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Abstract

The coronavirus disease (COVID-19) has claimed the
lives of over one million people and infected more
than thirty-five million people worldwide. Several
search engines have surfaced to provide researchers
with additional tools to find and retrieve informa-
tion from the rapidly growing corpora on COVID-
19. These engines lack extraction and visualization
tools necessary to retrieve and interpret complex re-
lations inherent to scientific literature. Moreover, be-
cause these engines mainly rely upon semantic infor-
mation, their ability to capture complex global relation-
ships across documents is limited, which reduces the
quality of similarity-based article recommendations
for users. In this work, we present the COVID-19
Knowledge Graph (CKG), a heterogeneous graph for
extracting and visualizing complex relationships be-
tween COVID-19 scientific articles. The CKG com-
bines semantic information with document topological
information for the application of similar document
retrieval. The CKG is constructed using the latent
schema of the data, and then enriched with biomedical
entity information extracted from the unstructured text
of articles using scalable AWS technologies to form
relations in the graph. Finally, we propose a document
similarity engine that leverages low-dimensional graph
embeddings from the CKG with semantic embeddings
for similar article retrieval. Analysis demonstrates the
quality of relationships in the CKG and shows that
it can be used to uncover meaningful information in
COVID-19 scientific articles. The CKG helps power
www.cord19.aws and is publicly available.

1 Introduction
The onset of the novel SARS-CoV-2 virus has empha-
sized the need to accumulate insights from large vol-
umes of information. Thousands of new scientific arti-
cles on the virus are being published weekly, leading
to a rapid increase in the cumulative knowledge about
the coronavirus disease (COVID-19). COVID-19 has
heightened the need for tools that enable researchers to
search vast scientific corpora to find specific informa-
tion, visualize connections across the data, and discover
related information in the data.

Several COVID-19 dedicated search engines have
come online to address the need for information re-
trieval of scientific literature on the disease. Search en-
gines like Sketch Engine COVID-19, Sinequa COVID-
19 Intelligent Search, Microsoft’s CORD19 Search, and

Amazon’s CORD19 Search use a variety of methodolo-
gies such as keyword search, natural language queries,
semantic relevancy, and knowledge graphs. However,
these engines return thousands of search results that
overlook inherent relationships between scientific ar-
ticles, such as subject topic and citations, and do not
provide tools to visualize relationships, which is benefi-
cial for knowledge discovery. In this paper, we construct
the COVID-19 knowledge Graph (CKG) by extracting
rich features and relationships of COVID-19 related
scientific articles and develop a document similarity
engine that combines both semantic and relationship
information from CKG.

Knowledge graphs (KGs) are structural representa-
tions of relations between real-world entities where re-
lations are defined as triplets containing a head entity, a
tail entity, and the relation type connecting them. KG
based information retrieval has shown great success in
the past decades (Kim and Kim, 1990; Dalton et al.,
2014).

We construct the CKG using the CORD19 Open Re-
search Dataset of scholarly articles (Wang et al., 2020).
Scientific articles, publication authors, author institu-
tional affiliations, and citations form key relationships in
the graph. Further, we extract biomedical entity relation-
ships and highly abstracted topics from the unstructured
text of articles using Amazon Comprehend Medical
service and train a topic model on the corpus. By ap-
plying data normalization technologies we eliminate
duplicate entities and noisy linkages. The resulting KG
contains 336,887 entities and 3,332,151 relations. The
CKG has been made publicly available to researchers
with rapid “one-click” cloud deployment templates.1

We introduce a document similarity engine that lever-
ages both the semantic information of articles and the
topological information from the CKG to accelerate
COVID-19 related information retrieval and discovery.
We employ SciBERT (Beltagy et al., 2019), a pretrained
NLP model, to generate semantic embeddings for each
article. Meanwhile, we utilize knowledge graph em-
bedding (KGE) (Wang et al., 2017; Zheng et al., 2020)
and graph neural network (Schlichtkrull et al., 2018)
technologies to generate embeddings for entities and
relations of the CKG. Finally, by combining judiciously
the semantic embeddings and graph embeddings we use
the similarity engine to propose top-k similar articles.
The CKG and similarity engine are new additions to
www.CORD19.aws, a website using machine learning

