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Abstract
Although several works have addressed the
role of data selection to improve transfer learn-
ing for various NLP tasks, there is no consen-
sus about its real benefits and, more generally,
there is a lack of shared practices on how it
can be best applied. We propose a systematic
approach aimed at evaluating data selection in
scenarios of increasing complexity. Specifi-
cally, we compare the case in which source
and target tasks are the same while source and
target domains are different, against the more
challenging scenario where both tasks and do-
mains are different. We run a number of ex-
periments on semantic sequence tagging tasks,
which are relatively less investigated in data
selection, and conclude that data selection has
more benefit on the scenario when the tasks are
the same, while in case of different (although
related) tasks from distant domains, a combi-
nation of data selection and multi-task learning
is ineffective for most cases.

1 Introduction

Transfer learning is a common approach for train-
ing NLP models that scale across different tasks,
domains, and languages. One of the challenges in
transfer learning is to deal with the data distribution
mismatch between the source (DS) and the target
data (DT ) (Rosenstein et al., 2005). One solution
to alleviate the impact of the mismatch is using data
selection, a process for selecting relevant training
instances from the source data. Data selection (DS)
has been applied in the context of domain adapta-
tion to address changes in the data distribution for
various NLP tasks, such as sentiment analysis and
POS Tagging (Ruder and Plank, 2017; Liu et al.,
2019; Blitzer et al., 2007; Remus, 2012), machine
translation (Axelrod et al., 2011), dependency pars-
ing (Søgaard, 2011) and Named Entity Recognition
(NER) (Murthy et al., 2018; Zhao et al., 2018). To
our knowledge, all existing previous works apply

data selection to different domains, while maintain-
ing the same task.

In this work we aim to investigate the benefit of
data selection in a more complex setting, where we
have not only different domains (DS 6= DT ), but
also different tasks (TS 6= TT ). Intuitively, such
setting may bring advantage in situations where
large training data are available for a source task
TS , and we want to exploit such data for a differ-
ent (although related) target task TT , where much
less training is available. We experiment with the
situation where TS is Named Entity Recognition
(NER) on a general domain, where several datasets
are available, and TT is slot tagging (ST) in the
context of utterance interpretation for dialogue sys-
tems, where much less data is available. Both of
the tasks are rarely investigated in data selection
and there is no consensus about the benefit of data
selection for them.

We propose an experimental framework where
we can compare data selection settings with an in-
creasing level of complexity. First, we consider
data selection where NER is both the source and
target task, and apply transfer learning from dif-
ferent domains: we call this setting Same Tasks
from Different Domains (STDD), TS = TT and
DS 6= DT . In a second, more complex setting,
we consider NER as the source task and ST as the
target: this is called TS 6= TT and DS 6= DT ,
Different Tasks from Different Domains (DTDD).
In this scenario, as we have disjoint label space
between the source and the target task, we combine
the data selection process with multi-task learning
(MTL). To our knowledge, this combination has
received very little attention in the literature.

We base our work on the data selection frame-
work proposed by Ruder and Plank (2017), and
apply it to our experimental settings. Their frame-
work is model-agnostic and has shown significant
advantage in sentiment analysis, POS tagging, and



16

parsing. However, it is not obvious to what extent
the selection process can actually help on seman-
tic sequence tagging tasks on STDD and DTDD
scenarios. The contributions of the paper are the
following: (i) we apply previous work to multi-task
learning setup to evaluate the effectiveness of data
selection in DTDD scenarios; (ii) we systematically
compare data selection on settings of increasing
complexity, and observe that existing selection met-
rics do not show clear advantages over baselines in
most cases. Nevertheless, data selection has more
potential in STDD when source and target are more
similar, while combining MTL and data selection
for DTDD is ineffective for most cases in our ex-
perimental settings in which we have different but
related tasks (NER and ST) from relatively distant
domains (news and conversational domains).

2 Data Selection Framework

In general, the goal of data selection is to select an
optimal subset of training instances, X∗S , from all
the available data XS in TS , to be used for train-
ing the model for the target taskMTT . Given the
source data XS = {xS1 , xS2 , ..., xSn}, each instance
is ranked according to a score S and the top m
examples are then used to trainMTT .

