
Proceedings of the 1st International Workshop on Language Technology Platforms (IWLTP 2020), pages 16–21
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

16

Architecture of a Scalable, Secure and Resilient Translation Platform for
Multilingual News Media

Susie Coleman♦, Andrew Secker♦, Rachel Bawden♣, Barry Haddow♣, Alexandra Birch♣
♦British Broadcasting Corporation, UK

♣School of Informatics, University of Edinburgh, UK
susie.coleman@bbc.co.uk, andrew.secker@bbc.co.uk, bhaddow@inf.ed.ac.uk, {rachel.bawden, a.birch}ed.ac.uk

Abstract
This paper presents an example architecture for a scalable, secure and resilient Machine Translation (MT) platform, using components
available via Amazon Web Services (AWS). It is increasingly common for a single news organisation to publish and monitor news
sources in multiple languages. A growth in news sources makes this increasingly challenging and time-consuming but MT can help
automate some aspects of this process. Building a translation service provides a single integration point for news room tools that use
translation technology allowing MT models to be integrated into a system once, rather than each time the translation technology is
needed. By using a range of services provided by AWS, it is possible to architect a platform where multiple pre-existing technologies are
combined to build a solution, as opposed to developing software from scratch for deployment on a single virtual machine. This increases
the speed at which a platform can be developed and allows the use of well-maintained services. However, a single service also provides
challenges. It is key to consider how the platform will scale when handling many users and how to ensure the platform is resilient.

Keywords: machine translation, AWS, platform, news media

1. Introduction
1.1. Media Context for NLP services
News does not only break in one language, and many mod-
ern large news media organisations seek to publish their
material in multiple languages. These large news media or-
ganisations are, therefore, often working in a multilingual
space. The BBC in the UK publishes news content in 40
languages and gathers news in over 100. The BBC dis-
tributes content on multiple platforms: radio, 24-hour TV
and online video, audio and text content. The BBC’s flag-
ship Arabic and Persian services operate 24-hour TV news
channels while other language services, including Kyrgyz,
French, Russian, Ukrainian, Pashto, Burmese, Hausa and
Tamil, also broadcast daily TV news bulletins via regional
partner stations. All foreign language services publish news
online. This is extremely important to promoting the reach
of the news published by these world services, especially to
under-served audiences.
Publication of news in multiple languages comes under
the general category of content creation. With increasing
language reach comes increasing demands on journalists’
time. One way in which efficient use is made of journal-
istic endeavour is the republication of news originally au-
thored in one language into another. An underused but key
element to supporting journalists undertaking this task is
Machine-Assisted Translation (MAT). With the appropri-
ate user interfaces provided to support the translation step,
a journalist is able to take a news story or script, in the case
of an audio or video report, and quickly translate the orig-
inal text using an automated technique. This translation is
then manually edited to ensure it is in a state which is of
sufficient quality. No matter how good the Machine Trans-
lation (MT), this will always be an important step for media
organisations such as the BBC where quality is paramount;
the reversioned content is usually prepared to be published
in a different geographic region from where it originated,

and therefore local knowledge, assumed geographical or
cultural knowledge and colloquialisms must be expunged
or explained in the translated copy.
The second application area, that of news gathering in
multiple languages is supported via media monitoring, the
(predominantly manual) monitoring of the world’s media
across video, audio, printed and online sources. In the cur-
rent workflow, expert monitors and journalists have to per-
form a lot of manual work to keep up with broadcast and
social media streams of data. Considering the huge growth
in the number of streams of data that could potentially be
monitored, the current processes fail to scale adequately. It
is becoming imperative for technology to be used in this
process to automate tasks, such as translation, in order to
free monitors and journalists to perform more journalistic
tasks that cannot be achieved with technology.
MT, the core of MAT, is an increasingly important technol-
ogy for supporting communication in a globalised world
and the use cases above illustrate how the News Media is
an ideal candidate for promotion of efficiency through the
use of MT.
However there exist significant gaps in the language pair
coverage when considering supporting the BBC’s multi-
lingual news-gathering and dissemination operations. The
European Union’s Horizon 2020 research and innovation
GoURMET project (Birch et al., 2019) aims to signifi-
cantly improve the robustness and applicability of Neural
MT (NMT) for low-resource language pairs and domains.
Tangible outcomes of this process include the production of
NMT models in 16 different language pairs. The BBC and
Deutsche Welle (DW), the media partners on the project,
will then use these in tools for journalists.
The outputs of the project will be field-tested at partners
BBC and DW by inclusion in tools and prototypes (Secker
et al., 2019b), and evaluation of the translation’s utility in
these real-world situations. A formal data-driven evaluation



17

will also be undertaken (Secker et al., 2019a).

