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Abstract
Named entity recognition (NER) is highly sen-
sitive to sentential syntactic and semantic prop-
erties where entities may be extracted accord-
ing to how they are used and placed in the
running text. To model such properties, one
could rely on existing resources to providing
helpful knowledge to the NER task; some ex-
isting studies proved the effectiveness of doing
so, and yet are limited in appropriately leverag-
ing the knowledge such as distinguishing the
important ones for particular context. In this
paper, we improve NER by leveraging differ-
ent types of syntactic information through at-
tentive ensemble, which functionalizes by the
proposed key-value memory networks, syntax
attention, and the gate mechanism for encod-
ing, weighting and aggregating such syntac-
tic information, respectively. Experimental re-
sults on six English and Chinese benchmark
datasets suggest the effectiveness of the pro-
posed model and show that it outperforms pre-
vious studies on all experiment datasets.1

1 Introduction

Named entity recognition (NER) is one of the most
important and fundamental tasks in natural lan-
guage processing (NLP), which identifies named
entities (NEs), such as locations, organizations, per-
son names, etc., in running texts, and thus plays
an important role in downstream NLP applications
including question answering (Pang et al., 2019),
semantic parsing (Dong and Lapata, 2018) and en-
tity linking (Martins et al., 2019), etc.

The main methodology for NER is convention-
ally regarded as a sequence labeling task with mod-
els such as hidden Markov model (HMM) (Bikel

*Equal contribution.
†Corresponding author.
1The code and the best performing models are available at

https://github.com/cuhksz-nlp/AESINER

et al., 1997) and conditional random field (CRF)
(McCallum and Li, 2003) applied to it in previous
studies. Recently, neural models play a dominate
role in this task and illustrated promising results
(Collobert et al., 2011; Huang et al., 2015; Lam-
ple et al., 2016; Strubell et al., 2017; Yadav and
Bethard, 2018; Chen et al., 2019; Jie and Lu, 2019;
Liu et al., 2019d; Baevski et al., 2019), because
they are powerful in encoding contextual informa-
tion and thus drive NER systems to better under-
stand the text and recognize NEs in the input text.
Although it is straightforward and effective to use
neural models to help NER, it is expected to incor-
porate more useful features into an NER system.
Among all such features, syntactic ones, such as
part-of-speech (POS) labels, syntactic constituents,
dependency relations, are of high importance to
NER because they are effective in identifying the
inherited structure in a piece of text and thus guide
the system to find appropriate NEs accordingly,
which is proved in a large body of previous studies
(McCallum, 2003; Li et al., 2017; Luo et al., 2018;
Dang et al., 2018; Jie and Lu, 2019). Although
promising results are obtained, existing models
are limited in regarding extra features as gold ref-
erences and directly concatenate them with word
embeddings. Therefore, such features are not dis-
tinguished and separately treated when they are
used in those NER models, where the noise in the
extra features (e.g., inaccurate POS tagging results)
may hurt model performance. As a result, it is still
a challenge to find an appropriate way to incorpo-
rate external information into neural models for
NER. Moreover, in most cases, one would like to
incorporate more than one types of extra features.
Consequently, it is essential to design an effective
mechanism to combine and weight those features
so as to restrict the influence of noisy information.

https://github.com/cuhksz-nlp/AESINER
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Figure 1: The overall architecture of the proposed NER model integrated with attentive ensemble of different syn-
tactic information. An example input sentence and its output entity labels are given and the syntactic information
for the word “Salt” are illustrated with their processing through KVMN, syntax attention and the gate mechanism.

In this paper, we propose a sequence labeling
based neural model to enhance NER by incorporat-
ing different types of syntactic information, which
is conducted by attentive ensemble with key-value
memory networks (KVMN) (Miller et al., 2016),
syntax attention and the gate mechanism. Particu-
larly, the KVMN is applied to encode the context
features and their syntax information from different
types, e.g., POS labels, syntactic constituents, or
dependency relations; syntax attention is proposed
to weight different types of such syntactic informa-
tion, and the gate mechanism controls the contribu-
tion of the results from the context encoding and the
syntax attention to the NER process. Through the
attentive ensemble, important syntactic information
is highlighted and emphasized during labeling NEs.
In addition, to further improve NER performance,
we also try different types of pre-trained word em-
beddings, which is demonstrated to be effective
in previous studies (Akbik et al., 2018; Jie and Lu,
2019; Liu et al., 2019b; Yan et al., 2019). We exper-
iment our approach on six widely used benchmark
datasets from the general domain, where half of
them are in English and the other half are in Chi-
nese. Experimental results on all datasets suggest
the effectiveness of our approach to enhance NER
through syntactic information, where state-of-the-
art results are achieved on all datasets.

