche domains by lever-
aging large amounts of data in a more accessible
general-domain. Domain adaptation is usually ac-
complished by continued training (Luong and Man-
ning, 2015; Zoph et al., 2016), which involves two
steps:

1. A model is randomly initialized and trained
until convergence on the general-domain data.

2. A new model is initialized with the parame-
ters resulting from Step 1 and trained until
convergence on the in-domain dataset.

We can consider domain adaptation as extracting
a useful inductive-bias from the general-domain
dataset, which is encoded and passed along to the
in-domain model as a favorable weight initializa-
tion. While there are other methods of extracting
inductive bias from general-domain datasets (in-
cluding mixed fine-tuning (Chu et al., 2017) and

https://git.io/Jf2t8
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Figure 1: There are 9 possible configurations for training small, in-domain models with knowledge distillation
and domain adaptation. Models trained on general-domain data are shown on the left, and in-domain models are
shown on the right. Solid arrows represent domain adaptation via continued training. Dashed arrows represent
improved optimization via sequence-level knowledge distillation. Configuration 1 is the model which is trained on
in-domain data with random initializations and without the assistance of a teacher.

cost weighting (Chen et al., 2017)), continued train-
ing is most common and the focus of this paper.

Knowledge Distillation is a method for improv-
ing the performance of under-parameterized “Stu-
dent” models by exploiting the probability distribu-
tion of a more computationally complex “Teacher”
network. Kim and Rush (2016) presented an exten-
sion of knowledge distillation to machine transla-
tion in two flavors: word-level and sequence-level
knowledge distillation.

Sequence-level knowledge distillation, which is
more general, involves three steps:

1. A large Teacher network is randomly initial-
ized and trained until convergence on the data.

2. The source-side of the training data is decoded
using the Teacher to produce “distilled” target
data.

3. A smaller Student model is randomly initial-
ized and trained until convergence on the dis-
tilled source-target pairs (discarding the origi-
nal target sequences in the data).

The goal of knowledge distillation is to train the
student model to mimic the teacher’s probability
distribution over translations. Since the teacher and
the student are trained on the same dataset, they
should be capable of learning the same distribution
in theory. In practice, however, pre-processing the
training data with the teacher improves student test
performance.2 Explanations for this phenomenon

2Interestingly, this can be true even when the student has

include dark knowledge (Furlanello et al., 2018),
mode reduction (Zhou et al., 2019), and regulariza-
tion (Gordon and Duh, 2019; Dong et al., 2019),
but no definitive evidence has been given.

Sequence-level knowledge distillation is widely
used in both industry (Xia et al., 2019) and research
and is the second focus of this paper. 3

3 Distilling and Adapting

How domain adaptation and knowledge distilla-
tion would interact when applied in combination
was not previously clear. Specifically, our research
questions are:

• Is a distilled model easier or harder to adapt
to new domains?

• Should knowledge distillation be used on in-
domain data? If so, how should the teacher be
trained?

To answer these questions, we performed ex-
periments on 9 possible configurations which are
assigned configuration numbers in Figure 1. For
ease of reference, we will primarily refer to small,
in-domain models by their configuration number
and encourage readers to consult Figure 1. Each
configuration has two attributes of interest.

the same computational resources as the teacher (Furlanello
et al., 2018)

3Sequence-level knowledge distillation is also commonly
used to train non-autoregressive machine translation models
(Zhou et al., 2019).
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Distilling In-Domain Data How is in-domain
data pre-processed using knowledge distillation?
Some models are trained with no pre-processing
(configurations 1, 4, and 7), while others use a
teacher to pre-process the in-domain training data.
This teacher might be a baseline trained on in-
domain data only (configurations 2, 5, and 8) or
it can be trained on general-domain data and then
adapted to in-domain via continued training (con-
figurations 3, 6, and 9).