1https://aws.amazon.com/cn/covid-19-data-lake/

www.cord19.aws
www.CORD19.aws
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to help researchers search thousands of COVID-19 re-
lated scientific articles using natural language question
queries that has seen over 15 million queries across more
than 70 countries. The CKG adds a graph-traversal rank-
ing feature to search and the similarity engine powers
the similarity-based recommended article system. To
further demonstrate the quality of the CKG, we conduct
a series of experiments analyzing the relations that form
the core pillars of the graph. We first evaluate the ability
of our methodology to capture the topic information
in the text, and show that extracted topics align well
with the subjects of scientific journals. We also perform
link prediction analysis by extracting graph embeddings
that validates the quality of the relations in the graph
and demonstrates that we capture important topological
information from the CKG. Our analysis shows that
the semantic embeddings and graph embeddings learn
useful information and improve our ability to quantify
similarity between articles. Lastly, several motivating
examples show that querying the CKG can extract ac-
tionable insights from scientific articles. To summarize,
our contribution is fourfold:

C1 We construct a scientific KG, named COVID-19
Knowledge Graph (CKG), by judiciously combin-
ing the inherent schema information from COVID-
19 scientific articles as well as the extracted
biomedical entity relationships and topic informa-
tion.

C2 We conduct several data normalization methodolo-
gies to curate the CKG and demonstrate its infor-
mation retrieval, visualization and discovery capa-
bilities. The CKG is publicly available through the
AWS COVID-19 Data Lake repository(cov).

C3 We present a novel similarity-based document re-
trieval system that combines semantic article in-
formation with document topological information
learned from the CKG and show that it reliably
improves the quality of user-suggested documents.

C4 The similarity engine and the CKG have been in-
tegrated into a public available search service for
COVID-19 through www.CORD19.aws to power
the similarity-based article recommendation sys-
tem and to provide a graph-traversal ranking fea-
ture.

2 CKG Construction & Curation
CKG is a directed property graph where entities and
relations have associated attributes (properties) and di-
rection (directed). Figure 1 illustrates the directed prop-
erty graph structure for a small subgraph of CKG. In
this section we describe the dataset used to construct the
CKG, define the entity and relation types, detail CKG
curation methods, provide summary statistics describing
the graph, and detail the cloud infrastructure that drives
CKG scalability.

Figure 1. Visualization of CKG. Paper entities (blue)
connect to Concepts (red), topics (light blue), and au-
thors (gold) through directed relations. Authors connect
to institutions (green).

2.1 The CORD-19 Dataset
COVID-19 Open Research Dataset (CORD-19) is a dy-
namic, growing repository of scientific full text articles
on COVID-19 and related coronaviruses created by the
Allen Institute for AI (AI2) (Wang et al., 2020). The
data is made available via Kaggle with weekly updates
as part of the on-going CORD-19 Research Competi-
tion (kag).

As of 06-01-2020, the CORD-19 dataset consists of
over 60,000 full text. Rich metadata is provided as part
of the dataset e.g. article authors. The data is sourced
from several channels such as PubMed, bioArxiv, and
medRxiv. The dataset is multidisciplinary with articles
covering virology, translational medicine, epidemiology,
computer science and more. CORD-19 grows constantly
and AI2 is working with the wider research community
to normalize and improve the quality of the data.

2.2 Entity Types

Entity Type Count Relation Type Count

Papers 42,220 authored by 240,624
Authors 162,928 affiliated with 121,257
Institutions 21,979 associated concept 2,739,665
Concepts 109,750 associated topic. 95,659
Topics 10 citeps 134,945

Total 336,887 3,332,151

Table 1. COVID-19 Knowledge Graph entity and rela-
tions.

The CKG contains five types of entities corresponding
to papers, authors, institutions, concepts, and topics as
summarized in Table 1. Information on what these
entities represent, their attributes, and how they are
created follows.

Paper Entities. Representation of scientific articles.
Attributes include title, publication date, journal, and
Digital Object Identifier (DOI) link as available in the
CORD-19 Dataset from AI2.

www.CORD19.aws
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Author Entities. Representation of the paper authors.
Attributes include the first, middle, and last names.

Institution Entities. Institution affiliations for au-
thors. Attributes include institution name, country, and
city.

Concept Entities. Comprehend Medical (CM) Detect
Entities V2 is an Amazon Web Service that uses nat-
ural language processing (NLP) and machine learning
for medical language entity recognition and relation-
ship extraction (Parminder Bhatia, 2019). CM classi-
fies extracted entities into entity types: Ibuprofen (en-
tity) belongs to the Medications category (entity type).
We leverage CM to extract biomedical entities from
the scientific articles. Specifically, given the example
text ”Abdominal ultrasound noted acute appendicitis,
recommend appendectomy followed by several series
of broad spectrum antibiotics,” CM extracts Abdomi-
nal (Anatomy), ultrasound (Test Treatment Procedure),
acute appendicitis (Medical Condition), appendectomy
(Test Treatment Procedure), and antibiotics (Medica-
tion) as recognized entities along with model confidence
scores. Entity names e.g. acute appendicitis, form con-
cept entities in the CKG while entity category and model
confidence score are the entities’ attributes.

