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Abstract

In this paper, we describe the system sub-
mitted to the IWSLT 2020 Offline Speech
Translation Task. We adopt the Transformer
architecture coupled with the meta-learning
approach to build our end-to-end Speech-
to-Text Translation (ST) system. Our
meta-learning approach tackles the data
scarcity of the ST task by leveraging the data
available from Automatic Speech Recognition
(ASR) and Machine Translation (MT) tasks.
The meta-learning approach combined with
synthetic data augmentation techniques
improves the model performance significantly
and achieves BLEU scores of 24.58, 27.51,
and 27.61 on IWSLT test 2015, MuST-C test,
and Europarl-ST test sets respectively.

1 Introduction

The goal of the IWSLT 2020 Offline Speech Trans-
lation challenge(Ansari et al., 2020) is to check
the feasibility of end-to-end models for translat-
ing audio speech of one language into text of a
different target language. The success of end-to-
end neural models for ASR (Graves et al., 2013)
and MT (Bahdanau et al., 2015) inspired to build
end-to-end neural models for the more challeng-
ing Speech-to-Text translation (ST) task (Bérard
et al., 2016). Traditionally the ST systems are built
by cascading ASR and MT systems (Ney, 1999).
However, the cascaded system suffers from error
propagation, latency, and memory requirement is-
sues. Although these issues can be addressed using
end-to-end ST models, it is hard to collect such
data for training these models.

In this work, we build an end-to-end ST sys-
tem which not only addresses the issues of a cas-
caded system but also works with limited training
data. The proposed system is fine-tuned towards
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IWSLT 2020 Offline Speech-Translation Task 1.
However, the proposed training strategies and the
data augmentation techniques can be adopted into
existing and future ST models. We adopt the meta-
learning approach proposed for ST task (Indurthi
et al., 2019) to train our system. The meta-learning
based training approach not only allows us to lever-
age huge amounts of training data available in ASR
and MT tasks but also helps to find a good initial-
ization point for the target ST task.

We conduct several experiments involving ASR,
MT, and ST corpora to test our model performance
on the IWSLT 2020, MuST-C, and Europarl-ST
English-German (En-De) ST tasks. Our experi-
ments reveal that the proposed model trained us-
ing the meta-learning approach achieves significant
performance gains over the model which only uti-
lizes the ST data for training. Our model achieves
4.81, 5.37, and 8.46 BLEU score improvements
on IWSLT test 2015, MuST-C test, Europarl-ST
test sets compared to the models trained without
using the meta-learning approach for training. Our
best system attains 24.58, 27.51, and 27.61 BLEU
scores on IWSLT test 2015, MuST-C test, and
Europarl-ST test sets, respectively.

2 Model Architecture

We use the Transformer model as a base Sequence-
to-Sequence (seq2seq) model to train the ASR, MT,
and ST tasks. In this section, we describe briefly
about the Transformer architecture and how it is
adopted to ASR and ST tasks. In Section 2.2, we
describe the meta-learning algorithm used to train
our seq2seq model.

2.1 Base Architecture
A general seq2seq architecture (Sutskever et al.,
2014) generates a target sequence y =

1The International Conference on Spoken Language Trans-
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{y1, · · · , yn} given a source sequence x =
{x1, · · · , xm} by modeling the conditional proba-
bility, p(y|x, θ). The MT task is one example of
seq2seq problems where x represents the input se-
quence in the source language and y represents the
translated output sequence in the target language.

The non-recurrent Transformer network
(Vaswani et al., 2017) has been extensively used
to solve general seq2seq problems, especially
the MT task. The Transformer is based on
an encoder-decoder architecture (Cho et al.,
2014). The encoder and decoder blocks of the
Transformer network are composed of stacks
of N, M identical layers. Each encoder layer
has two sub-layers, the first being a multi-head
self-attention mechanism, and the second sub-layer
being a position-wise fully connected feed-forward
network. Similarly, each decoder has these two
sub-layers. In addition to these two sub-layers,
the decoder contains an additional sub-layer for
computing the encoder-decoder attention vector
based on soft attention mechanism (Bahdanau
et al., 2015).

2.2 MAML

Meta-Learning approach is proven to be very useful
to mitigate the data scarcity issue in low resource
tasks. Due to the scarcity of ST data in our task, we
use the variant of meta-learning approach called
Modality Agnostic Meta-Learning (MAML) (Finn
et al., 2017a) to leverage high resource tasks when
training on low resource tasks. Here, we briefly
describe the MAML approach for the ST task. For
more details about the meta-learning approach for
the ST task, please refer to (Indurthi et al., 2019).

