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Abstract

Large pretrained language models (LM) have
been used successfully for multi-hop question
answering. However, most of these directions
are not interpretable, as they do not make the
inference hops necessary to explain a candi-
date answer explicitly. In this work, we in-
vestigate the capability of a state-of-the-art
transformer LM to generate explicit inference
hops, i.e., to infer a new statement necessary
to answer a question given some premise input
statements. Our analysis shows that such LMs
can generate new statements for some simple
inference types, but performance remains poor
for complex, real-world inference types such
as those that require monotonicity, composi-
tion, and commonsense knowledge.

1 Introduction

The emergence of large pretrained language models
(LM) (Devlin et al., 2019; Liu et al., 2019) yielded
significant progress in question answering (QA),
including complex QA tasks that require multi-
hop reasoning (Banerjee et al., 2019; Asai et al.,
2019; Yadav et al., 2019). Most of these state-
of-the-art (SOTA) approaches address multi-hop
reasoning tasks in a discriminative manner: they
take the question, the candidate answer, and all
the context available as the input, and produce a
single score indicating the likelihood of the answer
as justified by the provided context (an example
is shown in Figure 1). However, why that context
actually justifies the answer remains unclear to the
human end user of the QA system.

In contrast, most of us are likely to answer the
question in Figure 1 by building a reasoning chain
from the given facts. For example, such a pos-
sible chain starts by first combining “metal is a
thermal conductor” and “steel is made of metal’ to
yield “steel is a thermal conductor”. Next, combin-
ing “steel is a thermal conductor” and “heat travels

Figure 1: An example of question and candidate answers
from OpenbookQA (Mihaylov et al., 2018) (the correct answer
is option B). The science fact and the commonsense knowl-
edge facts are needed to explain the correct answer. Usually
the large LMs solve this problem by taking the question, the
science fact, the common knowledge facts and each candidate
answer as the input and producing a single score indicating
the probability of the candidate answer being justified by all
of the inputs. But why the facts explain the answer is normally
not covered.

through a thermal conductor” yields “heat travels
through steel”. And, finally, “heat travels through
steel” supports the correct explanation that “a steel
spoon in a cafeteria would let the most heat travel
through.” Generating such reasoning chains can
be crucial for the adoption of natural language pro-
cessing applications such as QA in critical domains
such as medical or law.

Motivated by this, in this work we investi-
gate whether a state-of-the-art (SOTA) transformer-
based language model is able to generate a valid in-
termediate statement given two premise statements
on a natural language QA dataset, which is fun-
damental to generating the reasoning chains. Our
results show that although the SOTA model inves-
tigated can handle some types of inferences well,
there remain multiple types of inferences where the
LM fails.1

1The code and data for our analysis can be found at
https://github.com/clulab/releases/tree/
master/emnlp2020-generative-nli.

https://github.com/clulab/releases/tree/master/emnlp2020-generative-nli
https://github.com/clulab/releases/tree/master/emnlp2020-generative-nli
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Category Without Hint With Hint
Perfect 31/87 43/87
Acceptable 11/87 13/87
Unacceptable 45/87 31/87

Table 1: Statistics of the quality of the generated T5 state-
ments on the dev set of QASC. The same randomly sampled
87 examples are manually evaluated for their quality, in both
the “without hint” and “with hint” configurations.

2 Related Work

Recently several works have investigated whether
deep learning (DL) language models (LM) are able
to learn and use the explicit and implicit rules in
natural language. (Sinha et al., 2019) build a syn-
thetic dataset containing the relationships between
people; their language model needs to predict the
unstated relationships between people. The prob-
lem can be summarized as: given that “Mike is the
child of Kate and Kate is the child of Tom”, the
model needs to predict “Tom is the grandparent
of Mike”, by learning the implicit rule: “If X is
the child of Y and Y is the child of Z, then Z is
the grandparent of X”. It has been shown that the
transformer networks perform well on this task.

Other works have analyzed whether DL lan-
guage models are able to leverage explicit rules.
(Clark et al., 2020) generates a synthetic dataset
consisting of facts and rules. The problems can be
summarized as: given the facts such as “X is red”
and “X is big”, as well as rules such as “If X is red
and big, then X is strong”, the LM trained on this
data must be able to judge whether “X is strong” is
true. They demonstrate that transformers can fulfill
this task well, and are able to generalize to unseen
lexicons.