Topic Entities. We use an extension of Latent Dirich-
let Allocation (LDA) (Blei et al., 2003) termed Z-LDA
(Andrzejewski and Zhu, 2009), trained using the title,
abstract and body text from each paper. Labels are gen-
erated with the help of medical professionals to elim-
inate, merge, and form 10 topics which serve as the
basis for topic entities in the CKG: Vaccines/Immunol-
ogy, Genomics, Public Health Policies, Epidemiology,
Clinical Treatment, Virology, Influenza, Healthcare In-
dustry, Lab Trials (human) and Pulmonary infections.
Re-modeling and manually labeling a topic model is in-
efficient, therefore we train a multi-label classifer (Read
et al., 2011) using the original topic model labels and a
training split from 59k total documents. The resulting
classifier achieves an average F1 score of 91.92 with on
average 2.37 labels per document.

2.3 Relation Types

Relations in the CKG are directed and summarized in
Table 1. Here we defined all relation types.

authored by. This relation connects paper entities
with author entities and indicates that authorship re-
lation.

affiliated with. This relation connects author entities
with institution entities and indicates that affiliated rela-
tion.

associated concept. This relation connects paper en-
tities with concept entities and indicates that associated
relation. These relation have the CM model confidence
score as an attribute.

associated topic. This relation connects paper enti-
ties with topic entities and indicates that associated rela-
tion. These relation have the Z-LDA prediction score as
an attribute.

citeps. This relation connects paper entities with pa-
per references indicating a citation relation.

2.4 CKG Curation
2.4.1 Concept Normalization

We use thresholding on the confidence scores as a de-
noising step by requiring an entity’s confidence scores to
exceed a 0.5% threshold that is determined through em-
pirical experimentation. We explored a parameter range
of 0.4%-0.6% in 0.1 increments. Thresholding comes at
the expense of entity coverage: higher confidence thresh-
old increases the likelihood of papers with no or few
extracted entities. Next, we lemmatize concept entity
names as a form of normalization using SciSpacy (Neu-
mann et al., 2019). SciSpacy is built upon the robust
SpaCy NLP library (Honnibal and Montani, 2017), but
is trained on biomedical texts similar to those in the
CORD19 dataset. We experimentally found SciSpacy
to provide target results for limited string lemmatization
test cases. Moreover, we keep a running distribution
of concept appearances across the dataset. A concept
may appear inN papers, whereN is the total number of
papers in the dataset. We prune concepts that occur in
less than 0.0001%. Concepts that appear in greater than
50% are flagged for manual qualitative assessment of
information value. The main downside of this approach
is scalability and in future work we plan to systematize
and extend this process using domain-specific special-
ized ontology standardization tools like Comprehend
Medical RxNorm (cmm).

2.4.2 Author Normalization

Author names in the CORD-19 dataset require judicious
processing. Oftentimes, paper authors have incomplete
information such as missing “first name” or high name
variation between different academic journals. Addi-
tionally, author citations often follow an abbreviated
format using “first initial, last name”. We utilize a hy-
brid approach similar to (Ammar et al., 2018) involving
normalization and linking. When linking authors, we
normalize author names via lower casing, removing
punctuation, and merging “first, middle, last name”.

2.4.3 Citation Linking

We also normalize the author information in the citepd
papers and match the normalized author names. This
allows us to link papers based on citations. We require
that both normalized author information and article ti-
tle information match exactly. From here, we include
citation links for papers referenced within the CORD-
19 dataset and find 43% of papers citep another paper
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Figure 2. Degree distribution of CKG for various sub-
graphs: shows degree change of CKG with concept
relations removed; citation relations removed; topic
relations removed.

available in the CORD-19.

2.5 Graph Statistics
Table 1 provides counts of all entity and relation types.
The ∼42k paper entities have on average 2.3 outgoing
topic relations, 64.9 outgoing relations to concepts, 5.7
outgoing relations to authors and 3.2 outgoing citation
relations. Furthermore,∼29k paper entities have at least
one outgoing citation relation to another paper, ∼18k
have at least one incoming citation relation from another
paper, ∼14.6k have at least one incoming and outgoing
citation relation, and ∼9.7k have neither an incoming
nor outgoing citation relation. The 163k author entities
have on average 0.75 outgoing relations to institutions
indicating not all authors have institution information
in the data. When considering an undirected version
of the graph, there are 109 connected components with
the diameter of the largest connected component (CC)
equaling 12 entities that indicates one large CC contains
99% of relations and entities, while the diameter (12)
indicates the CKG is dense. Figure 2 shows the undi-
rected degree distribution plot of several sub-graphs of
the CKG. We observe that the greatest change in degree
distribution comes from the sub-graph without concept
relations, exemplifying that concepts form key links in
the graph.