The MAML approach involves two phases: (1)
Meta-Learning Phase, (2) Fine-tuning Phase. In
the meta-learning phase, we use a set of related
high resource tasks as source tasks to train the
model. In this phase, the model captures the gen-
eral learning aspects of the tasks involved. During
the fine-tuning phase, we tune the model towards
the specific target task after initializing the model
from the parameters learned in the meta-learning
phase.

Meta-Learning Phase: In this phase, we
use the high resource tasks as source tasks
{τ1, · · · , τ s} to find a good parameter initializa-
tion point θ0 for the low resource target task τ0.
For each step in this phase, we first uniformly sam-
ple one source task τ at random from the set of

source tasks {τ1, · · · , τ s}. We then sample two
batches(Dτ and D

′
τ ) of training examples from

this task τ . The Dτ is used to train the model to
learn the task specific distribution and this step is
called meta-train step. In each meta-train step, we
create auxiliary parameters (θaτ ) initialized from
the original model parameters (θm). We update
the auxiliary parameters during this step using Dτ

while keeping original parameters intact. The auxil-
iary parameters (θa) are updated using the gradient-
decent step and it is given by,

θaτ = θm − α∇θm`(Dτ ; θ
m). (1)

After the meta-train step, the auxiliary parame-
ters (θa) are evaluated on D

′
τ to compute the loss.

This step is called meta-test and the computed loss
is used to update the original model parameters
(θm).

θmτ = θm − β∇θa`(D
′
τ ; θ

a).‘ (2)

Note that the meta-test step is performed over
the model parameters (θm), whereas the loss is
computed using the auxiliary parameters (θa). In
effect, the meta-learning phase aims to optimize
the model parameters such that a new low resource
target task can be quickly learned during the fine-
tuning phase.

Fine-tuning Phase: During fine-tuning phase,
the model is initialized from the meta-learned pa-
rameters (θm) and trained on specific target task.
In this phase, the model training is done like a
usual neural network training without involving the
auxiliary parameters.

Exposing the model parameters to vast
amounts of data from high resource source
tasks {τ1, · · · , τ s} during the meta-learning phase
makes them suitable to act as a good initialization
point for the target task τ0.

2.3 Speech-to-text Translation:
We adopt the basic Transformer (Vaswani et al.,
2017) architecture described in Section 2.1 to train
ASR and ST tasks. We represent the speech
sequence in these tasks using the Log Mel 80-
dimensional features. The speech sequences are
usually a few times longer than the text sequences.
Thus, we add a compression layer at the beginning
of the Transformer network to compress and extract
structure locality from the speech sequences. This
compressed signal is given as input to the Trans-
former encoder. The compression layer comprises
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of a stack of CNN layers. The text sequences in all
the ASR, MT, and ST tasks are represented using
word piece vocabulary.

The limited amount of training data in the ST
task can result in over-fitting and leads to an infe-
rior performance. Hence, we use the meta-learning
approach described in the Section 2.2. The meta-
learning approach for ST task proposed by (In-
durthi et al., 2019) suggests high resource tasks
such as Automatic Speech Recognition (ASR) and
Machine Translation (MT) as source tasks during
meta-learning phase. Unlike (Indurthi et al., 2019),
we include ST task as one of the source tasks during
the meta-learning phase to leverage the ST training
data as well. So, the set of source tasks in our meta-
learning phase are {ASR,MT, ST} and the target
task τ0 during the fine-tuning phase is ST. We dy-
namically disable the compression layer whenever
we sample the MT task during the meta-learning
phase. This allows us to train the model on the
tasks with different input-output modalities.

During the meta-learning phase, the parameters
of the model (θm) are exposed to vast amounts
of speech-to-transcripts and text-to-text translation
examples via ASR and MT tasks along with the
original ST tasks’ speech-to-text translation exam-
ples. This allows the parameters of all the sub-
layers in the model such as compression, encoder,
decoder, encoder-decoder attention, and output lay-
ers to learn the individual language representations
and translation relations between them.

2.4 Training

The speech-to-text translation models are trained
on a dataset D of parallel sequences to maximize
the the log likelihood:

`(D; θ) =
1

|D|

|D|∑
i=1

log p
(
yi|xi; θ

)
(3)

where θ denotes the parameters of the model. To
facilitate the training on multiple languages and
tasks, we create a universal vocabulary by follow-
ing (Gu et al., 2018). The universal vocabulary
is created based on all the tasks involved in the
meta-learning and fine-tuning phases.