2 The Proposed Model

NER is conventionally regarded as a typical se-
quence labeling task, where an input sequence
X = x1, x2, · · · , xi, · · · , xn with n tokens is an-
notated with its corresponding NE labels Ŷ =
ŷ1, ŷ2, · · · , ŷi, · · · , ŷn in the same length. Follow-
ing this paradigm, we propose a neural NER model
depicted in Figure 1 with attentive ensemble to in-
corporate different types of syntactic information,
where it can be conceptually formalized by

Ŷ = f(GM(X ,SA([Mc(Kc,Vc)]c∈C))) (1)

where C denotes the set of all syntactic information
types and c is one of them;Mc is the KVMN for
encoding syntactic information of type c with Kc

and Vc referring to the keys and values in it, respec-
tively; SA denotes the syntax attention to weight
different types of syntactic information obtained
throughMc; GM refers to the gate mechanism to
control how to use the encodings from context en-
coder and that from SA. In the following text, we
firstly introduce how we extract different types of
syntactic information, then illustrate the attentive
ensemble of syntactic information through KVMN,
syntax attention, and gate mechanism, finally elab-
orate the encoding and decoding of the input text
for NER as shown in the left part of Figure 1.
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Figure 2: The extracted syntactic information in POS labels (a), syntactic constituents (b), and dependency rela-
tions (c) for “Salt” in the example sentence, where associated contextual features and the corresponding instances
of syntactic information are highlighted in blue.

2.1 Syntactic Information Extraction

A good representation of the input text is the key
to obtain good model performance for many NLP
tasks (Song et al., 2017; Sileo et al., 2019). Nor-
mally, a straightforward way to improve model
performance is to enhance text representation by
embeddings of extra features, which is demon-
strated to be useful across tasks (Marcheggiani and
Titov, 2017; Song et al., 2018a; Zhang et al., 2019;
Huang and Carley, 2019; Tian et al., 2020c), in-
cluding NER (Zhang and Yang, 2018; Seyler et al.,
2018; Sui et al., 2019; Gui et al., 2019b,a; Liu et al.,
2019b). Among different types of extra features,
the syntactic one has been proved to be helpful in
previous studies for NER, where the effectiveness
of POS labels, syntactic constituents, and depen-
dency relations, are demonstrated by McCallum
(2003), Li et al. (2017), and Cetoli et al. (2018),
respectively. In this paper, we also focus on these
three types of syntactic information. In doing so,
we obtain the POS labels, the syntax tree and the
dependency parsing results from an off-the-shelf
NLP toolkit (e.g., Stanford Parser) for each input
sequence X . Then, for each token xi in X , we
extract its context features and related syntactic
information according to the following procedures.

For POS labels, we treat every xi as the central
word and employ a window of ±1 word to extract
its context words and their corresponding POS la-
bels. For example, in the example in Figure 2(a),
for “Salt”, the ±1 word window covers its left and
right words, so that the resulting context features
are “Salt”, “is”, and “Lake”, and we use the com-
bination of such words and their POS labels as the
POS information (i.e., “Salt NNP”, “is BVZ”, and
“Lake NNP”) for the NER task.

For syntactic constituents, we start with xi at
the leaf of X ’s syntax tree, then search up through

the tree to find the first acceptable syntactic node2,
and select all tokens under that node as the con-
text features and the combination of tokens and
their syntactic nodes as the constituent information.
For example, in Figure 2(b), we start from “Salt”
and extract its first accepted node “NP”, then col-
lect the tokens under “NP” as the context features
(i.e., “Salt”, “Lake”, and “City”) and combine them
with “NP” to get the constituent information (i.e.,
“Salt NP”, “Lake NP”, and “City NP”).

For dependency relations, we find all context
features for each xi by collecting all its dependents
and governor from X ’s dependency parse, and then
regard the combination of the context features and
their in-bound dependency types as the correspond-
ing dependency information. For example, as illus-
trated in Figure 2(c), for “Salt”, its context features
are “Salt” and “City” (the governor of “Salt”), and
their corresponding dependency information are
“Salt compound” and “City root”.3

As a result, for each type of syntactic inforam-
tion, we obtain a list of context features and a list of
syntactic information instances, which are modeled
by a KVMN module to enhance input text repre-
sentation and thus improve model performance.

2.2 KVMN for Syntactic Information

Since the syntactic information is obtained from
off-the-shelf toolkits, it is possible that there is
noise in the extracted syntactic information, which
may hurt model performance if it is not lever-
aged appropriately. Inspired by the studies that

2There are 10 accepted constituent nodes, including NP,
VP, PP, ADVP, SBAR, ADJP, PRT, INTJ, CONJP and LST,
which are selected from the types used in the CoNLL-2003
shared task (Sang and Meulder, 2003).