2.6 Infrastructure
We use Amazon Neptune, a fully-managed graph
database optimized for storage and navigation scaling
to billions of relationships. Neptune supports property
graphs and the query languages like Apache TinkerPop
Gremlin and SPARQL. Neptune’s Bulk Loading (bul)
feature helps reduce data ingestion time from several
hours (sequential loading) to minutes for 330k entities
and 3.3M relations using a db.r5.4xlarge (8 cores, 16
vcpu, 128 Gb Memory, 3500 Mbps storage bandwidth)
Amazon Elastic Compute Cloud (EC2) instance. By uti-
lizing (cov) users can find the exported Neptune graph
data, Amazon CloudFormation (clo) templates for one-
click recreation and deployment of the CKG, and the
structured entities and relation files as comma-separated
values (CSV) files. We use Tom Sawyer Graph Database

Figure 3. Query 1: author research leaders [blue box]
ii) institutional leaders [gold box] iii) institution collab-
orations [green]

browser for visualizations (tom).

3 Using CKG for Information Retrieval
In this section we present two example queries targeting
unique scientific questions to demonstrate the CKG’s
information retrieval, visualization and discoverability
capabilities. We show the CKG uncovers intricate rela-
tionships in CORD-19 scientific articles that can aid the
research and policy decision processes.

• Query 1: What authors and institutions are pub-
lishing research pertaining to the drug remdesivir
and human lab trial?

COVID-19 has highlighted the difficulty of health and
public policy decision making during pandemics. The
above question is motivated by the scenario where pol-
icy makers are interested in forming a task force of lead-
ing authors and institutions on a rapidly evolving area
of research such as a drug treatments for COVID-19.
Remdesivir is an investigational nucleotide analog drug
currently in FDA clinical trials by Gilead Sciences (gil).
A CKG user can structure a query identifying articles
with remdesivir concept and lab trials (human) topics
form connections. Paper to concept and topic relations
form ”one-hop” relations. From here we find paper to
author relations via another ”one-hop” operation and
subsequently, author to institution relations via a second
”one-hop” (two-hops total) operation. Figure 3 visu-
ally depicts this query process using a small subset of
the graph. The author entity, surround by a blue box,
is connected to two papers discussing both remdesivir
and lab trials (blue arrows). This author can be viewed
as research leader for this query. Similarly, the insti-
tutional research leader of this sub-graph is the vertex
surrounded in gold box, connected to multiple authors
who have published articles matching this query. Lastly,
the CKG also helps to uncover multiple-organization
collaborations depicted by the vertex surrounded by
green box and arrows.

• Query 2: What papers discussing COVID-19 risk
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factors are most often citepd by researchers within
the CORD-19 dataset?

Researchers can query the CKG to return scientific
articles related to specific COVID-19 risk factors such as
asthma, heart disease, and respiratory malfunction. The
query returns articles with related risk factors. Next, the
citation network is leveraged to rank articles by citation
counts within the data set. Table 2 shows the top three
results for this query and the respective citations.

CORD UID Title citepd By

grw5s2pf The Molecular Biology of Coronaviruses 498

m1jbpo5l Bocavirus and Acute Wheezing
in Children 152

vnn4135b
A Diverse Group of Previously Unrecognized
Human Rhinoviruses Are Common
Causes of Respiratory Illnesses in Infants

68

Table 2. Graph query results.

4 Using CKG for article
recommendations

In this section we combine article semantic information
with CKG topological information to quantify similar-
ity between articles and construct a similarity-based
recommendation system.

4.1 Leveraging Embeddings

4.1.1 Semantic Embeddings

In order to capture semantic information across the
CORD-19 scientific articles we leverage SciBERT (Belt-
agy et al., 2019) that has shown strong transfer learning
performance on a wide variety of NLP tasks (Cer et al.,
2018). Specifically, our goal is to represent CORD-19
scientific articles as dense document embeddings.

Sentence Transformer library creates sentence level
embeddings from the plain text articles (Reimers and
Gurevych, 2019). We tokenize the title, abstract and
body text into sentences and then using SciBert to cre-
ate three embedding matrices representing sentences
from component of the article. Next, we average each
metric to compute three dense vectors. Finally, a single
dense document embedding is obtained by averaging
the vectors.

Table 3 shows the average pairwise cosine similarity
of the semantic embeddings constructed from the title,
abstract, and body. The cosine similarity matrix among
paper pairs is averaged to obtain average similarity for
each text portion. We observe the average similarity of
scientific articles and availability in the dataset differ
based on the article text portion used, noting titles on av-
erage have lower similarity and have the highest dataset
coverage compared to abstracts or body text. The lower
coverage of abstracts drove our decision to combine
body and title text with abstracts.