We apply the data selection approach from Ruder
and Plank (2017), based on Bayesian Optimization
(BO) (Brochu et al., 2010), to evaluate the effec-
tiveness of data selection on both the STDD and
DTDD scenarios. Specifically, for DTDD we com-
bine data selection and multi-task learning. Given
XS , the framework performs data selection based
on a score S derived from a set of features. The top
m examples are then used to trainMTT . In case of
STDD, theMTT is a single task sequence tagging
model, where we use a biLSTM-CRF model (Lam-
ple et al., 2016). As for DTDD, MTT is a hard
parameter sharing MTL model, which has been
applied to many NLP tasks (Søgaard and Goldberg,
2016; Plank et al., 2016; Changpinyo et al., 2018;
Schulz et al., 2018). The performance on the val-
idation set of the target task is then used by the
BO optimizer to update the weight of the scoring
features.

Following Ruder and Plank (2017), the selection
process is based on a score S computed as the linear
combination of weighted features, which include
both similarity and diversity features: Sθ(x) =
θ> · φ(x), where θ represents the weight for each
feature and φ(x) denotes the feature values of each

instance x. The features are calculated between
the representation of XS instances and XT . We
use term distribution as the representation of the
instances. We use the same similarity and diversity
measures as Ruder and Plank (2017). The weights
θ are learned through BO by taking into account the
performance on the validation set when selecting a
particular subset of XS . The score S is computed
for each x in XS , and then the top m examples
are selected for training theMTT model. The loss
value L from theMTT in the validation set is used
by BO as a feedback to select the next points for θ.

3 Experiments

We systematically investigate how data selection
is effective when applied on both the STDD and
DTDD scenarios. We address two semantic se-
quence labeling tasks: Named Entity Recognition
(NER) and slot tagging (ST).

3.1 Datasets

For NER we use the OntoNotes 5.0 (Pradhan et al.,
2012) dataset, which consists of several sections:
newswire (NW), talkshows broadcast (BC), tele-
phone conversation (TC), news broadcast (BN),
articles from web sources (WB), and articles from
magazines (MZ). We use different OntoNotes sec-
tions as different domains in our experiments.

As for ST we use three datasets: ATIS (Price,
1990), MIT-R, and MIT-M (Liu et al., 2013), that
are widely used as benchmarks for spoken language
understanding. Each dataset contains utterances
annotated with domain-specific slot labels, which
are typically more fine-grained than NER labels.
For example, in the utterance ”show me all Delta
flights from Milan to New York”, the bold words
are tagged as airline name, fromloc, and toloc re-
spectively. The overall statistics of each dataset are
shown in Table 1.

3.2 Data Selection Configurations

We make use of the selection framework described
in Section 2, and apply three Bayesian Optimiza-
tion data selection (BODS) configurations, accord-
ing to whether we use features both for similarity
and diversity (DSsim,div), similarity features only
(DSsim), or diversity features only (DSdiv). We
compare the three configurations with the follow-
ing baselines:
• All source, which uses all the data from TS .
• Random, which selects random data from TS .
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Dataset #train #dev #test #label

Slot Tagging
ATIS 4478 500 893 79
MIT Restaurant 6128 1532 3385 8
MIT Movie 7820 1955 2443 12

NER
OntoNotes NW 34970 5896 2327 18
OntoNotes BC 11879 2117 2211 18
OntoNotes TC 12891 1634 1366 18
OntoNotes BN 10683 1295 1357 18
OntoNotes WB 16598 2316 2307 18
OntoNotes MZ 6911 642 780 18

Table 1: Statistics about the datasets used in the experi-
ments. The language of the datasets is English.

• DSmap,full. We provide a manual mapping from
NER labels to ST labels (Appendix A). A sen-
tence from TS is selected is if all the NER occur-
rences have a mapping to a slot in TT .
• DSmap,partial. A sentence from TS is selected

if at least one of the NER occurrences in the
sentence has a mapping to a slot label in TT .

3.3 Settings

We follow most of the hyperparameters1 as recom-
mended by Reimers and Gurevych (2018). We train
the model for TS and TT in an alternating fashion.
We use early stopping on the dev. performance
of TT . For the model performance evaluation, we
calculate the F1-score using the standard CoNLL
script2. For all experiments, we report the average
F1 score results from 10 runs with different seeds.

We follow Ruder and Plank (2017) for most con-
figurations of the optimizer, and run 50 iterations.
For both the STDD and DTDD scenarios, we select
top 50%3 examples from XS . For MTL we adapt
the implementation from Reimers and Gurevych
(2017), extending the Bayesian Optimization data
selection framework from Ruder and Plank (2017)
to support MTL.

4 STDD Scenario: TS = TT ,DS 6= DT
This is scenario is the same setup as Ruder and
Plank (2017), where we use the same tasks both
for the source and the target task from different
domains, except that we apply the data selection
to a semantic sequence tagging task namely NER.
In this scenario, we use NER both for the source
and the target task. The target domain is one three

1Appendix C reports all used hyperparameters.
2https://www.clips.uantwerpen.be/conll2000.
3We tune from 10% to 50% on the dev set.