3Note that, in this case, we do not have context features
selected from the dependents since “Salt” do not have any
dependents according to the dependency parse result.
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use KVMN and its variants to weight and lever-
age extra features to enhance model performance
in many NLP tasks (Miller et al., 2016; Mino
et al., 2017; Xu et al., 2019b; Tian et al., 2020d),
for each type of the syntactic information (de-
noted as c), we propose a KVMN module (Mc)
to model the pair-wisely organized context features
and the syntactic information instances. Specif-
ically, for each xi in the input, we firstly map
its context features and the syntactic information
to keys and values in the KVMN, which are de-
noted by Kc

i = [kci,1, . . . , k
c
i,j , . . . , k

c
i,mi

] and Vci =
[vci,1, . . . , v

c
i,j , . . . , v

c
i,mi

], respectively, with mi the
number of context features for xi. Next, we use
two matrices to map them to their embeddings,
with ekci,j referring to the embedding of kci,j and evci,j
for vci,j , respectively. Then, for each token xi and
its associated context features Kc

i and syntactic in-
formation Vci , the weight assigned to the syntactic
information vci,j is computed by

pci,j =
exp(hi · ekci,j)∑mi
j=1 exp(hi · ekci,j)

(2)

where hi is the hidden vector for xi obtained from
the context encoder. Afterwards, we apply the
weights pci,j to their corresponding syntactic infor-
mation vci,j by

sci =

mi∑
j=1

pci,je
vc
i,j (3)

where sci is the output of Mc, containing the
weighted syntactic information in type c. There-
fore, KVMN ensures that the syntactic information
are weighted according to their corresponding con-
text features, so that important information could
be distinguished and leveraged accordingly.

2.3 The Syntax Attention

Upon encoding each type of syntactic information
by KVMN, one can assemble different types of
them with an overall representation. The most
straightforward way of doing so is to concatenate
the encoding from each type by

si = ⊕
c∈C

sci (4)

where si is the aggregated results of sci , the embed-
ding for each syntactic type fromMc. However,
given the fact that different syntactic information
may conflict to each other, it is expected to have a
more effective way to combine them.

Motivated by studies that selectively leverage
different features by assigning different weights
to them (Kumar et al., 2018; Higashiyama et al.,
2019; Tian et al., 2020a,b), we propose a syntax
attention for the syntactic information ensemble.
Particularly, for each syntactic type c, we firstly
concatenate sci with hi and use the resulting vector
to compute the weight qci for sci :

qci = σ(Wc
q · (hi ⊕ sci ) + bcq) (5)

where Wc
q and bcq are trainable vector and variable,

respectively, and σ is the sigmoid function. Then,
a softmax function is applied over all types of syn-
tactic information to compute their corresponding
attentions aci , which is formalized by

aci =
exp(qci )∑
c∈C exp(q

c
i )

(6)

In the last, we apply the weights to their corre-
sponding encoded syntactic information vectors by

si =
∑
c∈C

acis
c
i (7)

where si is the output of the syntax attention of
different syntactic information types.

2.4 The Gate Mechanism

To enhance NER with the syntactic information
encoded by KVMN and combined by syntax atten-
tion, we propose a gate mechanism (GM) to incor-
porate it to the backbone NER model, where we
expect such mechanism could dynamically weight
and decide how to leverage the syntactic informa-
tion in labeling NEs. In detail, we propose a reset
function ri to evaluate the encodings from the con-
text encoder and the syntax attention by

ri = σ(Wr1 · hi +Wr2 · si + br) (8)

where Wr1 , Wr2 are trainable matrices and br the
bias term, and use

oi = [ri ◦ hi]⊕ [(1− ri) ◦ si] (9)

to control the contribution of them, where oi is the
output of the gate mechanism corresponding to in-
put xi, 1 is a 1-vector with its dimension matching
hi and ◦ the element-wise multiplication operation.

2.5 Encoding and Decoding for NER

To provide hi to KVMN, we adopt Adapted-
Transformer4 (Yan et al., 2019) as the context en-

4The Adapted-Transformer additionally models direction
and distance information of the input, which are demonstrated
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TYPE

ENGLISH CHINESE

ON5E WN16 WN17 ON4C RE WE

# T. = 18 # T. = 10 # T. = 6 # T. = 4 # T. = 8 # T. = 4

# S. # E. # S. # E. # S. # E. # S. # E. # S. # E. # S. # E.

TRAIN 59.9K 81.8K 2.4K 1.5K 3.4K 2.0K 15.7K 13.4K 3.8K 13.4K 1.4K 1.9K
DEV 8.5K 11.1K 1.0K 0.7K 1.0K 0.8K 4.3K 7.0K 0.5K 1.5K 0.3K 0.4K
TEST 8.3K 11.3K 3.9K 3.5K 1.3K 1.1K 4.3K 7.7K 0.5K 1.6K 0.3K 0.4K

Table 1: Statistics of all datasets with respect to the number of NE types (T.), sentences (S.), and total NEs (E.).