Text Type Cosine Similarityavg Data Coverage

titlet .266 97.7%
abstracta .139 84.9%
bodyb .092 98.6%

combined .131 99.8%

Table 3. Average cosine distance and percent of dataset
coverage using SciBERT embeddings.

4.1.2 Knowledge Graph Embeddings: TransE

We leverage knowledge graph embedding (termed
KGE) methodology to encode entities and relations
(relations) in the COVID-19 Knowledge Graph as d-
dimensional vector embeddings. The embeddings as-
sociated with the entities and relations of the graph are
generated by a specific KGE algorithm TransE (Bordes
et al., 2013) that satisfy a predetermined mathemati-
cal model. We can use these embeddings for down-
stream tasks such as paper recommendation (Zhang
et al., 2019). In particular, papers with high similarity
in embedding space will be highly correlated.

The knowledge graph G is composed of entities and
relations such that G = (V,E), where V represents
graph entities and E represents the set of relations con-
necting entities. A specific instance of a relation is
represented as a triplet (h, r, t), in which h is the head
entity, r the type of the relation, and t the tail entity.
Given a set of triplets T in the above format, TransE
learns a low-dimensional vector for each entity and rela-
tionship where h+r ∼ t by minimizing a margin-based
objective function over the training set using stochastic
gradient descent

min
∑

h,r,t∈D+∪D−

log(1 + exp(−y × f(h, r, t))) (1)

where f(h, r, t) = γ − ‖h+ r − t‖2 is the scoring
function; h, r, t are the embedding of the head entity
h, relation r and the tail entity t, and γ is a predefined
constant. Here D+ and D− represent the positive and
negative sets of triplets respectively, and y = 1 if the
triplet corresponds to a positive example and −1 oth-
erwise. Negative triplets are corrupted versions of the
extant (positive) triplets defined by the KG, in which
either the head or the tail entity have been randomly
swapped for another entity in V .

We leverage the Deep Graph Library Knowledge Em-
bedding library (DGL-KE) (Zheng et al., 2020), a high
performance package for learning large-scale KGE, to
train the aforementioned KGE model. By supplying
the model with both the entities and relation triplets as
described in table 1, we generate vector embeddings for
each paper.

4.1.3 Relational Graph Convolutional Network

KGE models generate embeddings solely by taking into
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account the structure of the graph. Nevertheless, the
learned semantic embeddings can be used as relation
features for learning paper relation embeddings. In
this section we present an experiment extending the
KGE methodology by directly incorporating seman-
tic information to learn paper embeddings that directly
capture semantic and topological information. While
KGE models do not directly exploit relation features
graph convolutional networks can exploit such relation
features and possibly obtain richer embeddings (Kipf
and Welling, 2017). For this purpose, we apply a re-
lational graph convolutional network (termed RGCN)
model (Schlichtkrull et al., 2018) to learn the relation
embeddings exploiting both paper semantic features as
well as the graph structure.

An RGCN model is comprised by a sequence of
RGCN layers. The output of the lth RGCN layer for
relation n is a nonlinear combination of the hidden rep-
resentations of neighboring entities weighted based on
the relation type. The relation features are the input
of the first layer in the model, which are the semantic
paper embeddings. For relation types without features
we use an embedding layer that takes as input an one-
hot encoding of the relation id. The entity embeddings
are obtained by the final layer of the RGCN. The major
difference among RGCN and KGE is that RGCN em-
beddings are learned with graph convolutions and take
into account relation features whereas the KGE embed-
dings are just supervised by equation (1) (Schlichtkrull
et al., 2018; Zheng et al., 2020). Recaping, the RGCN
relation embeddings combine both the graph structure
information as well as the relation features generated by
the semantic embedding methods. We implement and
train the RGCN model using the DGL framework (Wang
et al., 2019). The RGCN model was parametrized with
400 hidden units per layer, L = 2 hidden layers.

4.2 Similarity Engine Construction

Our document similarity engine uses a combinations of
the semantic and KGE embeddings as the RGCN model
under-performed in certain ways as shown in Section
5. Thereby we capture semantic information contained
within a publication with the paper’s topological infor-
mation from the CKG e.g. papers, authors, concepts,
topics, etc. relations. Given a paper, the engine retrieves
a list of top-k most similar papers using cosine distance.

5 Analysis

This section is organized into two parts presenting met-
rics and results evaluating the work done in Sections 2
and 4 respectively. Part one validates the construction
and curation of the CKG by showing article topics align
with common subject focuses of scientific journals and
CKG relations are high quality. Part two analyzes the
results of the similarity engine demonstrating we can
improve the quality of recommended articles using both
semantic and topological information.

