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Abstract

A channel corresponds to a viewpoint or trans-
formation of an underlying meaning. A pair
of parallel sentences in English and French
express the same underlying meaning, but
through two separate channels corresponding
to their languages. In this work, we present
the Multichannel Generative Language Model
(MGLM). MGLM is a generative joint distri-
bution model over channels. MGLM marginal-
izes over all possible factorizations within and
across all channels. MGLM endows flexible
inference, including unconditional generation,
conditional generation (where 1 channel is ob-
served and other channels are generated), and
partially observed generation (where incom-
plete observations are spread across all the
channels). We experiment with the Multi30K
dataset containing English, French, Czech,
and German. We demonstrate experiments
with unconditional, conditional, and partially
conditional generation. We provide qualita-
tive samples sampled unconditionally from the
generative joint distribution. We also quantita-
tively analyze the quality-diversity trade-offs
and find MGLM outperforms traditional bilin-
gual discriminative models.

1 Introduction

A natural way to consider two parallel sentences in
different languages is that each language expresses
the same underlying meaning from a different view-
point. Each language can be thought of as a trans-
formation that maps an underlying concept into a
view that we collectively agree is determined as
‘English’ or ‘French’. Similarly, an image of a cat
and the word ‘cat’ are expressing two views of the
same underlying concept. In this case, the image
corresponds to a high bandwidth channel and the
word ‘cat’ to a low bandwidth channel. This way
of conceptualizing parallel viewpoints naturally
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leads to the formulation of a fully generative model
over each instance, where the transformation corre-
sponds to a particular generation of the underlying
view. We define each of these views as a channel.
As a concrete example, given a parallel corpus of
English and French sentences, English and French
become two channels, and the corresponding gen-
erative model becomes p(English,French). One
key advantage of this formulation is that a single
model can be trained to capture the full expressivity
of the underlying concept, allowing us to compute
conditionals and marginals along with the joint.
In parallel sentences, the conditionals correspond
to translations from one channel to another while
the marginals correspond to standard monolingual
language models.

In this work, we present a general framework
for modeling the joint distribution p(x1, ...,xk)
over k channels by marginalizing over all possi-
ble factorizations across the channels and within
each channel. This formulation allows our frame-
work to perform: 1) unconditional generation, 2)
fully conditional generation (source channels are
fully observed and fixed), and 3) partial conditional
generation (source channels contain incomplete se-
quences).

The key contributions in this work are:

1. We present MGLM, a multichannel genera-
tive modeling framework. MGLM models the
joint distribution p(x1, . . . ,xk) over k chan-
nels by marginalizing over all possible factor-
ization across and within sequences.

2. Since MGLM is trained over all possible fac-
torizations, MGLM can perform both condi-
tional generation (e.g., machine translation
with fully observed source channel), and par-
tially observed conditional generation across
different channels (e.g., seeding each channel
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Figure 1: Multichannel Generative Language Models (MGLM) marginalize over all possible factorizations of
the joint distribution within and across all channels (e.g., languages). MGLM is trained to predict the tokens to be
inserted (in bold), given partially observed inputs. At inference, MGLM can take full, partial, or empty sequence
from each channel and generate the full sequence for each channel.

with different words, and sample sentences
consistent with each other).

3. In the case of conditional generation over mul-
tiple target languages, we show that we are
competitive in BLEU and have significant ad-
vantages in inference time and model memory
savings.

4. We analyze the Quality-Diversity tradeoff
from sampling MGLM and prior work.

We highlight that while we focus on languages as
a specific instantiation of a channel, our framework
can generalize to any arbitrary specification, such
as other types of tasks (e.g., question-answering)
or other modalities (e.g., image captioning).

2 Multichannel Generative Language
Model

In multichannel generative language modeling,
our goal is to learn a generative model given
a dataset consisting of a set of sequences
{x(i)

1 , . . . ,x
(i)
k }

M
i=1 from up to k channels, where

x
(i)
j = [x

(i)
j,1, . . . , x

(i)
j,n] represents a sequence of to-

kens from the j-th channel for the i-th example.
The MGLM models a joint generative distribu-
tion over multiple channels: p(x1, . . . ,xk) using
all possible factorizations.