Initialization How are models initialized? A
model might be randomly initialized (configura-
tions 1, 2, and 3), or it might be adapted from
a model trained on general-domain data. This
general-domain model might be a baseline trained
directly on the general-domain data (configurations
4, 5, and 6) or it might be a student model trained
on the output of a general-domain teacher (config-
urations 7, 8, 9).

4 Experiments

4.1 Data

General-Domain Data We train models in mul-
tiple settings: 3 language pairs (German-English,
Russian-English, and Chinese-English) each with
1 general-domain dataset and 2 different in-domain
datasets. The general-domain datasets for each
language are a concatenation of data from Open-
Subtitles2018 (Tiedemann, 2016; Lison and Tiede-
mann, 2016) (which contains translated movie sub-
titles) and the WMT 2017 datasets (Ondrej et al.,
2017) (which includes a variety of sources, includ-
ing news commentary, parliamentary proceedings,
and web-crawled data).

In-Domain Data We use the World International
Property Organization (WIPO) COPPA-V2 dataset
(Junczys-Dowmunt et al., 2018) and the TED Talks
dataset (Duh, 2019a) as our two in-domain datasets.
The WIPO data contains parallel sentences from
international patent abstracts, while the TED Talks
dataset consists of translated transcripts of public
speeches.

Data Statistics The size of each training dataset
is presented in Table 1. General-domain datasets
contain tens of millions of sentences, while in-
domain datasets contain much less. German-
English WIPO has an exceptional amount of train-
ing data (4.5 times more than the next biggest in-
domain dataset) and helps qualify how our results

Language General-Domain WIPO TED
De-En 28.3 M 821 k 152 k
Ru-En 51.1 M 29 k 180 k
Zh-En 35.9 M 154 k 169 k

Table 1: The number of training sentences in each
dataset.

might change when more in-domain data is avail-
able.

Pre-processing All datasets are tokenized using
the Moses4 tokenizer. A BPE vocabulary (Sen-
nrich et al., 2016) of 30,000 tokens is constructed
for each language using the training set of the
general-domain data. This BPE vocabulary is
then applied to both in-domain and general-domain
datasets. This mimics the typical scenario of a sin-
gle, general-domain model being trained and then
adapted to new domains as they are encountered.
Note that re-training BPE on in-domain data to
produce a different vocabulary would force us to
re-build the model, making adaptation impossible.

Evaluation The general-domain development
set for each language contains newstest2016 con-
catenated with the last 2500 lines of OpenSubti-
tles2018. We reserve 3000 lines of WIPO to use as
the in-domain development set. TED talks develop-
ment sets are provided by the authors and contain
around 2000 lines each. Evaluations of each model
are performed by decoding the appropriate devel-
opment set with a beam-search size of 10 and com-
paring to the reference using multi-bleu.perl from
the Moses toolkit. The tokenization used during
multi-bleu.perl evaluation is the same as the one
provided in (Duh, 2019a).

4.2 Architectures and Training

A list of architecture sizes is provided in Table
2. Teachers are trained using the Large hyper-
parameter settings, while we experiment with
Medium, Small, and Tiny students for each config-
uration and language/domain setting.

All models are Transformers (Vaswani et al.,
2017). We use the same hyper-parameters (which
are based on a template from (Duh, 2019b)5) for
every model, except those that affect the size of
the model (Table 2). Models are trained either
for 300,000 updates, 100 epochs, or until the

4statmt.org/moses
5https://git.io/JvL85

http://statmt.org/moses
https://git.io/JvL85
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Size Layers FF Size Hidden Size
Large 12 2048 512
Medium 6 2048 512
Small 6 1024 256
Tiny 2 1024 256

Table 2: Hyper-parameters of various model sizes used
in this work. For example, the Large Transformer
model architecture uses 6 encoder and 6 decoder layers,
a feed-forward hidden dimension of 2048 at each layer,
and a word-embedding / hidden dimension of 512.

model does not improve for 10 checkpoints (early-
stopping), whichever comes first.