OntoNotes sections namely NW (news), TC (tele-
phone conversation) and BC (mixed of conversa-
tion and broadcast) while as source domain (DS)
we use all available sections in OntoNotes except
the one used as the target domain. We only use 10%
of training data for the target domain to simulate
limited data settings. At the end of the data selec-
tion process, we select the top 50% sentences from
DS using the best feature weights learned with the
Bayesian Optimizer.

Table 2(a) compares the performance of the base-
lines with the selection-based approaches. In gen-
eral, we do not observe clear advantages of data
selection methods over the baselines, especially
the all source data baseline. Using all source data
yields the most competitive results almost in all
cases. The only case in which DS surpasses the all
source baseline is on the BC domain but only for
a tiny gain. For NW and BC domains, some DS
methods show clear advantages over the random
baseline, but still worse than using all source data.

We want to see whether the distance between
domains may characterize the performance of the
data selection. For this purpose we quantify the
domain similarity between each pair DS and DT
with Jensen Shannon Divergence (JSD) (Lin, 1991).
We compute the JSD between the term distribution
ofDS andDT . The average JSD of each target task
with respect to the source tasks are 0.80 (TC), 0.86
(NW), and 0.87 (BC)4. We observe that the higher
the JSD is, the more beneficial is the data selection
for the target task. BC, which has the highest JSD
average, benefits the most from the data selection.
On the other hand, TC with the lowest average
similarity, has the largest gap between the baseline
and the best DS methods (−1.7 F1 point).

Based on our experiments, for the STDD sce-
nario we observe that:
1. In most of the cases, DS methods are inferior

to the all source baseline. Yet, it is clear that
each domain has a different selection metric
configuration that performs the best. This obser-
vation suggests that the hypothesis from Ruder
and Plank (2017) i.e., different tasks or even
different domains demand a different notion of
selection metric, is also applicable to semantic
sequence tagging tasks such as NER.

2. The gap between the best DS method and the
baseline for each DT can be characterized from
the average JSD similarity to its DS . Being

4Complete pairwise JSD values are listed in Appendix B.
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Method TC NW BC

Baseline
All source 63.174.75 79.08†

0.42 73.422.13
Random 62.024.47 77.930.54 71.392.12

BODS
DSsim,div 61.714.57 76.990.40 72.601.14
DSsim 61.453.80 78.300.41 73.441.12

DSdiv 61.653.77 78.320.53 71.891.53

(a) STDD

Method ATIS MIT-R MIT-M

STL
biLSTM-CRF 85.460.25 63.990.77 76.390.57

Baseline (MTL)
All source 90.050.34 69.280.40 81.280.23
Random 89.930.26 69.540.35 81.350.31

DSmap,full 89.970.25 68.820.50 79.270.36
DSmap,partial 89.850.29 69.240.40 80.760.30

MTL+BODS
DSsim,div 89.780.39 69.290.37 81.070.29
DSsim 89.830.31 69.250.41 81.170.25
DSdiv 89.950.41 69.090.24 81.100.28

(b) DTDD

Table 2: Average F1-score and standard deviation on the test set. † indicates significant differences (p < 0.05)
between the best BODS approach and the best baseline.

more similar to other DS is a more suitable situ-
ation to get benefit from data selection.

5 DTDD Scenario: TS 6= TT ,DS 6= DT
In this scenario we intend to observe whether data
selection adds benefit to MTL. As in the STDD
case, data selection is performed on the auxiliary
task, where data is assumed to be abundant, and we
only use a small portion of data for the target task.
We use NER as the auxiliary task and ST as the
target task. Prior work from Louvan and Magnini
(2019) shows that NER is helpful for ST through
MTL, although it is not clear whether adding data
selection is beneficial. We follow the setup in Lou-
van and Magnini (2019), where OntoNotes NW
is used as the auxiliary task, and the target task is
one of the ST datasets with only 10% of available
training data.

Observing the results in Table 2(b), in all the
cases the baselines, namely all source data and ran-
dom selection, perform better than MTL with DS
methods. The selection methods based on man-
ual label mapping, DSmap, do not bring advantage
over all source data. Therefore, given two distant
DS and DT , selecting sentences based on the label
mapping does not help. Moreover, as random selec-
tion gives good results as well for most scenarios,
this indicates that data selection is not beneficial in
our experimental setting that combines data selec-
tion and MTL.