1.2. Related work
The SUMMA project1 (Scalable Understanding of Mul-
tilingual MediA), ran from 2016 to 2019. The aim of
SUMMA was to significantly improve media monitoring
by creating a platform to automate the ingest and analy-
sis of live news media. SUMMA integrated stream-based
media processing tools (including speech recognition and
machine translation) with deep language understanding ca-
pabilities (including named entity relation extraction and
semantic parsing), and was implemented in use cases at the
BBC and DW. Content was ingested in eight non-English
languages plus English. All ingested content was trans-
lated into English for the purposes of analysis and as such,
translation formed a key part of the process. SUMMA built
evidence of the need for automated translation technolo-
gies to support news-gathering in modern media organisa-
tions, motivating GoURMET. The SUMMA platform was
also built around micro-services but it was designed to be
easy to install locally. It was deployable on the cloud but
did not use native cloud scaling capacity as standard prac-
tices have evolved since.
The Elitr project2, another EU project which is currently
running, is building the European Live Translator platform
(Franceschini et al., 2020). The aim of this project is to cre-
ate an automatic translation and subtitling system for meet-
ings and conferences. The platform used in Elitr builds on
a platform developed by PerVoice3, and also in an earlier
EU project EU-Bridge4. The Elitr platform is optimised for
real-time transcription and translation, and the transmission
of audio and video data in addition to text. Due to the more
demanding communication requirements, the Elitr platform
has a custom data transmission protocol, and a C API which
all components must implement.

1.3. Translation platform
In order to make the translation models available for use
in such prototype tools, the BBC created a single platform
in which they can be hosted, run and accessed. This sin-
gle platform can then support numerous prototype tools,
across multiple project partners, and with the correct provi-
sion around security and mediation of access by 3rd parties.
The advantages of locating the translation technology in
one place and then mediating access onto that via a ser-
vice is this provides a single point for maintenance and up-
dates. In contrast, if each prototype (tool, experience, etc.)
has the translation technology integrated, an update to the
translation technology (whether that be an improvement to
the translation models themselves, a bug fix, a security im-
provement, etc.) must be undertaken numerous times.
There are a number of requirements for a translation plat-
form that would not be present, or present in a different

1Funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 688139.

2Funded by the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement No 825460

3http://www.pervoice.com/en/
4https://www.eu-bridge.eu/

form, if the translation technology were built into each in-
dividual prototype or tool.

• Scalability. Since the platform now provides a single
point of access, the platform must scale in response to
the number of requests made from a variable number
of tools and their users. Scaling must be automatic and
reactive based on incoming request load.

• Resilience. With the platform now representing a sin-
gle point of failure, it must be robust with automatic
detection of failure and the ability to seamlessly move
the servicing of incoming requests away from a failed
process in a manner such that the end user sees no
break in service.

• Security. As the translation service is accessed by
multiple users, access must be secured to authorised
parties and thus parties must identify themselves when
submitting requests. It is also prudent to ensure that
no one party can overload the platform with requests.
While the service is required to scale, resources are
not infinite and as such it is reasonable for the service
to gracefully decline an unreasonable rate of requests
from a single party in order to maintain a reasonable
level of service for others.

• Continuity. It must be straightforward to apply up-
dates to the service and these should not result in a
noticeable break in responsiveness from the user’s per-
spective.

• Standard access. External input and output to the
translation modules occurs via a well defined API.

The effort required to create the above platform, success-
fully addressing the above considerations in the implemen-
tation, are enormous. Cloud computing platforms have de-
veloped around the need for institutions to create and main-
tain such platforms. Amazon Web Services (AWS) has
emerged as a platform offering a diverse selection of cloud-
based tools. Presented here is the architecture of the trans-
lation platform, implemented by the BBC on behalf of the
GoURMET project and built entirely on the AWS platform.
Whilst AWS is perhaps most known as a provider of Virtual
Machines (VMs) via the EC2 product,5 the development of
a monolithic system for deployment on one or more VMs
still requires considerable software development effort. In
contrast the platform described herein combines a set of in-
dividual AWS products such that each manages a separate
facet of the platform. Software development work is there-
fore minimised and limited to the setup of each AWS com-
ponent and software engineering required to allow compo-
nents to communicate.
The remainder of this paper describes the architecture of the
platform. First the overall architecture of the platform is
presented, then the implementation and customisation de-
tails of each major component are detailed. Finally, consid-
erations around security, scalability of the platform and the
deployment of MT models is covered.

