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Abstract

Recent advancements in Neural Machine
Translation (NMT) models have proved to pro-
duce a state of the art results on machine trans-
lation for low resource Indian languages. This
paper describes the neural machine translation
systems for the English-Hindi language pre-
sented in AdapMT Shared Task ICON 2020.
The shared task aims to build a translation sys-
tem for Indian languages in specific domains
like Artificial Intelligence (AI) and Chem-
istry using a small in-domain parallel corpus.
We evaluated the effectiveness of two popu-
lar NMT models i.e, LSTM, and Transformer
architectures for the English-Hindi machine
translation task based on BLEU scores. We
train these models primarily using the out of
domain data and employ simple domain adap-
tation techniques based on the characteristics
of the in-domain dataset. The fine-tuning and
mixed-domain data approaches are used for
domain adaptation. Our team was ranked first
in the chemistry and general domain En-Hi
translation task and second in the AI domain
En-Hi translation task.

1 Introduction

Machine understanding of natural language queries
is of paramount importance to automate different
workflows. The natural language query can be in
the form of text or speech. Processing of query
in the form of text is more popular and easy than
directly processing the raw speech waveform. The
text-based Natural Language Processing (NLP) in-
clude tasks like classification, token tagging, sum-
marization, and translation. Machine translation is
an NLP technique to translate a sentence from a
source language to a target language. The Neural
Machine Translation (NMT) is a recent approach to
translation producing state of the art results (Bah-
danau et al., 2014). NMT defines translation as
a sequence to sequence task and uses sequence-

based neural architectures like Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) and Transformer (Vaswani et al., 2017). Tra-
ditional techniques like rule-based translation and
Statistical Machine Translation (SMT) have been
outperformed by NMT models achieving signif-
icant improvements on MT tasks. In this work,
we are specifically concerned with English-Hindi
neural translation.

The Hindi language is one of the most popular
languages in India and the fourth most spoken lan-
guage in the world. Hindi is native to India and
is spoken by more than 550 million total speakers
worldwide. However, the number is much less as
compared to global languages like English. On sim-
ilar lines, the training data for the Hindi language
that is publicly available for MT tasks is relatively
less as compared to other highly popular languages
worldwide like English, French, and German. This
is important as MT tasks require a huge amount
of training data to produce remarkable results us-
ing NMT models. Hindi being a relatively low
resource and morphologically rich language, the
amount of research in MT tasks for the Hindi lan-
guage is limited (Philip et al., 2019). As Hindi
is the most widely spoken language in the Indian
subcontinent and the majority of content across
the globe is published in English, the research in
MT tasks for English-Hindi language pair becomes
highly important.

Domain adaptation of translation systems to spe-
cific domains is a common practice for low re-
source language pairs. The adaptation is relevant
as the text in different domains can vary widely
(Luong and Manning, 2015). For example, social
media text and the text in literary work will be quite
different from style, grammar, and abbreviations
perspective. The domains can be distinguished
based on topics like politics, life science, news, etc,
or the style of writing like formal and informal. A
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translation model trained on one domain may not
work well on other domains. The problem is more
severe in models that use word-based representa-
tion as most of the domain-specific words will be
out of vocabulary (Sennrich et al., 2015b). In this
work, we explore ideas for domain adaptation for
English-Hindi translation on the AdapMT Shared
Task ICON 2020 data sets.

The AdapMT Shared Task ICON 2020 aims to
evaluate the capability of general domain machine
translation for Low Resource Indian Languages.
Indian languages considered in AdapMT Shared
Task ICON 2020 for translation are English-Hindi,
English-Telugu, and Hindi-Telugu. The shared task
also focuses on Low Resource domain adaptation
of machine translation systems. The adaptation
is done with the use of already publicly available
parallel corpora and some small in-domain parallel
data for AI and Chemistry domains. The creation of
a publicly available parallel corpus for low resource
Indian languages is another important goal of this
task.

This paper describes the system built for the
English-Hindi general MT and domain adaptation
tasks held under AdapMT Shared Task ICON 2020.
We experimented with two popular NMT models
namely attention-based LSTM encoder-decoder ar-
chitecture and the Transformer architecture. For
domain adaption, we explore fine-tuning and mixed
domain training approaches. We show that the
mixed domain training performs better than the
fine-tuning based approach for the datasets used in
this work.