3 Datasets

3.1 Dataset composition

Datasets used to train our model come from three
different tasks, ASR, MT, and ST. All of these

Task Corpus # hours # Examples
MT Open Subtitles N/A 22,512,639
MT WMT 19 N/A 4,592,289
ASR LibriSpeech 982 232,958
ASR IWSLT 19 ST(filtered) 220 145,372
ASR MuST-C 400 229,702
ASR TED-LIUM 3 452 286,263
ST Europarl-ST 89 32,628
ST IWSLT 19 ST(filtered) 220 145,372
ST MuST-C 400 229,703

Table 1: Number of original training examples in each
dataset.

datasets are used during the meta-learning phase,
while only the ST task dataset is used for fine-
tuning. All the corpora we used are from the
IWSLT 2020’s allowed training data. The details
of all the datasets are given in the Table 1.

ST Task: For ST task, we used Europarl-
ST(Iranzo-Sánchez et al., 2019), IWSLT 19(fil-
tered), and MuST-C(Di Gangi et al., 2019) datasets.
The total number of examples from these three
datasets is 407K, where as the size of the ASR
corpora is 894K examples. To resolve the ST data
scarcity issue, we augment the training data for ST
with various approaches described in the Section
3.2. Thus, we increased the size of the ST training
data from 407K examples to 2.2M examples.

ASR Task: We used four different datasets to
train the ASR English task, IWSLT 19(filtered),
LibriSpeech(Panayotov et al., 2015), MuST-C, and
TED-LIUM 3(Hernandez et al., 2018), which adds
a total of 894K English speech-to-text transcripts.
Although, IWSLT 19(filtered), MuST-C, and TED-
LIUM 3 are ST corpora, they also have the English
transcripts, so we include them into ASR tasks as
well. We do not augment the ASR datasets with
synthetic data, unlike the ST datasets. Adding more
synthetic data for ASR task may bias the model
towards ASR task rather than target ST task.

MT Task: WMT 19 and Open Subtitles(Lison
et al., 2019) corpora are used for the MT task. The
examples used for training MT come from Com-
mon Crawls, Europarl v9, and News Commentary
v14 sets of WMT 19, which amounts to 27M train-
ing examples.

3.2 Data augmentation

For the data augmentation on the text side, we
use two English-to-German NMT model and top-
2 beam results to generate synthetic German se-
quences from the corresponding English sequences.
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Corpus Use
original data

Speech
Augmentation

Text
Augmentation # Pairs # Examples

Europarl-ST Y ×2 ×2 3 pairs 97,884
IWSLT 19 ST(filtered) Y ×4 ×4 5 pairs 726,380
MuST-C Y ×3 None 4 pairs 918,812
TED-LIUM 3 N ×2 ×2 2 pairs 536,526

Table 2: Data augmentation strategies for the ST task.

For speech sequence, we use the Sox library to
generate the speech signal using different values
of speed, echo, and tempo parameters similar to
(Potapczyk et al., 2019). The parameter values
are uniformly sampled using these ranges : tempo
∈ (0.85, 1.3), speed ∈ (0.95, 1.05), echo delay
∈ (20, 200), and echo decay ∈ (0.05, 0.2). We
increase the size of the IWSLT 19(filtered) ST
dataset to five times of the original size by augment-
ing 4X data – four text sequences using the NMT
models and four speech signals using the Sox pa-
rameter ranges. For the Europarl-ST, we augment
2X examples to triple the size. The TED-LIUM
3 dataset does not contain speech-to-text transla-
tion examples originally, hence, we create 2X syn-
thetic speech-to-text translations using speech-to-
text transcripts. Finally, for the MuST-C datasest,
we use synthetic speech to increase the dataset size
to 4X. Overall, we created the synthetic training
data of size roughly equal to four times the original
data using data augmentation techniques described
above. The details of these synthetic datasets are
given in the Table 2. During training, we also tried
SpecAugment(Park et al., 2019) to increase the
speech data, but it did not help to boost overall
performance.

3.3 Data processing

In order to deal with different input and output
modalities, we use universal vocabulary (Gu et al.,
2018) generated from all the text data, i.e. ASR
transcripts, MT source and target text and ST trans-
lations. For input speech signal in ASR and ST
tasks, we use Log Mel 80-dimensional features to
process the input speech. Additionally, to remove
noisy data in IWSLT 19 ST dataset, we use a pre-
trained ASR model to filter examples with word
error rate (WER) ≥ 70.

Dev/Test set # Examples
IWSLT Test 2010 1,568
IWSLT Test 2015 1,080

MuST-C Dev 1,423
MuST-C Test 2,641

Europarl-ST Dev 1,320
Europarl-ST Test 1,253

Table 3: The number of examples of dev and test sets.