coder in this work. So that the encoding of the
input text can be formalized as

H = Adapted-Transformer(E) (10)

where H = [h1,h2, · · · ,hi, · · · ,hn] and E =
[e1, e2, · · · , ei, · · · , en] are lists of hidden vectors
and embeddings of X , respectively. Note that,
since pre-trained embeddings contain context infor-
mation learned from large-scale corpora, and differ-
ent types of them may carry heterogeneous context
information learned from different algorithms and
corpora, we incorporate multiple pre-trained em-
beddings by direct concatenating them in the input:

ei = ⊕
z∈Z

ezi (11)

where ei is the final word representation to feed the
context encoder; ezi represents the word embedding
of xi in embedding type z and Z the set of all
embedding types.

For the output, upon the receiving of oi, a train-
able matrix Wo is used to align its dimension to
the output space by ui = Wo · oi. Finally, we
apply a conditional random field (CRF) decoder to
predict the labels ŷi ∈ T (where T is the set with
all NE labels) in the output sequence Ŷ by

ŷi = argmax
yi∈T

exp(Wc · ui + bc)∑
yi−1yi

exp(Wc · ui + bc)
(12)

where Wc and bc are trainable parameters to
model the transition for yi−1 to yi.

3 Experimental Settings

3.1 Datasets
In our experiments, we use three English bench-
mark datasets, i.e., OntoNotes 5.0 (ON5e) (Prad-
han et al., 2013) , WNUT-16 (WN16), WNUT-
17 (WN17) (Derczynski et al., 2017), and three
Chinese datasets, i.e., OntoNotes 4.0 (ON4c)
(Weischedel et al., 2011), Resume (RE) (Zhang
and Yang, 2018), Weibo (WE) (Peng and Dredze,

to be useful for NER comparing to the vanilla Transformer.

2015).5 These datasets come from a wide range of
sources so that we are able to comprehensively eval-
uate our approach with them. In detail, WN16 and
WN17 are constructed from social media; ON5e
consists of mixed sources, such as telephone con-
versation, newswire, etc.; ON4c is from news do-
main; RE and WE are extracted from Chinese on-
line resources. For all datasets, we use their origi-
nal splits and the statistics of them with respect to
the number of entity types (# T.), sentences (# S.)
and total entities (# E.) in the train/dev/test sets are
reported in Table 1.

3.2 Implementation

To label NEs, we use the BIOES tagging scheme
instead of the standard BIO scheme for the reason
that previous studies have shown optimistic im-
provement with this scheme (Lample et al., 2016;
Yan et al., 2019). For the text input, we use three
types of embeddings for each language by de-
fault. Specifically, for English, we use Glove (100-
dimension)6 (Pennington et al., 2014), ELMo (Pe-
ters et al., 2018), and the BERT-cased large7 (De-
vlin et al., 2019) (the derived embeddings for each
word); for Chinese, we use pre-trained character
and bi-gram embeddings8 released by Zhang and
Yang (2018) (denoted as Giga), Tencent Embed-
ding9 (Song et al., 2018b), and ZEN10 (Diao et al.,
2019). For both BERT and ZEN, we follow their

5Among these datasets, ON5e and ON4c are multi-lingual
datasets. We follow Yan et al. (2019) by extracting the corre-
sponding English and Chinese part from them.

6We download the Glove.6B embedding from https:
//nlp.stanford.edu/projects/glove/

7We obtain the pre-trained BERT from https://
github.com/google-research/bert.

8We obtain the embeddings from https://github.
com/jiesutd/LatticeLSTM.

9We use the official release from https://ai.
tencent.com/ailab/nlp/embedding.html.

10We use the pre-trained ZEN-base downloaded from
https://github.com/sinovation/ZEN. Note that
we do not use the Chinese BERT since ZEN performs better
across three Chinese datasets. For reference, we report the
results of using BERT in Appendix A.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/jiesutd/LatticeLSTM
https://github.com/jiesutd/LatticeLSTM
https://ai.tencent.com/ailab/nlp/embedding.html
https://ai.tencent.com/ailab/nlp/embedding.html
https://github.com/sinovation/ZEN
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SYNTACTIC INFORMATION ON5E WN16 WN17 ON4C RE WE
POS. CON. DEP.

89.32 53.81 48.96 79.04 95.84 67.79√
89.51 53.94 49.68 79.53 96.09 68.76√
89.64 54.59 49.82 79.76 96.11 68.11√
89.58 54.37 49.47 80.03 96.02 68.64

Table 2: F1 scores of the baseline model and ours enhanced with different types of syntactic information (“POS.”,
“CON.” and “DEP.” refer to POS labels, syntactic constituents and dependency relations, respectively).

TYPE
SYNTACTIC INFORMATION ON5E WN16 WN17 ON4C RE WE
POS. CON. DEP.