Continued Training Work by (Gordon and Duh,
2019) suggests that students may benefit from train-
ing on some combination of the distilled and un-
distilled reference dataset. We experimented with
this by continuing to train each in-domain student
model on the original, un-distilled dataset, using
similar stopping criterion to the first round of train-
ing. This improved some models by up to 1 BLEU.
Because of this, we recommend that any distilled
model continue training on the original dataset as
long as development accuracy improves. When
continued training improves performance of a stu-
dent, we show that score instead of the score with-
out continued training.

5 Recommendations

5.1 Adapt Teachers
In this section, we compare training in-domain
models with no teacher (config 1), a teacher trained
on in-domain data only (config 2), and a teacher
adapted from the general domain (config 3). The
performance of the two teachers in each language-
pair and domain is listed in Table 3. It shows that
adaptation greatly improves the performance of
every in-domain teacher except German-English
WIPO.6

Table 4 shows the results of using these teach-
ers to distill the in-domain data before training
student models in various settings. We see that
in almost every case, using an adapted teacher
gives the best or close to the best results. This is
somewhat expected since models with better devel-
opment scores tend to make better teachers (Zhang

6German WIPO is also the largest in-domain dataset we
test, which might make adaptation unnecessary. Another ex-
planation might be that the German-English general-domain is
not similar enough to the patent domain in this case to improve
performance.

Domain Size Init de-en ru-en zh-en
ted Lrg Rand 29.25 19.38 14.79

GD Lrg 37.64 26.57 20.45
wipo Lrg Rand 48.31 21.36 31.02

GD Lrg 48.56 37.08 36.80

Table 3: BLEU development score of in-domain teach-
ers when either randomly initialized or initialized from
the weights of a large model trained on general-domain
data. Adaptation drastically improves performance on
every language pair and domain, except de-en WIPO.

et al., 2018). Although knowledge distillation is
typically seen as “simplifying” data for students,
in this case we suspect that the adapted teacher’s
knowledge about the general-domain is making its
way to students via the distilled in-domain data.

5.2 Adapt the Best Student

We also train small models directly on the general-
domain data and adapt them to in-domain data.
The possible configurations are random initializa-
tion (config 1), initializing from a baseline model
trained on general-domain data (config 4), or initial-
izing from a student model distilled from a general-
domain teacher (config 7). Table 5 shows the per-
formance of the models trained on the general-
domain datasets, and Table 6 shows their perfor-
mance after being fine-tuned on in-domain data.

Training small models directly on the general-
domain data and then fine-tuning on in-domain data
gives much more substantial gains (5-10 BLEU)
than providing indirect access to the general-
domain data through an adapted teacher (config 3).
We believe this is because a large amount of data
is required to fully reveal the teacher’s probabil-
ity distribution over translations (Fang et al., 2019).
While an adapted teacher might contain much infor-
mation from the general-domain, it is unable to ex-
press that knowledge to students just by translating
the smaller in-domain dataset. To get the full ben-
efit of general-domain data, the small models
must be directly pre-trained on general-domain
data.7 Indirect access to the general-domain data
through a general-domain teacher is insufficient.

We also observe that Medium-sized models are
not small enough to benefit from knowledge distil-
lation in the general-domain, and so their general-
domain scores do not improve with distillation.

7A reasonable alternative to this might include data-free
KD (Yin et al., 2019), which explores the teacher’s probability
distribution without any dependence on data.
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Domain Size Cfg # de-en ru-en zh-en
1 27.73 19.34 15.17

ted med 2 29.11 20.31 15.71
3 29.54 20.56 15.90
1 27.89 18.42 14.87

small 2 28.93 19.65 14.95
3 29.52 19.88 15.79
1 25.78 17.48 13.03

tiny 2 27.20 17.87 13.39
3 27.58 19.27 13.74
1 48.89 24.45 30.13

wipo med 2 50.66 24.62 32.13
3 50.23 24.60 33.16
1 47.94 21.91 30.66

small 2 49.46 23.70 32.19
3 49.72 23.50 32.61
1 44.15 21.39 27.67

tiny 2 48.03 22.24 28.18
3 48.51 22.03 29.88

Table 4: BLEU development scores for in-domain stu-
dents with no teacher (config 1), an in-domain only
teacher (config 2), or an adapted teacher continued
from the general-domain (config 3). In almost every
case, using an adapted teacher gives the best or close to
the best results.