4 Experiments

4.1 Implementation Details

We trained all our models on 4*NVIDIA V100
GPUs. The MAML model is implemented based
on the Tensor2Tensor framework (Vaswani et al.,
2018). We train the models in the meta-learning
phase for 1600k steps and then finetune for 400k
steps. The compression layer is composed of three
CNN layers. The number of encoder and decoder
layers(N and M) in the base transformer model is
set to 10 and 8, respectively. In all the experiments,
a dropout rate of 0.2 is used. We use a batch size
of 1.5M frames for the speech sequences and a
batch size of 4096 tokens for the text sequences.
In order to deal with small batches due to long
speech signals, we use Multistep Adam optimizer
(Saunders et al., 2018) in our experiments, with the
gradients accumulated over 32 steps.

4.2 Results

In this section, we report the performance of our
models on different ST datasets. We report the
performance of models on IWSLT tst 2010, tst
2015, MuST-C dev, MuST-C test, Europarl-ST dev,
and Europarl-ST test sets. The number of examples
in these test sets are reported in the Table 3.

We trained one model using only ST datasets
shown in Table 2, called woML (without Meta-
Learn) from here on. This model woML is trained
without using the meta-learning approach. We
trained another model, called wML (with Meta-
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Model
IWSLT MuST-C Europarl-ST

tst 2010 tst 2015 Dev Test Dev Test
woML (without Meta-Learn) 20.21 19.77 16.8 22.14 19.23 19.15
wML (with Meta-Learn) 25.98 24.4 22 26.77 25.8 26.8
Model Averaging 26.43 24.58 23.59 27.51 26.88 27.61

Table 4: Performance of models trained using with/without meta-learning approach on various datasets.

Learn), in which we first pre-train the model using
the meta-learning approach described in the Sec-
tion 2.2 using all the ASR, MT, ST tasks. We then
finetune the model from the meta-learned parame-
ters on the ST task. As we can see from the Table 4,
the wML model achieves a better BLEU score than
woML on all the ST datasets. We see that the wML
model out-performs woML by achieving a BLEU
score of 24.4 on IWSLT 2015 test set as compared
to the 19.77 BLEU score achieved by woML. These
results clearly show that the meta-learning phase
helps to leverage the data from ASR, MT datasets
and helps to learn the individual language represen-
tations and the relations between them.

We got further improvements on the ST BLEU
score by averaging 10 checkpoints around the best
model. In the Table 4, one can see that ensem-
ble model attained an improvement of 0.18 BLEU
score on IWSLT 2015 test set, 0.74 BLEU score on
MuST-C test set, 0.81 BLEU score on Europarl-ST
test sets. The ensemble model achieved a perfor-
mance of 24.58 BLEU score on IWSLT 2015 test
set by using meta-learning, data augmentation and
average checkpoint techniques.

5 Related Work

End-to-end Speech Translation: Previously,
speech translation leveraged the success of MT and
ASR systems to build the cascade speech transla-
tion system(Post et al., 2013). The cascade models
mostly suffer from problems such as propagating
errors between models and high latency during de-
coding. In order to overcome these limitations, vari-
ous attempts have been made to develop end-to-end
ST models by aligning source speech signal and
target text translation without using intermediate
transcripts(Duong et al., 2016). However, due to
the limited availability of training data unlike ASR
or MT corpora, various data augmentation strate-
gies have been proposed to leverage the data from
ASR or MT tasks to improve the end-to-end ST(Jia
et al., 2019; Pino et al., 2019) performance. Re-
cently, several learning approaches such as multi-

task learning using either ASR+ST or MT+ST data
pairs have been suggested and explored. However,
in these approaches, the parameters of the model
are updated independently based on individual task
performance, which may lead to sub-optimal so-
lutions. Indurthi et al. (2019) proposed a meta-
learning approach to overcome these limitations.

Meta-Learning: Meta-learning algorithms are
used to adapt quickly to new tasks with relatively
few examples as the main goal of the algorithm is
learning to learn. Unlike the past meta-learning
approaches which focused on learning a meta pol-
icy(Ha et al., 2016; Andrychowicz et al., 2016),
(Finn et al., 2017b) recently proposed a meta-
learning algorithm which puts more weight on find-
ing a good initialization point for new target tasks.

6 Conclusion

In this work, we improve the performance of end-
to-end speech translation system based on the data
available from the IWSLT2020 Offline Speech
Translation Task. We train end-to-end models to
solve the complex task of speech translation. We
leverage the large out-of-domain training data from
the ASR, MT tasks to improve the performance
of the ST task. We adopt Model Agnostic Meta-
Learning(MAML) and data augmentation tech-
niques to achieve a performance of 24.58, 27.51,
27.61 BLEU scores on IWSLT test 2015, MuST-C
test, and Europarl-ST test sets respectively.
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