Our findings and lessons learned for DTDD are
the following:
1. We observe that MTL performs better than

single-task learning (STL) for low-resource slot
tagging, confirming the finding from Louvan

and Magnini (2019). However, adding data se-
lection for MTL is ineffective in our DTDD ex-
perimental setup. We hypothesize that MTL
learns good common feature representations
across tasks, this way inherently helping the
model to focus on relevant features even from
noisy data in TS . In addition to that, due to
data sparsity in limited training, using all the
training data works better because the model
may learn a better text representation (sentence
encoder). Recent similar work from Schröder
and Biemann (2020) which uses information
theoretic based for estimating the usefulness of
an auxiliary task for MTL also found that for
semantic sequence tagging tasks such as NER
and argument mining, it is less clear when a
particular dataset is useful as an auxiliary task.

2. Data selection typically produces selected sen-
tences with concentrated similarity distribution5.
Therefore, it is probably ineffective when the
sentence similarity distribution between TS and
TT is already concentrated on a very narrow
range.

6 Conclusion

In this paper we investigated the benefit of data
selection for transfer learning in several scenarios
of increasing complexity. We apply an existing
model-agnostic state of the art data selection frame-
work, and carried on experiments on two semantic
sequence tagging tasks, NER and Slot Tagging,
and two transfer learning scenarios, STDD (Same

5We embed the sentence in source and target with InferSent
(Conneau et al., 2017) and compute cosine similarity between
the centroid of the target and each of the sentence in source.
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Tasks Different Domains), and DTDD (Different
Tasks Different Domains).

For the STDD scenario, selection methods show
potential when the target domain has the highest
similarity to the source domains, based on Jensen
Shannon Divergence. As for the DTDD scenario in
which we use related tasks (NER and ST) from dis-
tant domains (news and conversational domains),
using selection does not bring advantage over us-
ing all the source data. A possible cause is that,
because of data sparsity on the target task, it is only
by injecting more source data that we can improve
the model. Finally, MTL does not benefit from
data selection, as it may already effectively help
the model to focus on relevant features even though
in the presence of noisy data from distant domains.
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A Label Mapping

ATIS Slot OntoNotes La-
bel

AIRLINE NAME ORG

AIRPORT NAME FAC

ARRIVE DATE,
DAY NAME,
DAY NUMBER,
DEPART DATE,
DEPART TIME,
FLIGHT DAYS,
TIME RELATIVE, TO-
DAY RELATIVE

DATE

ARRIVE TIME,
MONTH NAME, PE-
RIOD OF DAY, RE-
TURN TIME, TIME

TIME

CITY NAME,
FROM LOC,
STATE CODE,
STATE NAME,
STOP LOC, TO LOC

GPE

COST RELATIVE,
FARE AMOUNT

MONEY

DAYS CODE, ECONOMY,
FARE BASIS CODE,
FLIGHT MOD,
MEAL, MEAL CODE,
MEAL DESCRIPTION,
MOD, FLIGHT STOP,
FLIGHT MOD, OR,
RESTRICTION CODE,
ROUNDTRIP, TRANS-
PORT TYPE

O

FLIGHT NUMBER CARDINAL

Table 3: Label Mapping from ATIS to OntoNotes.

MIT Movie Slot OntoNotes La-
bel

CHARACTER, ACTOR,
DIRECTOR

PER

YEAR DATE

PLOT, RATING, TITLE,
REVIEW, SONG, RAT-
INGS AVERAGE, GENRE,
TRAILER

O

Table 4: Label Mapping from MIT Movie to
OntoNotes.
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B Domain Similarity

DT
DS Avg ∆

TC NW BC BN WB MZ

TC - 0.74 0.84 0.80 0.83 0.77 0.80 1.7
NW 0.74 - 0.85 0.91 0.91 0.90 0.86 0.7
BC 0.84 0.85 - 0.90 0.90 0.86 0.87 0.02

Table 5: Domain Similarity (JSD) for eachDT andDS

C Hyperparameters

Hyperparameter Value

LSTM cell size 100
Dropout 0.5
Word embedding dimension 300
Character embedding dimension 100
Mini-batch size 128
Clip norm 1
Optimizer Adam
Number of epoch 20
Early stopping 10

Table 6: Neural model hyperparameters

Parameter Adopted value

Surrogate model Gaussian Processes
with MCMC sampling

Acquisition function Expected Logarithmic
Improvement

Number of initial evaluation
points

3

Search space upper bound 1
Search space lower bound -1
Number of iterations 50

Table 7: Parameters used by the Bayesian Optimizer.