2.1 Joint Probability Factorization
Given multiple sequences, each from different
channels, there are many possible ways to factor-
ize the joint probability over the channels. One
approach to treat the channels as a sequence of
channels, and use an autoregressive left-to-right
model over the sequence of channels:

p(x1, . . . ,xk) = p(x1)
∏
i

p(xi|x1, ...,xi−1)

Within each channel, the token sequence probabil-
ity can also be modeled autoregressively:

p(xi|x1, ...xi−1) =
∏
t

p(xi,t|x1, ...,xi−1,xi,<t)

This approach assumes: (1) a particular ordering
over the channels; (2) the completion sequences
from previous channels before generating the next
channel’s sequence. These assumptions are valid
in some applications. For example, bilingual ma-
chine translation is a special case where k = 2, the
channels are languages, and the source and target
languages dictate the ordering over the channels
and its token sequences.

In MGLM, we instead consider a more general
approach, wherein we marginalize over all possible
factorization order. Let z represent the permutation
of indices {1, . . . , N} where N is the total number
of tokens summed across all the channels. The
joint probability is marginalized over z:

p(x1, . . . ,xk) =
∑
z∈SN

p(z)p(x1, . . . ,xk|z), (1)

Where p(z) denotes a prior over the different pos-
sible permutation, which can be uniform or a bal-
anced binary tree prior (Stern et al., 2019). Un-
fortunately, computing the exact log-likelihood in
Eqn. 1 is intractable due to marginalization over
all permutation order z. In practice, we optimize
its lower bound via Jensen’s inequality:

log p(x1, . . . ,xk)

= log
∑
z∈SN

p(z)p(x1, . . . ,xk | z) (2)

≥
∑
z∈SN

p(z) log p(x1, . . . ,xk | z) =: L({xi}k)

(3)

2.2 Model Architecture
One natural class of models for MGLM is the
insertion-based Transformer (Stern et al., 2019;
Welleck et al., 2019; Gu et al., 2019), which consid-
ers arbitrary factorization of the output sequence
by using insertion operation, predicting both (1)
content token c ∈ C from the vocabulary, and (2)
location l ≤ t to insert, relative to (e.g. to the left
of) the current partial output ŷt:

p(c, l|x, ŷt) = InsertionTransformer(x, ŷt) (4)



4210

'DWD�IRU�0RGHO
7DUJHW6RXUFH

%LOLQJXDO
�8QL�GLUHFWLRQ�

-RLQW >6(3@ >6(3@(1 )5 &6 >6(3@ '( >6(3@

>6(3@ >6(3@(1 )5 &6 >6(3@ '( >6(3@

0XOWL�7DUJHW
�$Q\�WR�5HVW�

>6(3@ >6(3@(1 )5 &6 >6(3@ '( >6(3@

>6(3@ >6(3@(1 )5 &6 >6(3@ '( >6(3@

>6(3@ >6(3@(1 )5 &6 >6(3@ '( >6(3@

/HJHQG

>6(3@ >6(3@(1 )5

)5

>6(3@ >6(3@(1 >6(3@

>6(3@ >6(3@(1 '( >6(3@

>6(3@ >6(3@(1 >6(3@

>6(3@(1 >6(3@

>6(3@(1 '( >6(3@

>6(3@(1 >6(3@

7UDLQLQJ�6HWV ,QIHUHQFH

'
HF
RG
LQ
J

,WH
UD
WLR
Q

>6(3@ >6(3@$ >6(3@& ) ) + , : < =

6RIWPD[

% '�( * ;

6HOI�$WWHQWLRQ

7RNHQ
(PEHG

3RV�
(PEHG � � � �

� � � � �
� � � � � � �� ��

� � � � � � �

>6(3@(1 >6(3@

>6(3@ >6(3@(1 >6(3@

'
HF
RG
LQ
J

,WH
UD
WLR
Q

)5

>6(3@ >6(3@(1 >6(3@

>6(3@ >6(3@(1 &6 >6(3@

>6(3@ >6(3@(1 >6(3@

>6(3@(1 >6(3@

>6(3@(1 &6 >6(3@

>6(3@(1 >6(3@

,QIHUHQFH

'
HF
RG
LQ
J

,WH
UD
WLR
Q

>6(3@(1 >6(3@

>6(3@ >6(3@(1 >6(3@

'
HF
RG
LQ
J

,WH
UD
WLR
Q

0XOWLFKDQQHO�0RGHO��7UDLQLQJ

6ORW
7DUJHW�V�

(1 )5 &6

(a) MGLMs Training
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(b) MGLMs Inference