These distilled Medium-sized models (config 7)
also tend to do slightly worse than their baseline
counter-parts (config 4) on in-domain data. In-
deed, Figure 2 shows that in-domain performance
is roughly linearly related to general-domain perfor-
mance regardless of whether distillation is applied
before adaptation.

This implies that distillation does not interfere
with the adaptability of a model, so the model
with the best general-domain performance should
be adapted, regardless of whether distillation was
applied. Adapting a distilled model can improve
performance slightly over adapting the baseline
model without distillation.

5.3 Distill, Adapt, Distill

Finally, we test whether these two ways of improv-
ing small, in-domain models are orthogonal. We
might hypothesize that training small models di-
rectly on general-domain data eliminates the need
to adapt teachers or use an in-domain teacher at all.
To test this, we also train adapted student models
using a baseline teacher (config 8) and an adapted
teacher (config 9).

Table 7 shows that distilling a second time us-

Model de-en ru-en zh-en
Teacher 41.08 32.25 47.17
Medium Baseline 39.86 30.81 45.40
Medium Student 39.40 30.65 45.11
Small Baseline 36.78 27.54 42.09
Small Student 38.51 28.88 42.73
Tiny Baseline 31.27 23.63 34.71
Tiny Student 34.58 25.86 36.09

Table 5: General-domain models, teachers and students.
While knowledge distillation improves small and tiny
models, it appears medium-sized models are not under-
parameterized enough for knowledge distillation to im-
prove performance.

Domain Size Cfg # de-en ru-en zh-en
1 27.73 19.34 15.17

ted med 4 36.94 25.82 20.13
7 35.93 25.43 20.18
1 27.89 18.42 14.87

small 4 34.78 24.10 18.84
7 35.33 24.30 19.32
1 25.78 17.48 13.03

tiny 4 31.52 21.30 16.51
7 32.30 21.65 17.06
1 48.89 24.45 30.13

wipo med 4 48.58 35.98 35.33
7 48.53 35.55 35.27
1 47.94 21.91 30.66

small 4 48.13 35.30 34.90
7 48.31 35.18 34.52
1 44.15 21.39 27.67

tiny 4 46.06 31.13 28.45
7 46.54 31.74 29.07

Table 6: In-domain models that are initialized ran-
domly (config 1), initialized from a baseline trained on
general-domain data directly (config 4), or initialized
from a general-domain student trained using a general-
domain teacher (config 7).



115

Figure 2: The BLEU of general-domain models vs. their corresponding in-domain scores when adapted to a
different domain. We see that in-domain performance is roughly linearly related to general-domain performance
regardless of whether distillation is applied before adaptation.

Domain Size Cfg # de-en ru-en zh-en
7 35.93 25.43 20.18

ted med 8 35.23 25.18 19.96
9 36.65 25.91 20.13
7 35.33 24.30 19.32

small 8 35.11 23.97 19.17
9 35.57 24.95 19.48
7 32.30 21.65 17.06

tiny 8 32.21 21.45 16.72
9 33.12 22.49 17.54
7 48.53 35.55 35.27

wipo med 8 49.07 34.71 35.09
9 49.82 35.83 36.48
7 48.31 35.18 34.52

small 8 48.79 34.27 34.89
9 48.35 35.10 35.55
7 46.54 31.74 29.07

tiny 8 49.90 31.12 30.05
9 49.70 31.75 31.82

Table 7: In-domain models which are initialized from a
general-domain student and trained on in-domain data
which is pre-processed either with no teacher (config
7), an in-domain only teacher (config 8), or an adapted
teacher continued from general-domain data (config 9).

ing in-domain data with an adapted teacher can
further boost performance of an already dis-
tilled model, while using a teacher trained only on
in-domain data can sometimes hurt performance.

