
Proceedings of the First Workshop on Insights from Negative Results in NLP, pages 66–70
Online, November 19, 2020. c©2020 Association for Computational Linguistics

ISBN 978-1-952148-66-8

66

An Analysis of Capsule Networks for Part of Speech Tagging in High- and
Low-resource Scenarios∗

Andrew Zupon*, Faiz Rafique†, and Mihai Surdeanu†

*Department of Linguistics, †Department of Computer Science
University of Arizona

{zupon, faizr, msurdeanu}@email.arizona.edu

Abstract

Neural networks are a common tool in NLP,
but it is not always clear which architecture
to use for a given task. Different tasks, dif-
ferent languages, and different training condi-
tions can all affect how a neural network will
perform. Capsule Networks (CapsNets) are
a relatively new architecture in NLP. Due to
their novelty, CapsNets are being used more
and more in NLP tasks. However, their useful-
ness is still mostly untested. In this paper, we
compare three neural network architectures—
LSTM, CNN, and CapsNet—on a part of
speech tagging task. We compare these archi-
tectures in both high- and low-resource train-
ing conditions and find that no architecture
consistently performs the best. Our analysis
shows that our CapsNet performs nearly as
well as a more complex LSTM under certain
training conditions, but not others, and that our
CapsNet almost always outperforms our CNN.
We also find that our CapsNet implementation
shows faster prediction times than the LSTM
for Scottish Gaelic but not for Spanish, high-
lighting the effect that the choice of languages
can have on the models.

1 Introduction

Neural networks have become a common tool in
natural language processing (NLP) for many tasks,
but are different architectures better suited for dif-
ferent tasks, languages, and/or resources? To try to
answer this question, we examine the performance
of two common neural network architectures, long
short-term memory networks (LSTM) (Greff et al.,
2017) and convolutional neural networks (CNN)
(LeCun et al., 1989), against the newer capsule
networks (CapsNets), another neural network ar-
chitecture based on CNNs (Hinton et al., 2011).

*The code and data for this paper can be found at
https://github.com/clulab/releases/tree/
master/emnlp2020-capsnet.

While LSTMs and CNNs are common in NLP, cap-
sule networks are relatively new to the field. Due to
their recency, it’s not always clear if or when they
are better than other widely used sequence models.
This paper investigates the CapsNet architecture in
comparison with LSTMs and CNNs. For our anal-
ysis, we apply these three architectures to a part of
speech (POS) tagging task, on two languages, and
using both low- and high-resource scenarios.

Much of the focus of NLP research is on
resource-rich languages like English. However,
the performance of different models can depend
on the linguistic properties of the language under
study (Bender, 2009) and the amount of training
data available. To compare the performance of
these architectures under different training condi-
tions, we look at Spanish—another resource-rich
language—and Scottish Gaelic—a low-resource
language using different amounts of training data.
This comparison is a step in the right direction,
but it does have the limitations of comparing neu-
ral network architectures implemented in different
frameworks and only comparing two languages.

The main contribution of this paper is comparing
the LSTM, CNN, and CapsNet architectures across
different training conditions. Our analysis finds
that none of the architectures consistently performs
best across training conditions. This illustrates
how different languages and training conditions
can inform which architecture is best suited for
a given NLP task, and that there is no obviously
correct answer.

2 Related Work

CapsNets are a relatively new type of neural net-
work. Hinton et al. (2011) introduces the archi-
tecture, with modifications by Sabour et al. (2017)
(dynamic routing) and Hinton et al. (2018) (EM
routing). A CapsNet is essentially a modified ver-

https://github.com/clulab/releases/tree/master/emnlp2020-capsnet
https://github.com/clulab/releases/tree/master/emnlp2020-capsnet


67

sion of a CNN that trades max pooling for a more
data-retentive process called routing by agreement.
Instead of the prediction with the highest score get-
ting chosen, the weighted sum of all predictions
are considered for classification. Essentially, a Cap-
sNet uses convolution to create first round predic-
tions for objects—primary capsules—and then uti-
lizes routing by agreement to predict the presence
of higher level objects—secondary capsules.

Many implementations of CapsNets are de-
signed for image recognition (Hinton et al., 2011;
Sabour et al., 2017; Hinton et al., 2018). However,
the CapsNet architecture is being applied more and
more to NLP tasks, including Chinese word seg-
mentation (Li et al., 2018), and multi-label text
classification and question answering (Zhao et al.,
2019). This paper continues this path by investigat-
ing how CapsNets compare to other neural network
architectures for the task of part of speech tagging.