Figure 2: (a) An example multichannel modeling over 3 languages (English, French, Czech), where the model
predicts the missing tokens at each location across multiple channels. (b) During inference, MGLM can generate
output sequence for a single target language channel (top) or multiple language channels in parallel (bottom),
conditioning on source channel sentence, and partial translations of multiple language channels.

The (content, location) distribution is factorized
as p(c, l) = p(c|l)p(l), where p(c|l) is the stan-
dard Transformer softmax over vocabulary, and
p(l) is the softmax over the locations. KERMIT
(Chan et al., 2019) further simplified the Insertion
Transformer model by removing the encoder and
only having a decoder stack (Vaswani et al., 2017),
by concatenating the original input and output se-
quence as one single sequence and optimizing over
all possible factorizations. Consequently, KER-
MIT is able to model the joint p(x,y), condition-
als p(x | y), p(y | x), as well as the marginals
p(x), p(y). We extend KERMIT to consider us-
ing a Transformer decoder for modeling the joint
probability over k > 2 channels.

2.3 Training
Without the loss of generality, we denote x =
[x1, . . . ,xk] as the concatenation of the k se-
quences1. With the insertion framework, the loss
function Eqn. (3) can be simplified by changing
the summation and careful decomposition of the
permutation, leading to:

L(x) =
∑
z∈SN

p(z) log
N∏
i=1

p((czi , l
z
i ) | x

z,i−1
1:i−1)

=

N∑
i=1

∑
z1:i−1

p(z1:i−1)
∑
zi

p(zi | z1:i−1)

log p((czi , l
z
i ) | x

z,i−1
1:i−1)

We illustrate an example data input consisting of
3 channels in Figure 2a. We concatenate the se-
quences together from all channels for each exam-
ple, separated by a SEP token. Even with a shared

1The set of permutation z ∈ SN includes different order
of channels as well

vocabulary, each channel results in a different to-
ken embedding, via addition of a channel-specific
(learnable) embedding, or simply having a sepa-
rately learned token embedding per channel. After
passing through the dense self-attention layers as
per Transformer architecture, the contextualized
representation at each output time step predicts
the possible tokens to be inserted to the left of the
current input token. For a uniform prior p(z), the
target tokens at each slot are weighted equally.

2.4 Inference
At inference (generation) time, we can generate
unconditionally by seeding the canvas with the
[SEP] token and predicting the first actual token
or provide as much, or as little, partial/complete
sequence in each channel. Each output token is
chosen via sampling or greedily choosing a single
(content, location) with maximum probability in
the partial canvas x̂t:

(ĉ, l̂) = argmax
c,l

p(c, l|x̂t), (5)

or inserted in all available insertion slots at once,
in parallel:

ĉl = argmax
c

p(c | l, x̂t), (6)

Figure 2b shows two example decoding inference:
a single target language channel (top), or multi-
ple target language channels in parallel (bottom).
Note that for both cases, each channel inserts in all
available slots.

3 Related Work

MGLM was inspired and influenced by prior work
on conditional and unconditional language model-
ing. Insertion Transformer (Stern et al., 2019) and
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XLNet (Yang et al., 2019) also marginalize over
all possible factorizations. However, their work
is focused on the conditional distribution p(y|x),
and they do not marginalize over all possible fac-
torizations of the joint distribution. MGLM can
be viewed as an extension and generalization of
KERMIT (Chan et al., 2019). KERMIT is a gen-
erative joint distribution model that also learns all
possible factorizations. However, KERMIT is con-
strained to two languages, while MGLM is a gen-
erative joint distribution model across any/all lan-
guages/text while learning all possible factoriza-
tions of the joint distribution.