2 Architecture

In this section, we describe the two popular seq2seq
neural architectures for machine translation used in
this work. The encoder-decoder architecture con-
sisting of a source side encoder and a target side
decoder is used for the sequence to sequence tasks
(Sutskever et al., 2014). The encoder encodes the
text in a source language into a latent representa-
tion which is consumed by the decoder to generate
the text in the target language. The decoder acts
like a contextual language model generating tar-
get text by attending to the source representations.
The attention mechanism is thus an integral part of
encoder-decoder models which allows the decoder
to focus on the right context while generating the
corresponding target token.

2.1 LSTM model

The LSTM based encoder-decoder models use
stacked LSTM layers on both encoder and decoder
sides. The LSTM and GRU are commonly used
recurrent neural network architectures for machine
translation. In this work, we use LSTM based re-
current architecture as it is shown to give slightly
better results (Britz et al., 2017). The series of
stacked LSTM layers encode the source text. The
hidden state of the last LSTM layer is used as the
encoded output. Subsequently, the target sequence
is decoded sequentially using stacked LSTM lay-
ers. The decoder also makes use of an attention
mechanism to attend to the encoder’s hidden state.
The additive attention and dot product attention are
widely used attention mechanisms (Bahdanau et al.,
2014; Luong et al., 2015). In this work, we restrict
ourselves to the use of additive attention.

2.2 Transformer model

The recently introduced Transformer model has
found a home in almost all NLP tasks starting with
neural machine translation (Vaswani et al., 2017).
It has helped advance the state of the art in NLP
and even employed for speech and vision tasks
(Karita et al., 2019; Ramachandran et al., 2019).
The Transformer uses the self-attention mechanism
as the single most important component. For the
task of translation, the Transformer is used on both
the encoder and decoder side. It comprises various
encoders and decoders stacked over each other. The
main advantage of Transformer over LSTM is the
parallelism on the encoder side which helps us fully
exploit the underlying hardware. The multi-headed
self-attention is another architectural change that
helps in providing superior results as compared to
LSTM.

On the encoder side, the input words are con-
verted to vector embeddings and positional encod-
ing is added to those embeddings so that the trans-
former gets the sense of the order or position of
words. These embeddings are then passed on to
the first encoder layer of the Transformer. The en-
coder consists of multi-head self-attention and a
feed-forward neural network. The output from one
encoder layer is given as input to the next encoder
layer. The output of the final encoder layer is sent
to the decoder.

The decoder consists of masked-multi head atten-
tion, multi-head Attention, and a feed-forward neu-
ral network. The embeddings along with positional
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encodings are passed on to the first layer of the
decoder. The masked multi-head Attention mech-
anism only pays attention to the previous words.
Then, it is passed through the multi-head attention
mechanism attending to the encoder state and a
feed-forward neural network. The output of the de-
coder is passed to the linear and the softmax layer
where the vector scores are turned into probabilities
and the word with the highest probability is chosen
as output.

3 Domain Adaptation

While generalization is always desirable the ma-
chine learning systems are often biased towards the
domain of the training data. Each domain has a
different distribution and different domain data are
mixed while building general systems. In very ba-
sic terms, the vocabulary of the different domains
is mostly different. Table 2 shows the percentage of
in-domain tokens that are present in publicly avail-
able English-Hindi parallel training corpus. Almost
20-40% of the tokens are specific to the target do-
main and not present in the general corpus. Some
terms are specific to and most frequently used in
a particular domain. For some words, the mean-
ing may be different across domains. For example,

”As I said that here we have one hidden layer, you
can have multiple hidden layers also” is a sen-
tence from AI domain. Whereas, ”Triacylglycerol
contains three fatty acids that are esterified to the
glycerol backbone” is from the Chemistry domain.
These two sentences are very specific to their do-
main and rarely use in real-life conversations. To
interpret them in the best way we need a domain
expert or subject matter expert. Similarly to build
a system that works best on a particular domain,
we need to make use of domain-specific data. Now
because we have the same underlying language
rules irrespective of the domain we can make use
of out of domain data to enhance our systems if in-
domain data is less. This is exactly where domain
adaptation comes into the picture.