DC

√ √
89.61 54.11 49.61 79.61 95.72 68.27√ √
89.56 54.03 49.74 79.83 96.11 68.51√ √
89.60 54.26 49.58 79.89 96.08 68.36√ √ √
89.62 54.41 49.63 79.81 95.31 68.49

SA

√ √
89.68 54.68 49.81 79.92 96.19 68.94√ √
89.76 54.61 49.89 80.29 96.23 69.01√ √
89.78 54.56 49.96 80.41 96.31 68.76√ √ √
89.86 54.79 50.21 80.65 96.43 69.37

Table 3: F1 scores of our models with different combinations of syntactic information. “TYPE” indicates how they
are combined, where “DC” and “SA” refer to direct concatenation and syntax attention, respectively.

default settings, i.e., 24 layers of self-attention with
1024 dimensional embeddings for BERT-large and
12 layers of self-attention with 768 dimensional
embeddings for ZEN-base. For syntactic informa-
tion, we use the Stanford CoreNLP Toolkit11 (Man-
ning et al., 2014) to produce the aforementioned
three types of syntactic information, i.e. POS la-
bels, syntactic constituents, and dependency rela-
tions, for each input text. In the context encoding
layer, we use a two-layer Adapted-Transformer en-
coder12 with 128 hidden units and 12 heads and set
the dropout rate to 0.2. For the memory module,
all key and value embeddings are initialized ran-
domly. During the training process, we fix all pre-
trained embeddings and use Adam (Kingma and
Ba, 2015) to optimize negative log-likelihood loss
function with the learning rate set to η = 0.0001,
β1 = 0.9 and β2 = 0.99. In all experiments, we
run a maximum of 100 epochs with the batch size
of 32 and tune the hyper-parameters on the devel-
opment set.13 The model that achieves the highest

11We use its 3.9.2 version downloaded from https://
stanfordnlp.github.io/CoreNLP/.

12We also try other encoders (i.e., Bi-LSTM and Trans-
former) and report their results in Appendix B for reference.

13We report the hyper-parameter settings of different mod-
els as well as the best one in Appendix C.

performance on the development set is evaluated on
the test set with respect to the F1 scores obtained
from the official conlleval toolkits14.

4 Experimental Results

4.1 Effect of Key-Value Memory Networks

To explore how different syntactic information
helps NER, we run the baselines without syntactic
information and the ones with each type of syntac-
tic information through KVMN.15 Experimental
results (F1) are reported in Table 2 for all datasets.

It is observed from the results that the models
with syntactic information outperform the baseline
in all cases, which demonstrates the effectiveness
of using KVMN in our model. In addition, it is also
noticed that the best performed model is not ex-
actly the same one across different datasets, which
indicates the contributions of different syntactic in-
formation vary in those datasets. For example, in
most datasets, models using syntactic constituents
achieve the best results, which can be explained by
that syntactic constituents provide important cues
of NE chunks. As a comparison, POS labels are

14https://www.clips.uantwerpen.be/
conll2000/chunking/conlleval.txt.

15Syntax attention and the gate mechanism are not applied.

https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
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GM SYNTACTIC INFORMATION ON5E WN16 WN17 ON4C RE WE
POS. CON. DEP.
√ √

89.68 54.68 49.81 79.92 96.19 68.94√ √ √
90.09 54.92 50.28 80.31 96.51 69.31

√ √
89.76 54.61 49.89 80.29 96.23 69.01√ √ √
90.08 54.78 50.16 80.64 96.47 69.47

√ √
89.78 54.56 49.96 80.41 96.31 68.76√ √ √
90.11 54.96 50.36 80.87 96.51 69.24

√ √ √
89.86 54.79 50.21 80.65 96.43 69.37√ √ √ √
90.32 55.14 50.68 81.18 96.62 69.78

Table 4: F1 scores of our models with and without applying the gate mechanism (“GM”) when different syntactic
information are combined by syntactic attention.

ENGLISH CHINESE

MODEL ON5E WN16 WN17 MODEL ON4C RE WE

CHIU AND NICHOLS (2016) 86.12 - - ZHANG AND YANG (2018) 73.88 - 58.79
†LUO ET AL. (2018) 88.79 51.26 48.63 YAN ET AL. (2019) 72.43 95.00 58.17
†DANG ET AL. (2018) 88.91 51.84 48.12 GUI ET AL. (2019B) 74.89 95.37 60.21
AKBIK ET AL. (2018) 89.30 - - ZHU AND WANG (2019) 73.64 94.94 59.31
JIE AND LU (2019) 89.88 - - GUI ET AL. (2019A) 74.45 95.11 59.92
YAN ET AL. (2019) 89.78 54.06 48.98 LIU ET AL. (2019C) 74.43 95.21 59.84
∗DEVLIN ET AL. (2019) 89.16 54.36 49.52 SUI ET AL. (2019) 74.79 - 63.09
ZHOU ET AL. (2019) - 53.43 42.83 DING ET AL. (2019) 76.00 - 59.50
AKBIK ET AL. (2019) - - 49.59 ∗MENG ET AL. (2019) 80.62 96.54 67.60
DAI ET AL. (2019) 89.83 - - XU ET AL. (2019A) - - 68.93
LIU ET AL. (2019B) 89.94 - - MA ET AL. (2020) 75.54 95.59 61.24
∗LUO ET AL. 90.30 - - ∗HU AND WEI (2020) 80.20 95.80 64.00