3 Data

Our comparison considers two languages: Spanish1

and Scottish Gaelic2. Spanish is a resource-rich lan-
guage, being the second most spoken language by
number native speakers, fourth most spoken lan-
guage by total number of speakers, and the third or
fourth most widely used language on the internet3.
Scottish Gaelic is a low-resource language, with
57,375 fluent speakers in Scotland per the 2011 cen-
sus4. The Spanish data come from the UD Spanish
AnCora treebank5. The Scottish Gaelic data come
from the UD ARCOSG treebank6. Both corpora
use 17 part of speech tag classes.

To study how different low-resource conditions
affect training, we artificially create training parti-
tions of different sizes. From the original training
data (train100), we create partitions consisting
of 50% (train50), 10% (train10), and 1%
(train1) of the training sentences. The amount
of data for each partition is shown in Table 1 for
Spanish and Table 2 for Scottish Gaelic. We use
FastText word embeddings (Grave et al., 2018)
for both Spanish (2,000,000 words) and Scottish
Gaelic (14,318 words). The embedding dimension
is 300.

1Indo-European, Romance
2Indo-European, Celtic
3Third by number internet users by language, fourth by

number of websites by language
4Only 1.1% of Scotland’s population over 3 years old
5UD Ancora
6UD Scottish Gaelic ARCOSG

Partition Sentences Tokens Avg. Sent. Length

train100 14,305 446,144 31.2
train50 7,152 255,213 35.7
train10 1,430 43,480 30.4
train1 143 5,912 41.3
dev 1,654 52,511 31.7
test 1,721 52,801 30.7

Table 1: Number of sentences, tokens, and average sen-
tence length for each partition of Spanish. The n in the
train partitions corresponds to the amount (percent) of
the original data used for training.

Partition Sentences Tokens Avg. Sent. Length

train100 1,015 22,963 22.6
train50 507 10,870 21.4
train10 101 1,543 15.3
train1 10 67 6.7
dev 642 9,949 15.5
test 536 9,946 18.6

Table 2: Number of sentences, tokens, and average sen-
tence length for each partition of Scottish Gaelic. The
n in the train partitions corresponds to the amount (per-
cent) of the original data used for training.

4 Approach

In this section, we describe the implementation de-
tails of our CapsNet, CNN, and LSTM methods.
Our CapsNet and CNN implementations build on
top of Yeung et al.’s implementation7, which was
kept as close as possible to the architectures de-
scribed by Sabour et al. (2017). Importantly, we
tried to keep all three models as close to each other
as possible in order to make our comparison as
faithful as possible. However, certain differences
persist for this project—for example, the CapsNet
and CNN are implemented in Python using Ten-
sorflow8 and Keras9, whereas the LSTM is imple-
mented in Scala using DyNet.10 The hyperparam-
eters for our CapsNet and CNN implementations
were chosen to be as close as possible to the orig-
inal implementation. The hyperparameters of the
LSTM were chosen to be a reasonable approxima-
tion to the CapsNet and CNN models. It is impor-
tant to note that our comparison does not attempt
to compare the best of the best of each architecture.

7https://github.com/Chucooleg/CapsNet_
for_NER

8https://www.tensorflow.org/
9https://keras.io/

10We used the implementation from the processors library
(https://github.com/clulab/processors),
which relies on DyNet (https://dynet.readthedocs.

https://universaldependencies.org/treebanks/es_ancora/index.html
https://universaldependencies.org/treebanks/gd_arcosg/index.html
https://github.com/Chucooleg/CapsNet_for_NER
https://github.com/Chucooleg/CapsNet_for_NER
https://www.tensorflow.org/
https://keras.io/
https://github.com/clulab/processors
https://dynet.readthedocs.io


68

Model P R F1 Train t Predict t

100% of train, caps, no learn 93.85 (0.35) 94.47 (0.24) 94.16 (0.23) 9,032 s 218 s
100% of train, cnn, no learn 93.76 (0.40) 94.20 (0.11) 93.98 (0.22) 4,802 s 200 s
100% of train, lstm, no learn 98.54 (0.03) 98.54 (0.03) 98.54 (0.03) 3,222 s 165 s

50% of train, caps, no learn 92.78 (0.45) 93.58 (0.20) 93.18 (0.31) 5,386 s 223
50% of train, cnn, no learn 92.36 (0.59) 93.54 (0.12) 92.95 (0.29) 3,392 s 206 s
50% of train, lstm, no learn 98.31 (0.03) 98.31 (0.03) 98.31 (0.03) 1,566 s 175 s