MGLM follows from prior works on cross-
lingual language models, which aim to learn shared
representation across languages. XLM (Conneau
et al., 2019) is closely related to our work and also
concatenate source and target sequences from dif-
ferent languages; however, their work is limited
to bilingual concatenation, is not fully generative,
and requires length conditioning. MGLM is not
limited to two languages and generalizes to multi-
ple channels/languages, is fully generative, and our
insertion-based approach (as opposed to masking-
based approach) does not require length condi-
tioning. Multilingual Neural Language Model
(Wada and Iwata, 2018) uses a shared encoder and
language-dependent decoders to generate word em-
beddings and evaluate word alignment tasks. In
contrast, our work unifies the neural architecture
with a straightforward stack of self-attention lay-
ers. Finally, Dong et al. (2015) explored multi-task
learning for machine translation with an autore-
gressive network. The key difference between our
work and other prior work on multi-target or multi-
task learning is that MGLM models all possible
factorizations of the joint distribution across all
channels, instead of just the left-to-right factoriza-
tion. This difference licenses MGLM to perform
any form of sampling (conditional, unconditional,
partially-conditional) without any rigid left-to-right
restrictions.

Evaluation of text generative models remain a
challenge (Liu et al., 2016; Novikova et al., 2017).
Quality versus diversity plots have been used to
compare the trade-off at different output softmax
temperatures, as such in Stochastic Beam Search
(Kool et al., 2019), which used a simpler n-gram
diversity instead of Self-BLEU (Zhu et al., 2018).
However, we are the first to characterize the Q-D
behaviour of insertion based models versus exist-

ing left-to-right language models. Other metrics
summarize the quality and diversity trade-off as
a single number, such as Fréchet BERT Distance
(Montahaei et al., 2019) inspired by the FID score
(Heusel et al., 2017) used in computer vision, or
take into account human evaluation (Hashimoto
et al., 2019).

4 Experiments

We experiment on a multilingual dataset to demon-
strate that we can learn MGLM. We perform both
qualitative and quantitative experiments. We high-
light the model’s capabilities ranging from condi-
tional generation (i.e., machine translation) to un-
conditional sampling of the joint distribution over
multiple languages.

We experiment on the Multi30k2 (Elliott et al.,
2016b, 2017; Barrault et al., 2018), a multilin-
gual dataset which consists of 29,000 parallel
training sentences in English (EN), French (FR),
Czech (CS), and German (DE) sentences. We use
Multi30k because multiple high-quality channels
(multilingual translations) are readily available to
highlight our framework. We implement MGLM
as a base Transformer decoder, without any causal
masking, with 6 hidden layers and 1024 dimen-
sional hidden representation. We concatenate all 4
language raw text training examples and use Sen-
tencePiece (Kudo and Richardson, 2018) to learn a
universal subword unigram (Kudo, 2018) tokenizer
with a shared 32K vocabulary size. We follow
a similar training set up to BERT (Devlin et al.,
2019), using Adam (Kingma and Ba, 2015) opti-
mizer with a learning rate of 1e-4, warm up over
the first 10% of the total training iterations varying
between 10k to 50k iterations. We can train 3 dif-
ferent variants of MGLM by altering the sampling
ratio of training data seen by the model:

1. Bilingual (e.g., EN → FR). We give the
model a fully observed source (e.g.,EN ), and
ask the model to infill the target (e.g., FR).

2. Multi-target (e.g., any 1→ Rest). We give
the model a fully observed source (e.g., EN ),
and ask the model to infill the rest of the tar-
gets (e.g., DE, FR, CS).

3. Joint. We ask the model to infill all the targets,
consequently we learn a joint distribution over
all the languages p(en, fr,de, cs).

2https://github.com/multi30k/dataset

https://github.com/multi30k/dataset
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Model Inference Test2016 Test2017 MSCOCO

Bilingual (EN→ DE) EN→ DE 36.14 28.32 24.15
Bilingual (EN↔ DE) EN→ DE 37.08 28.69 26.11

Multi-target (EN→ Rest) EN→ DE 36.83 28.35 25.14
EN→ FR,CS,DE 35.41 29.69 25.64

Multi-target (Any→ Rest) EN→ DE 36.63 28.37 26.98
EN→ FR,CS,DE 36.51 28.53 25.84

Joint (p(EN,FR,CS,DE)) EN→ DE 33.06 23.42 21.39
EN→ FR,CS,DE 32.53 23.78 20.97

Table 1: Multi30k English→ German test BLEU. Higher is better.