5https://aws.amazon.com/ec2/

http://www.pervoice.com/en/
https://aws.amazon.com/ec2/


18

2. System Architecture of the Translation
Platform

This platform is hosted on AWS and uses pre-existing ser-
vices and components to create an architecture which is se-
cure, robust and able to scale. By using the services that
AWS offers it is possible to build and host a platform that
combines existing components to build a solution rather
than building the platform from scratch. This increases the
speed of development and allows technology to be used that
is already well tested and documented.
The other strength of AWS is the AWS Cloudformation6

service which allows infrastructure to be defined using
Cloudformation templates. A Cloudformation template is
an example of infrastructure as code. By defining a tem-
plate, a record of infrastructure is created that can be ver-
sion controlled, provides visibility of the architecture and
allows the system to be easily recreated from scratch.
There are multiple cloud services available that could have
been used to implement this Architecture including Google
Cloud Platform7 and Microsoft Azure8. When choosing a
platform cost, efficiency and reliability of services as well
as the level of experience a development team has with a
specific platform should all be considered. At the BBC
AWS is the dominant provider of cloud computing services
so when building a new service AWS is the default choice.
As developers at the BBC are most familiar with AWS us-
ing it for new projects allows faster development times and
more efficient debugging. However, it is still important to
assess the feasibility of other platforms to ensure there is
not a compelling reason to switch to an alternative.
The architecture required to fulfil a translation request is
shown in Figure 1. A translation request will be initially
handled by AWS API Gateway, which is the user facing part
of the architecture. The request is then passed to an AWS
Lambda, which acts as a bridge to a AWS Load Balancer,
which will route traffic to the correct translation model run-
ning in AWS ECS (Elastic Container Service). The model
in ECS will perform the translation and the response travels
back up the stack to be served to a user by API Gateway. A
more in depth explanation of the roles of the specific com-
ponents is outlined in the following subsections as well as
the user facing interface to the platform.

2.1. User Facing Interface
The platform is exposed via a RESTful API. The purpose
of an API (Application Programmer Interface) is to expose
a resource to developers to allow services and applications
to make use of that resource (De, 2017). In the case of
GoURMET, that resource is MT models. The goal of the
API is to provide a consistent and logical interface that ab-
stracts away from the specifics of how the MT models are
implemented.
The API accepts and returns JSON objects, which is en-
forced by the Content Type HTTP Header. To translate text,
a POST request is made to the API where the body of the
request is a JSON object that specifies the source language,

6https://aws.amazon.com/cloudformation/
7https://cloud.google.com/
8https://azure.microsoft.com

Figure 1: Architecture to fulfil a translation request

target language and text to translate. The text to translate
must only use UTF-8 characters and can be multi-line text
providing that it is escaped appropriately to still be valid
JSON.

2.2. AWS API Gateway
API Gateway9 is an AWS managed service for creating
APIs. The service is used to manage exposure of the MT
models to the public internet as outlined in the previous
section. In this case, the API is a REST API where the in-
terface is defined using Swagger.10 As API Gateway is a
managed service, it is easy to dynamically scale the API
depending on traffic, and the service already implements
multiple features for security, resilience and API life-cycle.
This makes development of the user facing interface far
quicker than starting from scratch.

2.3. AWS Lambda
AWS Lambda11 offers serverless technology, which re-
moves the need to maintain a server in order to run code.
This makes it ideal for running short-lived tasks. A Lambda
is created only when there is a need to execute the code and
destroyed when that need no longer exists. This is good for
both cost and dynamic scaling of services.
In the translation platform, the role of the Lambda is to
route traffic from API Gateway to the Load Balancer.12

This allows the Load Balancer to live within a private net-
work and not be exposed to the public internet. This means

9https://aws.amazon.com/api-gateway/
10https://swagger.io/resources/open-api/
11https://aws.amazon.com/lambda/
12https://aws.amazon.com/

elasticloadbalancing/

https://aws.amazon.com/cloudformation/
https://cloud.google.com/
https://azure.microsoft.com
https://aws.amazon.com/api-gateway/
https://swagger.io/resources/open-api/
https://aws.amazon.com/lambda/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/


19

that traffic to the Load Balancer and, by extension, the MT
models is controlled and managed via API Gateway.