Domain adaptation is a form of transfer learn-
ing where we adapt a general system for a specific
domain. That is we tune the model to adapt to
the distribution of the target domain. It has been
widely studied in the context of machine transla-
tion (Chu and Wang, 2018). The adaptation tech-
niques can either be data or model-centric. The
data related approaches try to exploit the mono-
lingual corpus of the target domain (Domhan and

Hieber, 2017). A commonly used technique is to
use back-translation to expand the parallel corpus
of the in-domain data (Sennrich et al., 2015a). The
model-based approaches also make use of mono-
lingual corpus from the target domain to train a
language model and then do a shallow or deep
fusion (Gulcehre et al., 2015). There is another
set of training based technique which also go into
model-centric approaches. In these approaches,
the model is first trained on large out of domain
parallel corpus and then re-trained or fine-tuned
on the small in-domain parallel corpus. There are
different variations proposed in literature where
the second fine-tuning is done on a mixed parallel
corpus instead of only using the in-domain corpus
(Chu et al., 2017). The concept of domain tag was
introduced in (Sennrich et al., 2016). The model
is passed the domain label along with each train-
ing sample so that it learns to distinguish between
the domains. The under-represented domains are
oversampled. In this work, we evaluate the domain
data fine-tuning approach and mixed-data training
approach. In the first approach, we train the model
on general corpus followed by in-domain corpus.
In the second approach, we mixed the in-domain
corpus with the general data and do a single train-
ing. Since the amount of in-domain data is very
less as compared to the overall general or mixed-
domain data we oversample in-domain examples
while training.

4 Experimental Setup

4.1 Dataset Details

In our English to Hindi machine translation ex-
periments, we have used the publicly available
IIT Bombay (IITB) English-Hindi Parallel Corpus
(Kunchukuttan et al., 2017). The training data in
the IITB corpus consists of nearly 1.5M training
samples. The IITB training data consists of sen-
tences from the various domain.

In addition to this, we have also used the AI
and Chemistry in-domain parallel corpus provided
by AdapMT Shared Task ICON 2020 organizers
for training and testing the models for respective
domains. The AI in-domain corpus contains 4872,
400, and 401 sentences in the train, validation, and
test set, respectively. The Chemistry in-domain
corpus contains 4984, 300, and 397 sentences in
the train, validation, and test set, respectively. The
data set details are described in Table 1.
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Data Sentences ~Tokens
IIT Bombay Train 1561840 19.85M / 21.4M

General Test 507 9k / -
AI Train 4872 77k / 83k
AI Dev 400 6k / 6k
AI Test 401 7k / -

Chemistry Train 4984 125k / 139k
Chemistry Dev 300 7k / 8k
Chemistry Test 397 7k / -

Table 1: Statistics of the Data (En / Hi)

Data AI Chemistry General
Train (U) 47 / 68 64 / 60 -
Dev (U) 58 / 80 78 / 76 -
Test (U) 59 / - 55 / - 56 / -

Train 78 / 90 81 / 86 -
Dev 77 / 90 81 / 87 -
Test 78 / - 77 / - 76 / -

Table 2: Approx. % of AdapMT domain dataset tokens
(En / Hi) present in IITB Train data. Rows with a suffix
’U’ indicates unique tokens, while data with no suffix
indicates all tokens

4.2 Data Processing

The individual data samples are lowercased fol-
lowed by the removal of all the special charac-
ters. For training purposes, we exempted all the
sentences from IITB English-Hindi Parallel Cor-
pus with a length greater than 20 words. This
was mainly done because of resource constraints
to speed up training. After pre-processing, we
train a sentence piece sub-word tokenizer to to-
kenize the English, as well as Hindi sentences
citekudo2018sentencepiece. We train a unigram
based tokenizer with a vocab size 32k (Kudo, 2018).
The source and target corpus of the IITB parallel
corpus was used to train the individual sentence
piece models. For experiments involving domain
adaptation, the domain data from the train set was
also included in the sentence piece training data.