EN Input: A man sits on a bench holding his dog and looking at the water.
Parallel Decode:
FR: Un homme est assis sur un banc , ten ant son chien et regardant l ’ eau . [SEP]
CS: Muž sedı́ na lavičce a držı́ své ho psa a dı́vá se na vodu . [SEP]
DE: Ein Mann sitzt auf einer Bank und hält seine n Hund und schaut auf das Wasser . [SEP]

FR: Un homme est assis sur un banc , ten ant son chien et regardant l ’ eau . [SEP]
CS: Muž sedı́ na lavičce a držı́ své ho psa a dı́vá se na vodu . [SEP]
DE: Ein Mann sitzt auf einer Bank und hält seine n Hund und schaut auf das Wasser . [SEP]

FR: Un homme est assis sur un banc , ten ant son chien et regardant l ’ eau . [SEP]
CS: Muž sedı́ na lavičce a držı́ své ho psa a dı́vá se na vodu . [SEP]
DE: Ein Mann sitzt auf einer Bank und hält seine n Hund und schaut auf das Wasser . [SEP]

FR: Un homme est assis sur un banc , ten ant son chien et regardant l ’ eau . [SEP]
CS: Muž sedı́ na lavičce a držı́ své ho psa a dı́vá se na vodu . [SEP]
DE: Ein Mann sitzt auf einer Bank und hält seine n Hund und schaut auf das Wasser . [SEP]

FR: Un homme est assis sur un banc , ten ant son chien et regardant l ’ eau . [SEP]
CS: Muž sedı́ na lavičce a držı́ své ho psa a dı́vá se na vodu . [SEP]
DE: Ein Mann sitzt auf einer Bank und hält seine n Hund und schaut auf das Wasser . [SEP]

Figure 3: Example parallel greedy decode using the Multi-target (Any→ Rest) KERMIT model, starting with an
English sentence. Blue underlined tokens are the inserted tokens at each iteration, and the gray tokens are the final
output tokens that have not been generated yet. The three target languages are generated together in parallel.

4.1 Translation Performance

The goal of MGLM is not conditional genera-
tion (i.e., machine translation), but nevertheless,
we demonstrate its ability to do conditional gen-
eration in this section. We report the BLEU
scores (Papineni et al., 2002) on the three test sets:
test 2016 Flickr, test 2017 Flickr,
test 2017 MSCOCO, for different English →
{German, French, Czech} translations. We use
parallel greedy decoding (Stern et al., 2019; Chan
et al., 2019), i.e. inserting to all incomplete slots.
Table 1 summarizes the results for English to Ger-
man. Additional results for English to French, En-
glish to Czech, and German to English are shown
in Appendix A.3. We observe that the Multi-target
models performed similar to or slightly better than
the bilingual models trained only on a single lan-
guage pair. This is particularly useful when mul-
tiple machine translation targets are desired. We
now only need one MGLM, which is competitive
to the bidirectional expert models. This implies

we only need 1 model for inference over multi-
ple languages, instead of N models (i.e., saving
substantial memory).

We also observe the full generative joint model
has a BLEU gap compared to the bilingual baseline,
consistent with the findings in Chan et al. (2019).
We hypothesize this is due to the joint distribu-
tion being a more challenging task. We further
hypothesize that the joint model needs to fantasize
additional details when conditioning on the partial
sequence in each channel during training. This re-
sults in fantasizing additional details not present in
the source sentence during translation tasks.

4.2 Parallel Greedy Decoding: Parallel in
Target Languages

As alluded conceptually in Figure 2 and in the pre-
vious section, our KERMIT-based MGLM is also
able to perform parallel greedy decoding that is
also parallel in the number of target languages.
We illustrate this process in Figure 3. By starting
with K initial [SEP] tokens for K target output
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(b) Decoding Iteration Speedup
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(c) Serial vs. parallel target output length

Figure 4: (a) The number of decoding iterations vs. the output length when decoding each target language serially
vs. in parallel, compared to various logarithmic bounds. We have shown that the model can achieve close to the
theoretical lower bound blog2(N/k)c + 2 where the number of target languages k = 3. (b) Relative wall-clock
speed up when using the parallel target languages decoding vs. serial, achieving slightly under 3 times speed up.
(c) Total output length for the 3 target languages when using serial vs. parallel target language generation. While
not identical, we observe a linear relationship between the output length using the two different modes

languages, MGLM can decode K target languages
that have at most n output tokens per language
in O(log n), i.e. constant in the number of target
languages.