These results lead us to a general recipe for train-
ing small, in-domain models using knowledge dis-
tillation and domain adaptation in combination:

1. Distill general-domain data to improve
general-domain student performance.

2. Adapt the best model from Step 1 to in-
domain data.
(2-10 BLEU better than no adaptation)

3. Adapt the teacher and distill again in-domain.
(0-2 BLEU better than no or non-adapted
teacher)

Following this procedure will result in either
configuration 6 or 9 as described in Figure 1. And
indeed, configuration 9 performs the best or near
best (within 0.1 BLEU) in almost every case, as
shown in Table 9. For those Medium sized mod-
els which were not improved by distillation in the
general-domain, configuration 6 performs the best.

Models trained on German-English WIPO are
an exception, with adaptation from the general-
domain not improving performance. This is in line
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Domain Size Cfg # de-en ru-en zh-en
med 6 36.80 26.26 20.13

ted small 6 35.50 24.68 19.31
tiny 6 32.09 22.20 17.25
med 6 48.31 35.82 36.58

wipo small 6 49.04 35.30 35.40
tiny 6 48.02 31.57 30.53

Table 8: Development scores for models initialized
from a model trained on general-domain data. The in-
domain data is pre-processed with a teacher adapted
from the general-domain (config 6).

Domain Size de-en ru-en zh-en
med 4/6 6 4/6/7/9

ted small 6/9 9 9
tiny 9 9 9
med 2 4/6/9 6

wipo small 3 4/6 9
tiny 8 7/9 9

Table 9: Best configurations for each setting. Scores
within 0.1 BLEU of the best are also listed. Configu-
ration 9 generally performs best, while configuration 6
is best for those medium-sized models which were not
improved by distillation in the general-domain.

with the results from Table 3 which shows adapta-
tion does not improve teachers, either. We suspect
this is because the German-English WIPO dataset
is the biggest out of any in-domain dataset, making
adaptation unnecessary. Future work might also
benefit from a quantification of domain similarity
between datasets (Britz et al., 2017), which would
guide the use of domain adaptation in cases like
these.

5.4 Training Times
The models trained in this work collectively re-
quired 10 months of single-GPU compute time. Ta-
ble 10 breaks this down by model size and dataset.

While distilling twice might give the best perfor-
mance, it also increases the amount of computation
time required. Rather than training a single in-
domain model, configuration 9 requires training a
general-domain teacher, a general-domain student,
and then adapting both. This can increase compute
required to train models by 2-4x.

A huge portion of computation was also spent on
decoding the general-domain data using a teacher
model for sequence-level knowledge distillation,
which could take up to 24 days of GPU time (using
a beam size of 10 and a batch size of 10). This

Model Gen-Domain In-Domain Adapting
Large 2-4 days 2-4 days 7-48 hrs
Med 2-4 days 2-4 days 1-48 hrs
Small 1-2 days 1-2 days 2-14 hrs
Tiny 1 days 1-24 hrs 2-24 hrs
Distill 10-24 days 1-2 days

Table 10: Estimates of the computation time required
for training randomly initialized models on just general-
domain data or just in-domain data. We also show the
time required for adapting general-domain models and
distilling data using teachers.

can be arbitrarily sped up using multiple GPUs
in parallel, but future work might explore how to
distill teachers in a less expensive way.

6 Related Work

Our work is one the few that focuses specifically
on training small, under-parameterized in-domain
models. There is, however, similar work which is
not directly comparable but uses knowledge distil-
lation to adapt to new domains.