4.3 Training Details

In this paper, we used the LSTM and Transform-
ers based models for the English to Hindi machine
translation task. For the LSTM model-based experi-
ments, we used an attention-based encoder-decoder
LSTM architecture. The encoder side of LSTM
is bi-directional and the decoder side of LSTM
is unidirectional with Bahdanau additive attention
mechanism. The number of layers on the encoder

and decoder side is set to 1 with 512 hidden units
in each layer. We have used a batch size of 128
and an embedding size of 256. Adam optimizer
was used as an optimizer (Kingma and Ba, 2014).
The subword tokenizer is used to get the subword
tokens as it is known to handle the OOV problem
well.

For the Transformer model, the encoder and de-
coder have 6 layers each and the number of hidden
layers in each layer is set to 512. The batch size
was set to 128. The number of heads used is 8
with a word embedding size of 512. The optimizer
used was Adam. The models were implemented
in Tensorflow 2.0 and trained for a maximum of
10 epochs. The validation loss was used to pick
the best epoch. The standard greedy decoding was
used for all the experiments. For longer sentences,
during decoding, a simple heuristic to split the data
at comma was used followed by separate transla-
tions. While this approach may not be well suited
to the translation as the alignment is not always
monotonous, it worked decently well given the na-
ture of the in-domain sentences.

For our experiments with LSTM and Trans-
former models, we first trained the models on the
IITB training corpus. The models are then retrained
on in-domain AI and Chemistry parallel corpus to
see the improvements in the machine translation
model with the inclusion of small in-domain paral-
lel data. In the second approach, the IITB corpus is
mixed with the in-domain corpus individually and,
a single training is performed. The in-domain cor-
pus in oversampled 10 times to account for a very
low in-domain corpus as compared to the general
corpus.

5 Results and Discussion

We evaluate the mixed data and fine-tuning ap-
proaches on LSTM and Transformer NMT models.
To compare the models Bilingual Evaluation Un-
derstudy (BLEU) score is used (Papineni et al.,
2002). We report the BLEU score on validation
data of AI and Chemistry in-domain corpus. Table
3 shows the results for de-tokenized validation data.
The mixed data training approach performs the
best in comparison to the no-domain data and fine-
tuning approach. The no-domain data approach
performs better as compared to the fine-tuning ap-
proach. This indicates that the simple fine-tuning
approach is not suited to the very small in-domain
corpus and is susceptible to catastrophic forgetting.
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Model AI dev Che dev
LSTM (only IITB) 11.54 8.13

Transformer (only IITB) 10.66 4.73
LSTM (mixed) 16.53 9.86

Transformer (mixed) 12.68 5.07
LSTM (fine-tuning) 10.62 5.63

Transformer (fine-tuning) 11.60 4.88

Table 3: BLEU scores on in-domain dev data (model
with the suffix ’only IITB’ indicates that model is
trained on samples from IITB train examples only, the
model with the suffix ’mixed’ indicates that the model
is trained on data that is obtained by mixing oversam-
pled in-domain training data with IITB training data,
the model with suffix ’fine-tuning’ indicates that the
model is first trained on samples from IITB training
data and then re-trained on in-domain corpus)

Data General AI Chemistry
Test Data 14.81 19.08 13.95

Table 4: BLEU scores on test data as reported by
AdapMT Shared Task ICON 2020 organizers

We see that although the Transformer based mod-
els perform well on the IITB test data they do not
generalize well on the domain tasks. However, we
feel that the low numbers with the Transformer can
be enhanced using appropriate hyper-parameters
and modifying the training approach. The system
submitted for evaluation was LSTM based model
trained on a mixed corpus which was giving the
best validation scores. The results of the test sys-
tem are shown in Table 4. The translations for the
general test set were generated using the LSTM
model trained only on the IITB parallel corpus.

6 Conclusion

In this paper, we evaluated the effectiveness of
attention-based encoder-decoder LSTM and Trans-
former models on a low resource English to Hindi
Translation Task held under AdapMT Shared Task
ICON 2020. Our experiments showed that mixed
domain training works well as compared to the fine-
tuning approach for domain adaptation. The addi-
tion of small in-domain parallel data can indeed
improve the results on AI and Chemistry domains
provided in the shared task.
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