10% of train, caps, no learn 88.37 (0.73) 89.48 (0.67) 88.92 (0.56) 3,186 s 208 s
10% of train, cnn, no learn 88.23 (0.60) 89.17 (0.45) 88.70 (0.33) 3,373 s 191 s
10% of train, lstm, no learn 96.89 (0.14) 96.89 (0.14) 96.89 (0.14) 613 s 170 s

1% of train, caps, no learn 76.63 (1.11) 80.62 (0.74) 78.56 (0.30) 3,370 s 205 s
1% of train, cnn, no learn 73.96 (2.66) 74.78 (0.68) 74.34 (1.44) 2,898 s 187 s
1% of train, lstm, no learn 91.79 (0.24) 91.79 (0.24) 91.79 (0.24) 375 s 162 s

100% of train, caps, learn 96.30 (0.35) 95.61 (0.19) 96.00 (0.08) 14,223 s 219 s
100% of train, cnn, learn 96.01 (0.34) 95.43 (0.15) 95.72 (0.16) 12,794 s 211 s
100% of train, lstm, learn 98.43 (0.04) 98.43 (0.04) 98.43 (0.04) 4,280 s 172 s

50% of train, caps, learn 95.59 (0.27) 94.68 (0.16) 95.13 (0.09) 11,571 s 225 s
50% of train, cnn, learn 95.36 (0.10) 94.61 (0.08) 94.98 (0.06) 11,318 s 206 s
50% of train, lstm, learn 98.17 (0.06) 98.17 (0.06) 98.17 (0.06) 1,333 s 171 s

10% of train, caps, learn 92.45 (0.26) 90.18 (0.32) 91.30 (0.08) 3,767 s 209 s
10% of train, cnn, learn 91.41 (0.42) 89.49 (0.25) 90.44 (0.20) 3,832 s 191 s
10% of train, lstm, learn 96.84 (0.07) 96.84 (0.07) 96.84 (0.07) 1,157 s 172 s

1% of train, caps, learn 84.12 (0.66) 82.65 (0.46) 83.38 (0.24) 3,452 s 205 s
1% of train, cnn, learn 79.71 (0.91) 75.87 (1.01) 77.73 (0.35) 2,979 s 188 s
1% of train, lstm, learn 91.80 (0.21) 91.80 (0.21) 91.80 (0.21) 440 s 178 s

Table 3: Spanish Precision, Recall, and F1 scores. The scores are an average of 5 different random seeds and their
standard deviation, along with the average training/prediction times of each model.

4.1 CapsNet Implementation

Our CapsNet model has two 1D convolutional lay-
ers, two routing by agreement capsule layers and
one fully connected layer. Both convolutional lay-
ers have 256 channels, a kernel size of 3, and a
stride of 1. The primary capsule layer has 160
capsules with 8 dimensions, a kernel size of 3 and
stride of 1. There are 17 secondary capsules with
dimensions of 16 and 3 dynamic routing passes.

4.2 CNN Implementation

Our CNN model has three 1D convolutional layers,
a max pooling layer, and two fully connected lay-
ers. The first two convolutional layers are identical
to the first two layers of the CapsNet. The third
convolutional layer has 128 channels, size of 3 and
stride 1. The two feed-forward layers have a size
fo 328 and 192. These settings were chosen to
make the CNN implementation as comparable as
possible to the CapsNet implementation.

io).

4.3 LSTM Implementation

The LSTM code we used is a reimplementation of
the LSTM-CRF approach of Lample et al. (2016).
To make this implementation as similar as possible
with the previous two approaches, we: (a) removed
the CRF layer,11 and (b) removed the character-
level biLSTM encoder from the word embeddings.

Thus, the actual LSTM architecture used con-
sists of three layers: (i) an input layer with 300-
dimensional FastText word embeddings; (ii) one
biLSTM intermediate layer, where each LSTM has
a hidden state of dimension 128 neurons, and (iii) a
linear output layer coupled with a softmax function
to output the POS tags.

5 Results

In addition to our four training data conditions per
language, we evaluate the use of learning the word
embeddings during training for all models (“learn”
vs. “no learn”), yielding 24 training conditions per
language. We trained all models five times with

11In initial experiments we observed that the CRF layer had
a major contribution to other sequence models such as named
entity recognition, but no impact on POS tagging.

https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io
https://dynet.readthedocs.io


69

Model P R F1 Train t Predict t

100% of train, caps, no learn 82.34 (0.82) 80.58 (0.22) 81.45 (0.32) 1,020 s 19 s
100% of train, cnn, no learn 79.40 (1.12) 77.19 (0.96) 78.27 (0.53) 651 s 16 s
100% of train, lstm, no learn 81.86 (0.30) 81.86 (0.30) 81.86 (0.30) 256 s 38 s