Knowledge Adaptation uses knowledge distil-
lation to transfer knowledge from multiple, labeled
source domains to un-labeled target domains. This
is in contrast to our setting, which has labels for
both general-domain and in-domain data. Ruder
et al. (2017) introduced this idea as “Knowledge
Adaptation,” using multi-layer perceptrons to pro-
vide sentiment analysis labels for unlabeled in-
domain data. Similar work includes Iterative Dual
Domain Adaptation (Zeng et al., 2019) and Do-
main Transformation Networks (Wang et al., 2019).
These ideas are not limited to machine translation;
recent work by Meng et al. (2020) trains in-domain
speech recognition systems with knowledge dis-
tillation, while Orbes-Arteaga et al. (2019) does
similar work on segmentation of magnetic reso-
nance imaging scans.

Compressing Pre-trained Language Models
Domain adaptation via continued training in NMT
is closely related to the idea of pre-training a lan-
guage model and fine-tuning to different tasks,
which might come from different data distributions
than the pre-training data. Because language mod-
els tend to be extremely cumbersome to train and
evaluate, more focus is given to the compression
aspect of knowledge distillation. Sanh et al. (2019),
Sun et al. (2019), and Liu et al. (2019) indepen-
dently showed that knowledge distillation could
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be used to compress pre-trained models without
affecting downstream tasks. Tang et al. (2019)
showed that task-specific information could be dis-
tilled from a large Transformer into a much smaller
Bi-directional RNN. These methods might reason-
ably be extended to domain adaptation for NMT.

7 Conclusion

In this work, we conducted a large-scale empiri-
cal investigation to determine best practices when
using sequence-level knowledge distillation and
domain adaptation in combination. We found
that adapting models from the general-domain
makes them better teachers and that distilling us-
ing general-domain data does not impact a model’s
adaptability. This leads us to recommend distilling
twice for best results: once in the general-domain
to possibly improve student performance, and again
using an adapted in-domain teacher. The results
are robust among multiple language pairs, student
sizes, in-domain settings.

References
Denny Britz, Quoc Le, and Reid Pryzant. 2017. Ef-

fective domain mixing for neural machine transla-
tion. In Proceedings of the Second Conference on
Machine Translation, pages 118–126.

Boxing Chen, Colin Cherry, George Foster, and
Samuel Larkin. 2017. Cost weighting for neural ma-
chine translation domain adaptation. In Proceedings
of the First Workshop on Neural Machine Transla-
tion, pages 40–46, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of domain adaptation
methods for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 385–391, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Bin Dong, Jikai Hou, Yiping Lu, and Zhihua Zhang.
2019. Distillation ≈ early stopping? harvesting
dark knowledge utilizing anisotropic information re-
trieval for overparameterized neural network.

Kevin Duh. 2019a. The multitarget TED talks
task (MTTT). http://www.cs.jhu.edu/

˜kevinduh/a/multitarget-tedtalks/.

Kevin Duh. 2019b. sockeye-recipes.

Gongfan Fang, Jie Song, Chengchao Shen, Xinchao
Wang, Da Chen, and Mingli Song. 2019. Data-Free
adversarial distillation.

Tommaso Furlanello, Zachary C Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
2018. Born again neural networks.

Mitchell A. Gordon. 2019. All the ways you can com-
press bert.

Mitchell A Gordon and Kevin Duh. 2019. Explain-
ing Sequence-Level knowledge distillation as Data-
Augmentation for neural machine translation.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Marcin Junczys-Dowmunt, Bruno Pouliquen, and
Christophe Mazenc. 2018. COPPA v2. 0: Corpus
of parallel patent applications building large parallel
corpora with GNU make.

Yoon Kim and Alexander M Rush. 2016. Sequence-
Level knowledge distillation.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from
movie and tv subtitles.

Linqing Liu, Huan Wang, Jimmy Lin, Richard Socher,
and Caiming Xiong. 2019. Attentive student meets
Multi-Task teacher: Improved knowledge distilla-
tion for pretrained models.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion, pages 76–79.