2.4. AWS Load Balancer

Figure 2: Routing traffic with a Load Balancer

The Load Balancer functions at the application layer of the
OSI (Open Systems Interconnection) model. It listens for
traffic on specific ports and will route traffic to a Target
Group based on the port number as shown in Figure 2. The
Target Group is made up of services that can receive the
traffic. In this case, these are AWS ECS Tasks within an
ECS Service. The Load Balancer will balance incoming
traffic across all tasks within the Target Group.

2.5. AWS ECS - Elastic Container Service
The role of ECS13 in the system is to run containers that
contain the MT models.
All MT models are delivered as Docker images, which are
definitions of how to create a container. This definition in-
cludes, but is not limited to, the operating system, programs
installed, ports exposed, environment variables and file sys-
tem. Containers provide an isolated environment for an ap-
plication to run in, as defined in the Docker image. Multiple
containers can run on a single physical machine to allow an
efficient sharing of resources. ECS is a service to manage
how containers run as well as the infrastructure they will
run on.
The specific architecture of ECS is shown in Figure 3. An
AWS Cluster has been created which defines the infrastruc-
ture the containers will run on. In this specific instance,
AWS Fargate is used as it removes the requirement to man-
age EC2 instances. An AWS Task Definition has been cre-
ated for each MT Docker image. The Task Definition de-
fines the properties of a container. This includes but is not

13https://aws.amazon.com/ecs/

limited to which Docker image to use and where to pull the
image from, how much CPU power and memory to allo-
cate the container and any AWS IAM Roles14 the container
needs. Containers created using the Task Definitions are
referred to as Tasks in AWS. The Tasks have been created
within a Service. The Service maintains a specified number
of instances of a Task and allows for the number of Tasks to
be scaled up or down according to load on the system. The
Service also health checks Tasks and destroys and replaces
unhealthy ones.

Figure 3: Architecture of an ECS Cluster

3. Security, Access Management and
Request Rate Limiting

Security is important for any service available on the pub-
lic internet, as the service is vulnerable to attacks from ma-
licious users. In the case of an MT platform there is no
sensitive information that could be exposed if an API key
was to become compromised, therefore the biggest risks
stem from DDoS (Distributed Denial of Service) attacks. A
DDoS attack overwhelms a system with requests to stop it
being able to handle legitimate requests. When using AWS,
it is important to also consider the financial costs that can
be caused by an insecure service. In this case, the scalable
nature of the architecture would make it possible to require
the services to use a large number of additional resources
to handle malicious traffic increases, if the service is not
properly secured.
The user facing API is secured:

• Using HTTPS: All traffic is served over HTTPS by
default with API Gateway managing the certificate.

• Using API Keys

• Using Usage Plans: Usage plans are tied to specific
API keys and add a throttling limit and quota limit.

• Sanitising Input: Ensure required request inputs are
included and that the body matches the JSON schema
and request model.

14https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_roles.html

https://aws.amazon.com/ecs/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html


20

• Limiting payload size: API Gateway has an upper pay-
load limit of 10 MB15. This allows more than enough
capacity to handle translation of news articles whilst
setting an upper limit to prevent malicious attacks
where the system is overloaded by requests with large
payloads.

AWS’s API Gateway service was one reason to favour AWS
when building this platform. API Gateway provides all of
the security features used to secure the API. This means
that the in-depth knowledge needed to implement security
features is not required as they do not need to be imple-
mented from scratch. Furthermore, API Gateway is widely
used in industry and is actively maintained which means
that security flaws are detected early and patched quickly.

4. Scalability
It is important to have a service that can scale dynamically
in response to changes in volume of traffic. There are two
points of scalability in architecture shown in Figure 1.
The first is using ECS. A Service determines the number
of instances created from a specific Task Definition that
are running at any one time, and this allows the transla-
tion platform to scale up to accommodate more traffic. The
Load Balancer will distribute the traffic amongst the grow-
ing number of Tasks available to fulfil the requests.
The other point of scalability is the Lambda. Serverless
technology is designed to be flexible, as it is not the respon-
sibility of the Lambda creator to define the hardware it will
run on or to ensure sufficient compute resources are avail-
able for it to run. As a result, Lambdas can be automatically
initiated as needed to handle increases in traffic without the
need to predict traffic spikes and provision hardware to han-
dle these. The API Gateway is able to handle large amounts
of traffic hitting the translation platform and using Lamb-
das to fulfil these requests allows the system to handle these
traffic increases.
The final consideration regarding scalability is the ability to
automate this scaling. AWS provides Cloudwatch Alarms
to monitor and automatically respond to changes in the sys-
tem under monitoring. This allows the translation plat-
form to alert in response to changes in traffic and use of
resources. These alerts can be used to handle these changes
without manual intervention.