Figure 4. Distribution of topics by journal

Figure 5. link prediction score distribution by relation
types

5.1 Graph Validation
5.1.1 Topic Model Validation

Most journals have well defined topics. For example,
Journal of Virology explores the nature of viruses and
mainly focuses on related domains; Journal of Vaccine
focuses on the field of vaccinology. To evaluate our
topic model, we summarise the generated topics from
papers in the CKG belonging to these two journals in
Figure 4. It can be seen that the generated topics of pa-
pers from Journal of Virology, e.g., virology, genomics
and lab-trials-human, are highly related to virology. The
generated topics of papers from Journal of Vaccine, e.g.,
vaccines-immunology, are highly related to vaccinology.

5.1.2 CKG Relation Validation

To assess the correctness of the triplets that make up
the CKG, we used the KGE model described in Sec-
tion 4.1.2 to score each of its triplets using

score = γ − ||h+ r − t||2, (2)

where h and t are the embeddings for the head and
tail entities, r is the embedding of the relation type,
and γ = 12 is an offset used to accelerate the training.
We compute these scores for all of CKG’s triplets by
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following a 10-fold strategy to split the triplets into
10 sets. In this approach, for each fold we used the
remaining 9 folds to estimate the KGE model and used it
to computed the scores for the left-out fold. According
to Equation 1, if the score computed for a triplet is
around 0, then the triplet is consistent with the KGE
model. On the other hand, if the score is further away
from 0 (in either direction), then the triplet corresponds
to potentially an outlier or an error. Figure 5 shows the
score distribution of the triplets for different relation
types. These results show that the score of most triplets
is close to 0 and that there is only a small fraction of
inconsistent (according to the model) triplets.

5.2 Recommendation Analysis

5.2.1 Topic Similarity

We start by analyzing the topic similarity between each
source paper and its top-5 most similar papers. In Table
4 a baseline is established by generating a top-5 list of
papers random selected from the 42k scientific articles.
Then, we collect top-5 similar article recommendations
rij , j < 5 for every source paper si using four different
embedding methods (Semantic, KGE, RGCN and
Semantic&KGE). We make use of topic-based distances
to compute measures of similarity by creating a one-hot
encoded vector T (u) for every paper p in our dataset
representing its topics e.g. contains or not. Jaccard
distance (Kosub, 2016) is used to compute distance
between vectors u, v ∈ [T, F ]N , N ∈ N

J(u, v) =
cTF + cFT

cTT + cTF + cTF
(3)

where cij is the number of occurrences of u[k] = i and
v[k] = j, j < N .

Intra-List Similarity (ILS) (Ziegler et al., 2005) is used
to measure topic similarity of paper recommendations
using the average Jaccard distance between a source
paper and its list of top − 5 similar papers. We then
take the average of scores over all source papers and
compare across methods as displayed in Table 4. For
each source paper si we define its topic similarity

TS(si) =
1

k = 5

k∑
j=1

J(T (si), T (rij)) (4)

TS =
1

N

N∑
i=1

TS(si) (5)

According to Equation 4, the lower the score, the more
common topics are between the source paper and its
top− 5 similar papers.

In Table 4 we observe lower average Jaccard scores
between source papers and similar recommendations
relative to the baseline in all embedding methods. Fur-
thermore, we note KGE embedding achieves a compara-
tively lower score than RGCN. Finally, the combination
of semantic and KGE embeddings achieves the lowest
Jaccard score.

Method Topic DistanceJaccard
Random .821
SemanticSem .360
GraphKGE .345
GraphRGCN .654
Sem. & KGE .311

Table 4. Topic similarity (Jaccard distance) of recom-
mendations vs random baseline.

5.2.2 Citation Similarity

The CKG citation network shows the relationship
between papers. If a paper is citepd by another, they
may share the same topic, use similar technology or
have similar motivation. We train RGCN embeddings
from the CKG with and without the citation network
and follow the same methodology for KGE embeddings.
We select only papers that citep at least one other paper.
For each of these papers we generate the top-5 similar
papers and calculate the average number of a paper’s
citations that appear in the top-5 recommended most
similar papers. For Table 5 we average this score across
all papers for the four RGCN and KGE embeddings. We
observe that KGE trained with citations has the highest
overlap score at 29.11% as expected. Further, KGE
embeddings learned without citations do a poor job of
recommending citepd papers in the top-5. This is ex-
pected since the relations authored by, associated topic,
and associated concept do not give much information
to infer the exact citation: many papers share the same
topic and concept.