Zhong Meng, Jinyu Li, Yashesh Gaur, and Yifan Gong.
2020. Domain adaptation via Teacher-Student learn-
ing for End-to-End speech recognition.

Bojar Ondrej, Rajen Chatterjee, Federmann Christian,
Graham Yvette, Haddow Barry, Huck Matthias,
Koehn Philipp, Liu Qun, Logacheva Varvara, Monz
Christof, and Others. 2017. Findings of the 2017
conference on machine translation (wmt17). In Sec-
ond Conference onMachine Translation, pages 169–
214.

Mauricio Orbes-Arteaga, Jorge Cardoso, Lauge
Sørensen, Christian Igel, Sebastien Ourselin, Marc
Modat, Mads Nielsen, and Akshay Pai. 2019.
Knowledge distillation for semi-supervised domain
adaptation.

Sebastian Ruder, Parsa Ghaffari, and John G Breslin.
2017. Knowledge adaptation: Teaching to adapt.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,

http://arxiv.org/abs/1910.01255
http://arxiv.org/abs/1910.01255
http://arxiv.org/abs/1910.01255
http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
http://arxiv.org/abs/1912.11006
http://arxiv.org/abs/1912.11006
http://arxiv.org/abs/1805.04770
http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
http://arxiv.org/abs/1912.03334
http://arxiv.org/abs/1912.03334
http://arxiv.org/abs/1912.03334
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1606.07947
http://arxiv.org/abs/1606.07947
http://arxiv.org/abs/1911.03588
http://arxiv.org/abs/1911.03588
http://arxiv.org/abs/1911.03588
http://arxiv.org/abs/2001.01798
http://arxiv.org/abs/2001.01798
http://arxiv.org/abs/1908.07355
http://arxiv.org/abs/1908.07355
http://arxiv.org/abs/1702.02052
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108


118

Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4314–4323, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling Task-
Specific knowledge from BERT into simple neural
networks.

Jörg Tiedemann. 2016. Finding alternative translations
in a large corpus of movie subtitle. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3518–
3522.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Yong Wang, Longyue Wang, Shuming Shi, Victor O K
Li, and Zhaopeng Tu. 2019. Go from the general
to the particular: Multi-Domain translation with do-
main transformation networks.

Yingce Xia, Xu Tan, Fei Tian, Fei Gao, Weicong Chen,
Yang Fan, Linyuan Gong, Yichong Leng, Renqian
Luo, Yiren Wang, and Others. 2019. Microsoft re-
search asia’s systems for WMT19. In Proceedings
of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pages 424–
433.

Hongxu Yin, Pavlo Molchanov, Zhizhong Li, Jose M
Alvarez, Arun Mallya, Derek Hoiem, Niraj K Jha,
and Jan Kautz. 2019. Dreaming to distill: Data-free
knowledge transfer via DeepInversion.

Jiali Zeng, Yang Liu, Jinsong Su, Yubin Ge, Yaojie Lu,
Yongjing Yin, and Jiebo Luo. 2019. Iterative dual
domain adaptation for neural machine translation.

Dakun Zhang, Josep Crego, and Jean Senellart. 2018.
Analyzing knowledge distillation in neural machine
translation. In 2018 International Workshop on Spo-
ken Language Translation, IWSLT 2005, Pittsburgh,
PA, USA, October 24-25, 2005, pages 68–75.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2019. Understanding knowledge distillation in non-
autoregressive machine translation.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for Low-Resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1568–1575, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1903.12136
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1911.09912
http://arxiv.org/abs/1911.09912
http://arxiv.org/abs/1911.09912
http://arxiv.org/abs/1912.08795
http://arxiv.org/abs/1912.08795
http://arxiv.org/abs/1912.07239
http://arxiv.org/abs/1912.07239
https://workshop2018.iwslt.org/downloads/Proceedings_IWSLT_2018.pdf
https://workshop2018.iwslt.org/downloads/Proceedings_IWSLT_2018.pdf