However, all existing works investigate this prob-
lem in a discriminative manner: either a single
score, a single token, or a single choice is produced
as the output. In contrast, we conduct our work
in a generative manner: the LM needs to generate
a whole natural language statement as the output.
We believe this task will eventually give the LM
the ability to generate clear and complete explana-
tions, which are necessary in multi-hop reasoning
problems. Further, we investigate the capability of
transformers to generate inferential statements on
a complex, real-world task in the science domain,
which relies on much sparser data than other tasks
previously investigated.

3 Approach

3.1 Problem Formulation

In this paper, we concentrate on a single-hop in-
ference problem. That is, given the statements
S1(A,B) and S2(B,C), the model needs to gen-
erate the valid and reasonable statement S3(A,C).
Unlike reasoning tasks on structured knowledge
bases or ConceptNet where A, B, C are entities,
here A, B and C can be any text in natural lan-
guage: they can be words, phrases, or clauses.

We used the QASC dataset (Khot et al., 2020) for
this task. QASC contains approximately 10, 000
questions in the science domain, where each an-
swer is associated with two supporting facts (fact 1
and fact 2). These two supporting facts have tokens
in common, which is necessary for our inference
task that requires overlap between facts (through
B). Importantly, for each answer QASC provides a
combined fact that explains the answer, and which
is directly inferred from the two supporting facts.
The first two columns in Tables 2, 3, and 4 show
a few examples of the supporting facts and the re-
sulting combined fact. The forms of the combined
facts can be very diverse due to the annotation pro-
cess of QASC, where each annotator is first given
fact 1, then the annotator needs to find an arbitrary
fact 2 that has overlaps with the fact 1, and com-
poses the combined fact, without other restrictions
(Khot et al., 2020). 2 The task we investigate here
is whether transformer-based LMs can infer the
combined fact when provided with the two initial
facts.

3.2 Method

We use the pre-trained Google T5 small model (Raf-
fel et al., 2020) published by huggingface (Wolf
et al., 2019), and fine-tune it on the QASC dataset.3

We explore two types of input format:

fact 1 + fact 2 → combined fact: In this setting,
T5 takes the two facts as input to generate the com-
bined fact. The T5 input format is “substitution
statement 1: [fact 1] statement 2: [fact 2]”, where
“substitution”, “statement 1:” and “statement 2:”
are user-defined keywords for the task.

2Note that the two supporting facts and the gold combined
fact of each question in QASC are annotated by the creators
of the QASC dataset, not by the authors of this paper.

3We used the Adam optimizer with a learning rate of 1e-4,
as recommended in the tutorial. The training stops when the
evaluation loss starts to increase; we allowed a maximum of
10 epochs of training.
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Input Target Prediction Evaluation
substitution statement 1: if weather is stormy
then there is a greater chance of rain. statement
2: rain is also known as precipitation.

if weather is stormy
then there is a greater
chance of precipita-
tion.

if weather is stormy
then there is greater
chance of precipita-
tion.

Perfect, exactly the
same

substitution statement 1: lightning can cause a
forest fire. statement 2: forest fires are examples
of wildfires.

wildfires are caused
by lightning.

lightning can cause
wildfires.

Perfect, semanti-
cally the same

substitution statement 1: whiskers are used
for feeling by animals. statement 2: whiskers
whiskers are the stiff hairs on the dog’s face.

stiff hairs on the face
are used for feeling by
animals.

stiff hairs on the dog’s
face are used for feel-
ing by animals.

Acceptable

substitution statement 1: lymph is a fluid that
leaks out of capillaries into spaces between cells.
statement 2: bacteria invade lymph nodes, which
swell, creating the buboes.

swelling nodes leak
fluid out of capillaries
into spaces between
cells.

bacteria can swell. Unacceptable, un-
reasonable or con-
tradicting informa-
tion

substitution statement 1: absorption of nutrients
occurs mainly in the small intestine. statement 2:
diarrhea reduces the absorption of all nutrients.

diarrhea reduces
funtcion that occurs
mainly in the small
intestine.

diarrhea reduces the
absorption of nutri-
ents.

Unacceptable, miss-
ing essential ele-
ments

Table 2: Output of T5 on QASC in the “without hint” configuration.