50% of train, caps, no learn 75.90 (1.02) 73.98 (0.47) 74.92 (0.54) 809 s 18 s
50% of train, cnn, no learn 71.97 (1.62) 69.33 (0.80) 70.61 (0.47) 616 s 15 s
50% of train, lstm, no learn 75.36 (0.27) 75.36 (0.27) 75.36 (0.27) 119 s 37 s

10% of train, caps, no learn 49.24 (2.78) 37.36 (1.43) 42.44 (1.35) 641 s 19 s
10% of train, cnn, no learn 54.64 (2.16) 50.04 (1.69) 52.18 (0.64) 555 s 15 s
10% of train, lstm, no learn 53.31 (8.11) 53.31 (8.11) 53.31 (8.11) 86 s 40 s

1% of train, caps, no learn 7.94 (1.40) 7.82 (1.28) 7.86 (1.26) 486 s 18 s
1% of train, cnn, no learn 16.87 (3.86) 8.42 (3.52) 10.58 (3.09) 546 s 16 s
1% of train, lstm, no learn 21.37 (3.17) 21.37 (3.17) 21.37 (3.17) 44 s 35 s

100% of train, caps, learn 90.81 (0.35) 87.91 (0.25) 89.34 (0.25) 1,907 s 19 s
100% of train, cnn, learn 88.82 (0.80) 85.57 (0.50) 87.17 (0.32) 1,742 s 16 s
100% of train, lstm, learn 89.84 (0.15) 89.84 (0.15) 89.84 (0.15) 317 s 39 s

50% of train, caps, learn 85.38 (0.62) 81.63 (0.22) 83.46 (0.32) 1,285 s 18 s
50% of train, cnn, learn 82.26 (0.63) 77.95 (0.48) 80.05 (0.54) 1,075 s 16 s
50% of train, lstm, learn 83.66 (0.57) 83.66 (0.57) 83.66 (0.57) 155 s 39 s

10% of train, caps, learn 55.16 (1.55) 46.21 (2.04) 50.26 (1.45) 717 s 19 s
10% of train, cnn, learn 57.84 (3.16) 55.13 (1.53) 56.37 (1.26) 629 s 15 s
10% of train, lstm, learn 65.49 (0.67) 65.49 (0.67) 65.49 (0.67) 101 s 40 s

1% of train, caps, learn 8.31 (1.99) 8.55 (2.25) 8.42 (2.10) 509 s 19 s
1% of train, cnn, learn 18.23 (3.47) 11.63 (5.57) 13.63 (5.31) 544 s 16 s
1% of train, lstm, learn 21.37 (3.17) 21.37 (3.17) 21.37 (3.17) 52 s 36 s

Table 4: Scottish Gaelic Precision, Recall, and F1 scores. The scores are an average of 5 different random seeds
and their standard deviation, along with the average training/prediction times of each model.

LSTM Hidden State Size Spanish-100 Spanish-1 Scottish Gaelic-100 Scottish Gaelic-1

64 98.40 91.76 89.46 18.55
128 98.43 91.80 89.84 21.37
256 98.42 91.44 89.25 15.02

Capsule Layer Kernel Size Spanish-100 Spanish-1 Scottish Gaelic-100 Scottish Gaelic-1

3 96.00 83.38 89.34 8.42
5 96.00 82.69 89.21 9.92
7 95.99 82.59 88.62 6.06

Table 5: F1 scores for different hyperparameter choices for LSTM hidden state size and CapsNet capsule layer
kernel size on the Spanish and Scottish Gaelic 100% and 1% learned embeddings training conditions. The hyper-
parameter values in italics (hidden state size 128 and kernel size 3) are the values chosen for our bigger comparison.

a different random seed and averaged the results.
Each condition trained for 10 epochs, with early
stopping after 2 epochs if the loss did not improve.

The results are given in Table 3 (Spanish) and
Table 4 (Scottish Gaelic). We report Precision, Re-
call, F1, training time, and prediction time. These
results show a few trends:

1. The LSTM always outperforms the CapsNet
and CNN for Spanish, but the CapsNet and CNN
occasionally outperform the LSTM for Scottish
Gaelic, whose training dataset is an order of mag-
nitude smaller than the Spanish one.

2. The difference in F1 on the no learn train condi-
tion between the Spanish 10% and Scottish Gaelic
100% partitions, which have a comparable num-
ber of sentences, is greater for the LSTM (down
9.93%) than the Capsnet (down 2.98%) or CNN
(up 3.93%). This suggests that properties of the
language, not just the amount of data, play a role
in performance.