We investigate the relative speed up in gener-
ating multiple target language outputs in parallel
versus generating the targets in series, in terms of
wall-clock time and the number of decoding itera-
tions. In Figure 4a, we plot the number of decoding
iterations taken versus the total output length N
for each sentence in the test 2016 Flickr
test set, using the Joint MGLM model when de-
coding from a single source language to 3 target
languages: English→ {French, German, Czech}.
When performing serial target decoding, we only
output the target conditioned on English, i.e., En-
glish → French, English → German, English →
Czech. We also plot several theoretical bounds: (1)
upper bound (N ) when decoding entirely serially,
(2) lower bound 3(blog2(N/3)c+ 2) when decod-
ing 3 languages serially but parallel within each
language, (3) lower bound blog2(N/3)c+2, when
decoding the 3 target languages in parallel and par-
allel within each language, and (4) blog2(N)c+ 2,
if we decode the entire output in parallel as a single
sequence. We observe that our model can meet
the lower bound several times and often decode
below the fourth blog2(N)c+ 2 bound. Figure 4b
compares the wall-clock speed up when decoding
targets in parallel vs. in series, with a linear regres-
sion line plotted. Our model achieving almost 3
times speedup in wall-clock speed. The parallel
targets decoding is bottlenecked by the target lan-
guage with the longest output sequence. Figure 4c

compares the total output length when decoding
the targets in series versus in parallel. We observe
that there is a linear relationship between the output
lengths using the two modes.

4.3 Conditional Bilingual Generation:
Quality-Diversity Trade-off

We first evaluated the models on conditional gen-
eration task by sampling bilingual translations (1
source, 1 target language) for each of the 12 lan-
guage pair directions. We sample the token and
location (c, l) ∼ p(c, l|x, ŷ) from the partial can-
vas at each iteration, generating 100 hypothesis
translations per source sentence, at softmax temper-
ature τ = 0.1, 0.5, 1.0. At each temperature and
model, we computed the quality of the generated
samples by computing the BLEU score between the
reference translation and the samples, and the diver-
sity by computing the pairwise BLEU between the
100 samples per source, also known as Self-BLEU
(Zhu et al., 2018). Lower Self-BLEU indicates the
higher the diversity as there is less overlap between
the samples.

Figure 5 illustrates the Quality-Diversity trade-
off for the three models for different translation
pairs involving English as one of the languages.
The top right portion of the graph is the ideal area.
We observed that the Multitarget model outper-
formed the Bilingual model at a lower temperature
(both higher quality and diversity), and at a higher
temperature, slightly above or below in quality but
still higher diversity. Note that only one single
Multitarget model was used for all language pair
at inference time, while each bilingual model was



4214

102030405060708090

Self-BLEU

10

20

30

40

50

60

B
LE

U
English / French

102030405060708090

Self-BLEU

10

20

30

40

50

60
English / German

102030405060708090

Self-BLEU

10

20

30

40

50

60
English / Czech

Quality-Diversity BLEU (test_2016_flickr)

Joint EN->*

Joint *->EN

Multitarget EN->*

Multitarget *->EN

Bilingual EN->*

Bilingual *->EN
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
English Groundtruth: A young boy, wearing a chef’s hat and apron, is cutting sausages in a kitchen.
French Groundtruth: Un jeune garçon, portant une toque et un tablier, coupe des saucisses dans une cuisine.
German Groundtruth: Ein kleiner Junge mit Kochmütze und Schürze schneidet in einer Küche Würstchen.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

English Seed: A young boy,
French Seed: portant une toque et un tablier,
German Seed: chneidet in einer Küche Würstchen.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

English: A young boy , wearing a hat , and an apron grilling hotdogs in the kitchen.
French: Un jeune garçon portant une toque et un tablier, faisant cuire du citron et des hotdogs dans la cuisine.
German: Ein junger Mann trägt eine Mütze und schneidet in einer Küche Würstchen.