Input Target Prediction Evaluation
substitution statement 1: protozoa make humans
sick when they become human parasites. statement
2: exhibit one-celled animals are called protozoa.

one-celled animals make
humans sick when they
become parasites.

one-celled animals
make humans sick.

w/o hint

substitution statement 1: protozoa make humans
sick when they become human parasites. state-
ment 2: exhibit one-celled animals are called proto-
zoa. hint: animals when become one-celled humans
make parasites they sick.

one-celled animals make
humans sick when they
become parasites.

one-celled animals
make humans sick
when they become
human parasites.

w/ hint,
statement
improved

substitution statement 1: mutualism is a symbiotic
relationship in which both species benefit. state-
ment 2: domestication of animals is an example of
a symbiotic relationship.

domestication of ani-
mals is an example of
mutualism.

domestication of ani-
mals is an example of
mutualism.

w/o hint

substitution statement 1: mutualism is a symbiotic
relationship in which both species benefit. state-
ment 2: domestication of animals is an example of
a symbiotic relationship. hint: is animals mutualism
of domestication example an.

domestication of ani-
mals is an example of
mutualism.

mutualism is an exam-
ple of domestication
of animals.

w/ hint, state-
ment harmed

Table 3: Comparison of T5 output in the “without hint” and “with hint” configurations on QASC.

fact 1 + fact 2 + lexical hints → combined fact:
During our experiments, we noticed that sometimes
multiple valid statements could be inferred from
fact 1 and fact 2, which tended to confuse the LM.4

To mitigate this issue, we added lexical hints to the
model input, on what tokens would be best to be
included in the generated statement. The terms in
the hint are generated as (Q∪A)∩(F1∪F2), where
Q is the set of unique terms in the question, A is the
set of unique terms in the answer, F1 and F2 are
the sets of unique terms in fact 1 and fact 2.5 This
is inspired by the fact that each question in QASC
is derived from the gold combined fact, so that even
when multiple valid statements may be generated

4E.g., for the first and second row in Table 3, “one-celled
animals make humans sick” is a valid generation, but not
perfect w.r.t. the target.

5Thus, the text containing the lexical hints is simply a bag
of words, rather than grammatical correct text.

from fact 1 and fact 2, paying extra attention on
the terms in the question and the correct answer
is likely to force the model to make predictions
related to the gold combined fact.

3.3 Evaluation Metric

For each configuration, we manually evaluated
100 generated statements against the corresponding
gold combined fact on the dev set.6 All generations
are categorized into three classes.

Perfect: The generated statement is (1) exactly the
same as the gold combined fact, or (2) semanti-
cally the same as the gold combined fact but uses a
different expression.

613 data points had issues in the raw data, and were re-
moved, leaving the actual number of data points analyzed as
87.
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Input Target Prediction Question Type
substitution statement 1: skin color is a poly-
genic trait. statement 2: polygenic traits are the
result of the interaction of several genes. hint: is
genes of the result several skin color interaction.

skin color is the result
of the interaction of
several genes.

skin color is the result
of the interaction of
several genes.

Instantiation

substitution statement 1: if weather is stormy
then there is a greater chance of rain. state-
ment 2: rain is also known as precipitation. hint:
stormy is greater weather there of a chance pre-
cipitation.

if weather is stormy
then there is a greater
chance of precipita-
tion.

if weather is stormy
then there is a greater
chance of precipita-
tion.

Equivalence

substitution statement 1: all cnidarians are
aquatic. statement 2: cnidarians have a hydro-
static skeleton. hint: a are aquatic hydrostatic.

some aquatic animals
have hydrostatic
skeletons.

all aquatic animals
have a hydrostatic
skeleton.

Monotonicity with
quantifier

substitution statement 1: absorption of nutrients
occurs mainly in the small intestine. statement 2:
diarrhea reduces the absorption of all nutrients.
hint: occurs small mainly the diarrhea reduces
in intestine .

diarrhea reduces
function that occurs
mainly in the small
intestine.

diarrhea reduces the
amount of food that
occurs mainly in the
small intestine.

Composition and
summarization

substitution statement 1: kidney failure may be
treated with dialysis. statement 2: kidney failure
is a death sentence. hint: death dialysis.

a lack of dialysis may
lead to death.

death can be treated
with dialysis.