Method Overlap

RGCNwithout citations 5.22%
KGEwithout citations 0.01%
RGCNwith citations 8.96%
KGEwith citations 29.11%

Table 5. RGCN vs KGE Top-5 Citation Overlap

Random SemanticSem KGE RGCN

Random 1.000 0.014 0.009 0.008
SemanticSem - 1.000 0.084 0.081
GraphKGE - - 1.000 0.137
GraphRGCN - - - 1.000

Sem & KGE 0.10 0.164 0.463 0.005

Table 6. Overlapping (intersection over union) scores
of Top-5 similar papers by methodology

5.2.3 Embedding Subspace

We use truncated singular value decomposition (SVD)
to create 2D projections of paper embeddings of
different embeddings methods. We select 5 papers with
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Semantic Embeddings KGE

Semantic & KGE

Topics
genomics
epidemiology and lab-trials-human

virology
clinical-treatment, public-health-policies,
and healthcare-industry
vaccines-immunology

RGCN

Figure 6. Visual comparison of truncated SVD of
four embedding methods using five scientific articles in
the dataset. Paper CORD UIDs: pw60qx7c, fjfc3rto,
790d7v7q, v2lp739t, kt5awf8i

different topics in our dataset and their corresponding
top-5 recommendations. We plot the truncated SVD
reduction of their embeddings and plot them based on
the source paper. The results are represented in Figure
6. The top left shows the SciBERT embeddings for
the five papers and their associated topics (color coded
according to paper). We observe the topics genomics
and epidemiology and human lab trials as described
in Section 2, are close to each other. This is expected
as many genomic studies are genome wide association
studies, which are considered a subset of epidemiology.
The top right shows the KGE embeddings’ SVD
result. It can be seen papers from same topics are
clustering to each other while separating across topics.
On the other side, the combination of SciBERT
embeddings with KGE embeddings which is currently
used in the similarity engine (bottom left) shows that
virology and vaccines immunology, and genomics and
epidemiology and human lab trials narrow in proximity
from KGE. This matches the observed research
given virology is the study of viruses while similarly,
vaccines immunology is the study of how viral immu-
nizations stimulate the immune system hence closer
embedding similarity match expectations of researchers.

5.2.4 Recommendation Overlap

We generate top-5 most similar papers for each paper in
the dataset using five different methodologies, Random
(Randomly select 5 papers), Semantic, KGE, RGCN
and Semantic&KGE. Table 6 captures the intersection
over union of similar paper sets across methodologies.
We observe a low overlapping between semantic and
graph embeddings, which is as expected since Semantic
capture the semantic information of certain paper while
KGE/RGCN capture the topological information of the

Figure 7. Popularity (= occurrences of paper in the
top-5 most similar paper list) analysis for semantic em-
bedding and KGE embedding engine grouped by bins.

CKG. The combination of them, i.e. Semantic&KGE,
shows the agreement with both side, which means it can
recommend papers with a conjunction of both semantic
and topological information.

5.2.5 Popularity

Figure 7 presents a popularity analysis of KGE and
Semantic Embedding, where popularity captures the
number of occurrences of an individual paper in the
top-5 most similar items list for all papers in the dataset
grouped by frequency. The left tail of the distribution
shows papers that occur many time times in top-5 rec-
ommended lists with the overall distribution resembling
a power law distribution common to recommendation
systems (Jannach et al., 2013). For KGE embeddings
707 papers occur more than 20 times and for semantic
912 occur more than 20 times.

6 Conclusion

In this paper we construct a COVID-19 Knowledge
Graph from the CORD-19 dataset and demonstrate how
researchers and policy makers can extract timely infor-
mation to answer key scientific questions on COVID-19
from a corpus of scientific articles. To further facili-
tate efforts we employ machine learning entity detec-
tion models to extract medical entities and relationships.
With the help of medical professionals we add global
topic information that forms additional medical relation-
ships in the CKG. We train KGE models using CKG
relations to obtain paper embeddings capturing topolog-
ical isomorphic and semantic information for the appli-
cation of similar paper retrieval on www.cord19.aws.
Future work may include further enhancements to CKG
information retrieval capabilities such as: expanding
biomedical entity extraction using biomedical concept
annotators like PubTator2, re-training RGCN models
with additional entity and relation attributes, and incor-
porating additional KGs into the CKG e.g. COVID-19
drug repurposing graphs (Gramatica et al., 2014).

2https://www.ncbi.nlm.nih.gov/research/pubtator/

www.cord19.aws


9

References

Amazon Comprehend RxNorm linking. https:
//docs.aws.amazon.com/comprehend/
latest/dg/ontology-linking-rxnorm.html.

Amazon Neptune. https://docs.aws.amazon.
com/neptune/latest/userguide/bulk-load.
html.

AWS CloudFormation. https://aws.amazon.
com/cloudformation/.