OURS 90.32 55.14 50.68 OURS 81.18 96.62 69.78

Table 5: Comparison of F1 scores of our best performing model (i.e. the full model with attentive ensemble of all
syntactic information) with that reported in previous studies on all English and Chinese benchmark datasets. “*”
indicates the studies using BERT as the text encoder; “†” means the results are our runs of their models.

the most effective syntactic information for WE
dataset, which can be attributed to the natural of
the dataset that most sentences in social media are
not formally written, so that their parsing results
could be inaccurate and mislead the NER process.

4.2 Effect of Syntax Attention

To examine the effectiveness of syntax attention
(SA), we compare it with another strategy through
direct concatenation (DC) of the KVMN output
to model ouptut. The results are reported in Ta-
ble 3 with applying all combinations of different
syntactic information by DC and SA.

There are several observations. First, interest-
ingly, compared to the results in Table 2, direct
concatenation of different syntactic information
hurts NER performance in most cases. For exam-
ple, on the RE dataset, the ensemble of all types of
syntactic information throughDC obtains the worst
results compared to all other results with integrat-
ing less information under the same setting. The
reason behind this phenomenon could be that differ-

ent syntactic information may provide conflict cues
to NE tags and thus result in inferior performance.
Second, on the contrary, SA is able to improve
NER with integrating multiple types of syntactic
information, where consistent improvements are
observed among all datasets when more types of
syntactic information are incorporated. As a result,
the best results are achieved by the model using all
types of syntactic information. This observation
suggests that the syntax attention is able to weight
different syntactic information and distinguish im-
portant ones from others, thus alleviate possible
conflicts of them when labeling entities.

4.3 Effect of the Gate Mechanism

We experiment our model under its best setting
(i.e., SA over all combinations of syntactic infor-
mation with KVMN) with and without the gate
mechanism to investigate its effectiveness of ac-
tively controlling the information flow from the
context encoder and SA. The results are presented
in Table 4, where the ones without using the gate
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ENGLISH CHINESE

EMBEDDINGS ON5E WN16 WN17 EMBEDDINGS ON4C RE WE
GLOVE ELMO BERT GIGA TENCENT ZEN
√

89.37 47.92 43.24
√

72.11 94.99 61.94√
89.71 53.96 47.92

√
73.54 95.21 63.06√

89.53 53.74 48.74
√

80.06 95.98 68.84√ √
89.91 54.36 48.21

√ √
74.86 95.46 63.96√ √

89.82 54.16 49.61
√ √

80.49 96.24 68.94√ √
90.13 54.92 50.12

√ √
80.81 96.41 69.42√ √ √

90.32 55.14 50.68
√ √ √

81.18 96.62 69.78

Table 6: Experimental results (F1 scores) of our best performing model (i.e., the full model with attentive ensemble
of all syntactic information) using different pre-trained embeddings and their combinations as input.

mechanism are obtained directly from Table 3.16 It
is clearly shown that in all cases, the model with
gate mechanism achieves superior performance to
the other one without it. These results suggest that
the importance of the information from the context
encoder and SA varies, so that the proposed gate
mechanism is effective in balancing them.

4.4 Comparison with Previous Studies

To further illustrate the effectiveness of our models,
we compare the best performing one, i.e., the last
line in Table 4, with the results from previous stud-
ies. The results are shown in Table 5, where our
approach outperforms previous models with BERT
encoder (marked by “*”) and achieves state-of-the-
art results on all English and Chinese datasets. This
observation indicates that incorporate different em-
beddings as input is more effective than directly
using pre-trained models. In addition, compared to
some previous studies (Luo et al., 2018; Dang et al.,
2018)17 that leverage multiple types of syntactic
information by regarding the information as gold
references and directly concatenating their embed-
dings with word embeddings, our approach has
its superiority by using attentive ensemble through
KVMN, syntax attention, and the gate mechanism
to selectively learn from different syntactic infor-
mation according to their contribution to NER,
where such multi-phase strategy of attentive en-
semble guarantees the appropriateness of learning
them in a reasonable manner.

16The results of those models on the development sets of
all datasets are reported in Appendix D.