5. Deploying MT Models
A key consideration for this system is how to provide flex-
ibility for creativity in research to allow novel approaches
to MT whilst still building a consistent production service.
This was achieved by using Docker. A standard template
project was agreed for producing a Docker image for each
MT model. This template consisted of:

• A Dockerfile

• A simple Python Flask app with a root endpoint and
translate endpoint

• An integration Python script

15https://docs.aws.amazon.com/apigateway/
latest/developerguide/limits.html

The integration script contains an init function that is
called when a container is created from the Docker image
and a translate function that is called whenever a trans-
lation is performed. It is the responsibility of anyone imple-
menting an MT model to implement these two functions.
This allowed a consistent interface to all translation models
whilst still keeping the actual implementation of the model
agnostic.
The Docker images created are hosted on AWS using the
AWS Elastic Container Registry.16 Docker images can be
hosted as repositories on any service that provides a Docker
registry. Registries provide a central place to store images
and the ability to only allow authorised users access to those
images. Repositories use tags to allow the images to be ver-
sion controlled. When a Task is created in ECS, the image
is pulled from ECR.

6. Summary
Modern large news media organisations exist in a multilin-
gual environment. MT technologies can be used to promote
efficiency in such organisations for both news-gathering
and publication in multiple languages. In order to support
multiple tools which require translation as a fundamental, a
platform providing translation as a service is the preferred
solution. This paper describes an architecture for the cre-
ation of such a platform using components provided by
AWS. The requirements for such a platform were described
and the tools available from AWS which realise the required
functionality were detailed. The platform described herein
will form the basis of a selection of tools and prototypes to
be tested in the BBC and DW as well as supporting further
formal evaluation of the underlying MT systems.

7. Acknowledgements
This work was supported by funding from the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825299 (GoURMET).
It was also supported by the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) fellowship grant
EP/S001271/1 (MTStretch).

8. Bibliographical References
Birch, A., Haddow, B., Titov, I., Barone, A. V. M., Baw-

den, R., Sánchez-Martı́nez, F., Forcada, M. L., Esplà-
Gomis, M., Sánchez-Cartagena, V., Pérez-Ortiz, J. A.,
Aziz, W., Secker, A., and van der Kreeft, P. (2019).
Global under-resourced media translation (GoURMET).
In Proceedings of Machine Translation Summit XVII Vol-
ume 2: Translator, Project and User Tracks, pages 122–
122, Dublin, Ireland, August. European Association for
Machine Translation.

De, B. (2017). API Management: An Architect’s Guide to
Developing and Managing APIs for Your Organization.
Apress.

Franceschini, D., Canton, C., Simonini, I., Schweinfurth,
A., Glott, A., Stüker, S., Nguyen, T.-S., Schneider, F.,
Ha, T.-L., Bojar, O., Sagar, S., Macháček, D., and Smrž,
O. (2020). Removing European Language Barriers with

16https://aws.amazon.com/ecr/

https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html
https://aws.amazon.com/ecr/


21

Innovative Machine Translation Technology. In Pro-
ceedings of the 1st International Workshop on Language
Technology Platforms.

Secker, A., Birch, A., van der Kreeft, P., and Sánchez-
Martı́nez, F. (2019a). GoURMET deliverable D5.1 –
evaluation plan.

Secker, A., Wall, J., van der Kreeft, P., and Coleman, S.
(2019b). GoURMET deliverable D5.2 – use cases and
requirements.


	Introduction
	Media Context for NLP services
	Related work
	Translation platform

	System Architecture of the Translation Platform
	User Facing Interface
	AWS API Gateway
	AWS Lambda
	AWS Load Balancer
	AWS ECS - Elastic Container Service

	Security, Access Management and Request Rate Limiting
	Scalability
	Deploying MT Models
	Summary
	Acknowledgements
	Bibliographical References