AWS COVID-19 Data Lake. https://aws.amazon.
com/covid-19-data-lake/.

GILEAD. https://www.gilead.com/purpose/
advancing-global-health/covid-19/
about-remdesivir.

Kaggle cord-19 research challenge. https://
www.kaggle.com/allen-institute-for-ai/
CORD-19-research-challenge.

Tom Sawyer. https://www.tomsawyer.com/.

Waleed Ammar, Dirk Groeneveld, Chandra Bhagavat-
ula, Iz Beltagy, Miles Crawford, Doug Downey, Ja-
son Dunkelberger, Ahmed Elgohary, Sergey Feld-
man, Vu Ha, et al. 2018. Construction of the liter-
ature graph in semantic scholar. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Industry
Papers), pages 84–91.

David Andrzejewski and Xiaojin Zhu. 2009. Latent
dirichlet allocation with topic-in-set knowledge. In
Proceedings of the NAACL HLT 2009 Workshop on
Semi-supervised Learning for Natural Language Pro-
cessing, pages 43–48.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3606–3611.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko. 2013.
Translating embeddings for modeling multi-relational
data. In Advances in neural information processing
systems, pages 2787–2795.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Jeffrey Dalton, Laura Dietz, and James Allan. 2014. En-
tity query feature expansion using knowledge base
links. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in in-
formation retrieval, pages 365–374.

Ruggero Gramatica, Tiziana Di Matteo, Stefano Gior-
getti, Massimo Barbiani, Dorian Bevec, and Tomaso
Aste. 2014. Graph theory enables drug repurposing–
how a mathematical model can drive the discovery of
hidden mechanisms of action. PloS one, 9(1).

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Dietmar Jannach, Lukas Lerche, Fatih Gedikli, and
Geoffray Bonnin. 2013. What recommenders
recommend–an analysis of accuracy, popularity, and
sales diversity effects. In International conference
on user modeling, adaptation, and personalization,
pages 25–37. Springer.

Young Whan Kim and Jin H Kim. 1990. A model of
knowledge based information retrieval with hierarchi-
cal concept graph. Journal of Documentation.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. Toulon, France.

Sven Kosub. 2016. A note on the triangle inequality for
the jaccard distance. CoRR, abs/1612.02696.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. Scispacy: Fast and robust models for
biomedical natural language processing. In Proceed-
ings of the 18th BioNLP Workshop and Shared Task,
pages 319–327.

Mohammed Khalilia Selvan Senthivel Parminder Bhatia,
Busra Celikkaya. 2019. Comprehend medical: a
named entity recognition and relationship extraction
web service.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification. Machine learning, 85(3):333.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, pages 593–607. Springer.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn
Funk, Rodney Kinney, Ziyang Liu, William Merrill,
et al. 2020. Cord-19: The covid-19 open research
dataset. arXiv preprint arXiv:2004.10706.

https://docs.aws.amazon.com/comprehend/latest/dg/ontology-linking-rxnorm.html
https://docs.aws.amazon.com/comprehend/latest/dg/ontology-linking-rxnorm.html
https://docs.aws.amazon.com/comprehend/latest/dg/ontology-linking-rxnorm.html
https://docs.aws.amazon.com/neptune/latest/userguide/bulk-load.html
https://docs.aws.amazon.com/neptune/latest/userguide/bulk-load.html
https://docs.aws.amazon.com/neptune/latest/userguide/bulk-load.html
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/covid-19-data-lake/
https://aws.amazon.com/covid-19-data-lake/
https://www.gilead.com/purpose/advancing-global-health/covid-19/about-remdesivir
https://www.gilead.com/purpose/advancing-global-health/covid-19/about-remdesivir
https://www.gilead.com/purpose/advancing-global-health/covid-19/about-remdesivir
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.tomsawyer.com/
http://arxiv.org/abs/1612.02696
http://arxiv.org/abs/1612.02696


10

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai,
Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao
Ma, et al. 2019. Deep graph library: Towards efficient
and scalable deep learning on graphs. arXiv preprint
arXiv:1909.01315.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724–
2743.

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Rama-
murthy, Bo Li, Yuan Qi, and Le Song. 2019. Can
graph neural networks help logic reasoning? arXiv
preprint arXiv:1906.02111.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zi-
hao Ye, Jin Dong, Hao Xiong, Zheng Zhang, and
George Karypis. 2020. Dgl-ke: Training knowl-
edge graph embeddings at scale. arXiv preprint
arXiv:2004.08532.

Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan,
and Georg Lausen. 2005. Improving recommenda-
tion lists through topic diversification. In Proceed-
ings of the 14th international conference on World
Wide Web, pages 22–32.