Need to rephrase to
make the new state-
ment reasonable

Table 4: Output of T5 categorized by the types of the inference (w/ hint).

Acceptable: The generated statement is seman-
tically valid, but its meaning is slightly different
from the gold combined fact.

Unacceptable: The generated statement (1) con-
tains contradicting information, or (2) has severe
grammatically issues, or (3) is missing essential
content from the gold combined fact (e.g., contains
information from only fact 1 or only fact 2).

4 Results

Table 1 shows the overall statistics gathered by our
analysis. All in all, our analysis shows that this
inferential task is far from solved, with most of the
inferred statements being not perfect. In particu-
lar, for the w/o hints configuration, less than half
of the generated statements are perfect. Adding
lexical hints to the input boosts the generation qual-
ity in general, but leaves 51% of inferences as not
perfect. A detailed analysis of the generated state-
ments highlights that T5 performs well in certain
situations, and not so in others. We categorize
below these situations, discuss some possible solu-
tions, and leave a more systematic analysis of the
reason why the model fails on some problems to a
future study.

Below “well learned” means most of the predic-
tions on that type of generations are evaluated as
“perfect” and “not well learned” means most of the
predictions are evaluated as “unacceptable” by the
criteria mentioned in 3.3.

Inference types well learned:

Instantiation Here the input statements are
S1(A,B) and IsA(B,C), i.e., C is an instantia-
tion of a more general concept B. The target output
is S1(A,C) (Table 4).

Equivalence Here the input statements are
S1(A,B) and Equ(B,C), i.e., B is equivalent to
C. The target output is S1(A,C) (Table 4).

Inference types not well learned:

Multiple possible statements to generate When
the input statements are long and complex, there
might be multiple valid statements that could be
generated from the input (discussed in 3.2). In this
case T5 tends to be confused. Adding lexical hints
can relieve this problem to some extent by forcing
the model to pay extra attention to certain areas in
the input, but problems remain. First, even when
adding the lexical hints, some generations are still
not reasonable (Table 3). Second, accurately iden-
tifying the important fractions to pay attention to
is itself a non-trivial problem. We believe this is
an exciting area for future research. For example,
some specialized architectures such as the pointer
generator network (See et al., 2017) might be capa-
ble to learn what parts should be copied or ignored.

Composition and summarization As shown in
the third to last row of Table 4, the new statement
needs the composition of statement 1 and 2, and
some summarization is needed (i.e., “absorption of
nutrients” → “function”).

Dealing with quantifiers in natural language As
shown in the second to last row of Table 4, the new
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statement needs complex monotonicity reasoning
and the understanding of quantifiers.

Generating statements that comply with com-
monsense knowledge In several examples, the
model generates statements that are grammatically
correct but unreasonable regarding commonsense
knowledge. In particular, many of these inferences
require commonsense knowledge to generate new
text and rephrasing to make the new statement rea-
sonable. For example, in the last row of Table 4,
“death can be treated with dialysis” is grammati-
cally correct but unreasonable.

There might be multiple reasons why some types
of generations are not well learned. For instance,
it could be because the biases learned by T5 in the
pre-training stage impede it from learning mean-
ingful patterns by fine-tuning on a downstream
task with relatively few training samples (e.g., the
QASC dataset used in this paper has only about
8,000 training examples). Alternatively, it is pos-
sible that the patterns to be learned in this down-
stream task are too complex to be learned from the
small training data available. We leave a more sys-
tematic analysis in this direction to future studies.

5 Conclusion

In this work we investigate how well a state-of-
the-art transformer language model can generate a
valid statement inferred from two given statements.
We manually evaluated two fine-tuned T5 models
(Raffel et al., 2020) with slightly different inputs
(i.e., with and without contextual information) on
the Question Answering via Sentence Composition
dataset (Khot et al., 2020). Our analysis indicates
that the two models can generate good-quality state-
ments, when the inference relies solely on instanti-
ation or equivalence. However, the models perform
poorly on more complex inferences such as: (a)
multiple valid statements can be generated given
the premises, (b) inference that requires non-trivial
reasoning of monotonicity (especially with quanti-
fiers in natural language), (c) inference that needs
composition and summarization, and (d) statements
that require rephrasing based on background com-
monsense knowledge.
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