17Luo et al. (2018) and Dang et al. (2018) do not report their
results on all general domain benchmark datasets, because the
focus of their studies is biomedical NER. Therefore, we report
our runs of their method in Table 5 (marked by “†”).

5 Analyses

5.1 Effect of Different Word Embeddings

Neural models are sensitive to input embeddings,
which is also true for our approach. Consider that
different types of embeddings carry contextual in-
formation learned from various corpora and algo-
rithms, we explore the effect of those embeddings
when they are used separately or combined as the
input. The experiment is performed on our best
model (i.e., KVMN+SA+GM on all syntactic in-
formation), with the results reported in Table 6. It
is clearly observed that for all English and Chi-
nese datasets, the model with all three embeddings
achieves the best performance and its performance
drops consistently when more types of embeddings
are excluded. It is confirmed that different types
of embedding do provide complement context in-
formation to enhance the understanding of input
texts for NER. Particularly, although contextual-
ized embeddings (i.e., ELMo, BERT, and ZEN)
show significantly better performance than oth-
ers (especially on Chinese), combining them with
static embeddings still provide further improve-
ment on the F1 score of NER systems.

5.2 Case Study

To better understand how attentive ensemble of syn-
tactic information helps NER, we conduct a case
study for the word “Bill” in an example sentence
“Mason was one of the drafters of the Bill of Rights”
from the ON5e dataset. Figure 3 visualizes the
weights for different context features in KVMN,
as well as the weights from SA and GM, where
darker colors refer to higher weights.18

Interestingly, in this case, both POS labels and
dependency relations receiving highest weights

18For the weights, we visualize pci,j in Eq. (2) for KVMN,
ac
i in Eq. (6) for SA, and ||ri||2 for ri in Eq. (8) for GM.
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Figure 3: An illustration of how our model encodes syntactic information through KVMN, weights them by syntax
attention (SA) and learns from the gate mechanism (GM), where the weights for different features and information
types are visualized. The example sentence is shown at the top with the gold NE tags for each word marked below.
The weights assigned to different syntactic information for “Bill” in KVMN, SA, and GM are highlighted with
colors, where the darker colors referring to higher values.

suggest a misleading “PERSON” label19 because
of their context features, so that an incorrect NER
prediction is expected if treating the three types of
syntactic information equally. However, the syntac-
tic constituents give strong indication of the correct
label through the word “Rights” for a “LAW” entity.
Later, the syntax attention ensures that the con-
stituent information should be emphasized and the
gate mechanism also tends to use syntax for this in-
put with higher weights. Therefore this case clearly
illustrates the contribution of each component in
our attentive ensemble of syntactic information.

6 Related Work

Recently, neural models play dominant roles in
NER because of their effectiveness in capturing
contextual information in the text without requir-
ing to extract manually crafted features (Huang
et al., 2015; Lample et al., 2016; Strubell et al.,
2017; Zhang and Yang, 2018; Peters et al., 2018;
Yadav and Bethard, 2018; Cetoli et al., 2018; Ak-
bik et al., 2018, 2019; Chen et al., 2019; Devlin
et al., 2019; Zhu and Wang, 2019; Liu et al., 2019b;
Baevski et al., 2019; Yan et al., 2019; Xu et al.,
2019a; Zhu et al., 2020; Luo et al.). However,
to enhance NER, it is straightforward to incor-
porate more knowledge to it than only modeling
from contexts. Therefore, additional resources such
as knowledge base (Kazama and Torisawa, 2008;
Tkachenko and Simanovsky, 2012; Seyler et al.,
2018; Liu et al., 2019b,a; Gui et al., 2019b,a) and
syntactic information (McCallum, 2003; Mohit and
Hwa, 2005; Finkel and Manning, 2009; Li et al.,
2017; Luo et al., 2018; Cetoli et al., 2018; Jie and
Lu, 2019) are applied in previous studies. Partic-
ularly, Luo et al. (2018) and Dang et al. (2018)

19“Bill” is part of the “PERSON” entity in most cases.

exploited POS labels and syntactic constituents in
their methods and found that the combination of
them improves NER performance. Yet they are
limited in regarding such syntactic information as
gold references and directly concatenated them to
the input embeddings, so that noises are expected
to affect NER accordingly. Compared with them,
our model provides an alternative option to lever-
age syntactic information with attentive ensemble
to encode, weight and select them to help NER,
which proves its effectiveness and has the potential
to be applied in other similar tasks.