3. The LSTM benefits only slightly from using
learned embeddings, while both the CapsNet and
CNN get a much larger performance boost. We see
this in the Spanish 1% condition, where the LSTM



70

F1 improves by 0.01%, but the CapsNet and CNN
models improve by 4.82% and 3.39%, respectively.

4. Another obvious difference is in the model
training and prediction times. The training time
for the CapsNet and CNN is much slower than
the LSTM. However, for the Scottish Gaelic case
CapsNets are much faster than the LSTM at predic-
tion time. This is an encouraging result, consider-
ing that our CapsNet implementation is in Python,
whereas the LSTM is implemented in a faster Scala
framework.

Overall, the LSTM performs best in most con-
ditions, but the CapsNet often comes close. The
CapsNet also usually outperforms the CNN. These
performance differences are potentially offset by
faster prediction time, depending on the language.
The balance between predictive accuracy, training
time, and prediction time can be delicate, especially
when looking at low-resource languages. These re-
sults suggest that depending on the use case, a Cap-
sNet architecture may be preferable to an LSTM,
despite the fact that when more resources are avail-
able, the LSTM tends to perform the best under the
common hyperparameters investigated here.

We also compared different hyperparameters for
the LSTM and CapsNet, which is shown in Table 5.
The values we chose for the LSTM hidden state size
and the CapsNet capsule layer kernel size perform
the best in nearly all conditions.

6 Conclusion

In this paper, we compare the performance of three
neural network architectures—LSTM, CNN, and
CapsNet—on part of speech tagging and find that
LSTMs are not always better under the common
hyperparameters investigated. We examine how
the best performing model changes under different
high- and low-resource training conditions using
Spanish and Scottish Gaelic. We show that the rel-
atively new CapsNet architecture performs nearly
as well as the more complex LSTM under certain
conditions and outperforms the CNN under most
conditions we examined. These results suggest that
there is no one obviously clear choice for a model
architecture, and that the properties of a language
and the amount of training data can affect which
architecture performs best. Future work should
address the limitations of this paper. Specifically,
future effort should consider more training condi-
tions, including other languages; the consistency
of these results within groups of similar languages;

and making the implementation of these architec-
tures closer, to guarantee the performance differ-
ences are due to the architecture and not an artifact
of how they were implemented.

References
Emily M. Bender. 2009. Linguistically naı̈ve != lan-

guage independent: Why NLP needs linguistic ty-
pology. In Proceedings of the EACL 2009 Workshop
on the Interaction between Linguistics and Compu-
tational Linguistics: Virtuous, Vicious or Vacuous?,
pages 26–32, Athens, Greece. Association for Com-
putational Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Klaus Greff, Rupesh K. Srivastava, Jan Koutnı́k,
Bas R. Steunebrink, and Jürgen Schmidhuber. 2017.
LSTM: A search space odyssey. IEEE Transac-
tions on Neural Networks and Learning Systems,
28(10):2222–2232.

Geoffrey E. Hinton, Alex Krizhevsky, and Sida D.
Wang. 2011. Transforming auto-encoders. In Artifi-
cial Neural Networks and Machine Learning, pages
44–51. Springer.

Geoffrey E. Hinton, Sara Sabour, and Nicholas Frosst.
2018. Matrix capsules with EM routing. In Interna-
tional Conference on Learning Representations.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. 1989. Back-
propagation applied to handwritten zip code recog-
nition. Neural Computation, 1(4):541–551.

Si Li, Mingzheng Li, Yajing Xu, Zuyi Bao, Lu Fu, and
Yan Zhu. 2018. Capsules based chinese word seg-
mentation for ancient chinese medical books. IEEE
Access, 6:70874–70883.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton.
2017. Dynamic routing between capsules. In Is-
abelle Guyon, Ulrike. Von Luxburg, Samy Bengio,
Hanna Wallach, Rob Fergus, S.V.N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural In-
formation Processing Systems 30, pages 3856–3866.
Curran Associates, Inc.

Wei Zhao, Haiyun Peng, Steffen Eger, Erik Cambria,
and Min Yang. 2019. Towards scalable and reliable
capsule networks for challenging nlp applications.
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics.

https://www.aclweb.org/anthology/W09-0106
https://www.aclweb.org/anthology/W09-0106
https://www.aclweb.org/anthology/W09-0106
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1007/978-3-642-21735-7_6
https://openreview.net/forum?id=HJWLfGWRb
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/ACCESS.2018.2881280
https://doi.org/10.1109/ACCESS.2018.2881280
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
https://doi.org/10.18653/v1/p19-1150
https://doi.org/10.18653/v1/p19-1150