7 Conclusion

In this paper, we proposed a neural model following
the sequence labeling paradigm to enhance NER
through attentive ensemble of syntactic informa-
tion. Particularly, the attentive ensemble consists of
three components in a sequence: each type of syn-
tactic information is encoded by key-value mem-
ory networks, different information types are then
weighted in syntax attention, and the gate mecha-
nism is finally applied to control the contribution
of syntax attention outputs to NER for different
contexts. In doing so, different syntactic informa-
tion are comprehensively and selectively learned
to enhance NER, where the experimental results
on six benchmark datasets in English and Chinese
confirm the validity and effectiveness of our model
with state-of-the-art performance obtained.
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Appendix A: Comparison Between BERT
and ZEN on Chinese Datasets

EMBEDDINGS ON4C RE WE

BERT + GIGA + TENCENT 80.91 96.56 69.61
ZEN + GIGA + TENCENT 81.18 96.62 69.78

Table 7: Experimental results (F1 scores) of our mod-
els (i.e. the full model with attentive ensemble of all
syntactic information), where BERT or ZEN is used as
one of the three types of embeddings (the others are
Giga and Tencent Embedding) in the embedding layer.

In the main experiments, we use ZEN (Diao
et al., 2019) rather than BERT (Devlin et al., 2019)
as part of the embeddings of input texts on all
Chinese datasets. The reason is that compared to
BERT, ZEN achieves better performance across all
Chinese datasets, which is demonstrated in Table 7.
In this experiment, the results (F1 scores) show the
performance of our best performing model (i.e. the
full model with attentive ensemble of all syntactic

information) on the test set of all three Chinese
datasets. Specifically, either BERT or ZEN is used
as one of the three types of embeddings (the others
are Giga and Tencent Embedding).

Appendix B: Effect of Different Context
Encoders

Context Syntactic ON5e WN16 WN17Encoder Information

Bi-LSTM 88.56 51.16 48.11√
89.64 53.39 49.56

Transformer 88.97 52.31 48.69√
89.92 54.56 50.21

Adapted- 89.32 53.81 48.96
Transformer

√
90.32 55.14 50.68

(a) Performance on all English datasets.

Context Syntactic ON4c RE WEEncoder Information

Bi-LSTM 77.32 94.81 65.72√
80.03 96.08 68.11

Transformer 78.18 95.26 67.16√
80.46 96.31 69.24

Adapted- 79.04 95.84 67.79
Transformer

√
81.18 96.62 69.78

(b) Performance on all Chinese datasets.

Table 8: Experimental results (F1 scores) of our mod-
els with and without applying syntactic information (at-
tentive ensemble of all syntactic information) using dif-
ferent types of context encoders.

In the main experiments, we use Adapted-
Transformer (Yan et al., 2019) as the context en-
coder. In this experiment, we try other two popular
context encoders, i.e., Bi-LSTM and Transformer
(Vaswani et al., 2017), with attentive ensemble of
all syntactic information). The results (F1) on
the test set of all datasets are reported in Table 8,
where the corresponding baselines without using
syntactic information are also reported for refer-
ence. From the results, we find that all models with
attentive ensemble to incorporate syntactic informa-
tion consistently outperform their corresponding
baselines across all English and Chinese datasets,
which demonstrates the robustness of our approach
to leverage syntactic information to improve NER.

Appendix C: Hyper-parameter Settings

We try different values for hyper-parameters for
our model, presented in Table 9. The best values
for all hyper-parameters are also reported, which
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VALUES BEST

DROPOUT RATE 0, 0.1, 0.2, 0.3 0.2
LEARNING RATE e−5 , e−4 , e−3 e−4

BATCH SIZE 8, 16, 32 32
NUMBER OF LAYERS 1, 2, 4 2
NUMBER OF HEAD 4, 8, 12 12
HIDDEN UNITS 64, 128, 256 128

Table 9: Values tested for different hyper-parameters
and the best one used in our experiments.

are obtained by tuning our model with the given
hyper-parameter values on the development set of
each dataset.

Appendix D: The Results of Our Models
on the Development Set

GM SYN. ON5E WN16 WN17 ON4C RE WE
P. C. D.
√ √

86.21 55.54 49.48 77.06 96.04 67.86√ √ √
86.78 56.26 49.76 77.65 96.34 68.35

√ √
86.41 56.31 49.69 77.31 96.12 67.63√ √ √
86.84 56.84 50.02 77.56 96.31 67.86

√ √
86.58 56.56 49.75 77.42 96.12 67.52√ √ √
86.92 57.26 50.18 77.74 96.39 68.14

√ √ √
86.71 56.41 50.04 77.61 96.41 68.16√ √ √ √
87.03 57.38 50.51 78.05 96.46 68.92

Table 10: F1 scores of our models under different
configurations on the development set of all datasets.
“GM” is the gate mechanism; “P.”, “C.” and “D.” refer
to POS labels, syntactic constituents and dependency
relations, respectively.

In Table 10, we report the experimental results
(F1) of our models (i.e., with all types of embed-
dings and KVMN) under different configurations
(using syntax attention on different combinations
of syntactic information and whether to use the gate
mechanism) on development set of all datasets.