English: A young boy , wearing a hat and a apron, is in a kitchen , cutting with various foods on it.
French: Un jeune garçon, portant une toque et un tablier, est dans une cuisine en projetant des poêles de la nourriture.
German: Ein kleiner Junge mit Hut und Schürze schneidet in einer Küche Würstchen.

English: A young boy, wearing an orange hat and apron, puts barbecue chicken in a kitchen.
French: Un jeune garçon, portant une toque et un tablier, coupant du poulet dans une cuisine.
German: Ein kleiner Junge in einer weißen Mütze und mit Schürze schneidet in einer Küche Würstchen glas .

English: A young boy, wearing a blue hat and apron, is cooking meat in a kitchen.
French: Un petit garçon, portant une toque et un tablier, fait la cuisine dans une cuisine.
German: Ein kleiner Junge mit blauer Mütze und schneidet in einer Küche Würstchen.

Figure 6: Example partially conditional generation samples. The seed text is shown in gray, with several different
in-filling samples from the model in black. The samples show reasonable consistency and diversity.

different for each language pair curve. Therefore, a
single Multitarget MGLM model could outperform
specialized bilingual KERMIT models.

4.4 Partial Conditioning Multilingual
Generation

We demonstrate our model’s ability to generate in-
filling for partial conditioning over the multiple
channels. To be explicit, we seed each channel
with a few (different) words, and sample from the
model. We ask the model what text completions
would best fit under the model’s posterior. Figure
6 highlights several examples for (English, French,
German) sentence completion. We took an exam-
ple from the test 2016 Flickr test set and
split it into 3 chunks–beginning in English, middle

in French, and ending in German–and sample com-
pletion. The model can generate a set of diverse,
coherent examples (Figure 6).

4.5 Unconditional Multilingual Generation

We then evaluated the models on unconditional
multilingual generation task to generate a sentence
each in all 4 languages such that they correspond
to each other. For the Joint model, we perform 3
types of sampling: (1) unrestricted, (2) chain, and
(3) common cause. For unrestricted, we sampled
one (token, location) at each iteration starting from
an empty canvas, allowing the model to insert a
token in any language until all slots were marked
as completed. In the chain generation, we first
restrict to generating English sentence one token at
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Model Language Generated Sentences

Joint English A young man in a blue jacket walking up a mountain.
French Un jeune homme en veste bleue descendant une paroi rocheuse en horu.
German Ein junger Mann in einer blauen Jacke klettert eine Felswand hoch.
Czech Mladý muž v modré bundě stoupá po horách.

≈“Young men in blue jackets ascend and climb mountains.” X

Biling. English Two small white dogs are holding the duck in a fenced yard.
French Deux petits chiens blancs tenant un canard dans une cour clôturée.
German Zwei kleine weiße Hunde halten eine gelbe Ente in einem eingezäunten Hof.
Czech Dva malı́ chlapci držı́ žlutou panou venku u žlutého oploceném nádvořı́.

≈“Two little boys holding a yellow gentleman outside by a yellow fenced courtyard.” 7

Figure 7: Example unconditional text generation samples from the Joint (top) and chain of Bilingual model (bot-
tom). The Joint model generates one long sequence, and we split them into the four sentences in each language. In
contrast, Bilingual generates a complete sentence in each language conditioned on the previous sentence above.
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Figure 8: Pseudo-Target BLEU for self-consistency for unconditional multilingual generation. Colour shading
indicates the difference compared to the Joint model (unrestricted) generation.

a time, then sampled French, German, and Czech
in order, conditioned on the last sentence in the
previous language. For common cause, we reuse
the same English and French sampled sentences
and generate the German and Czech conditioned
on the English sentence (i.e., 3 languages are all
conditioned on English).

Given these sets of sentences in 4 languages, for
each pair of language direction, we computed a
pseudo target by using a separately trained (on
Multi30k) vanilla Transformer (Vaswani et al.,
2017) and performed beam search (size 5) to trans-
late the chosen source language sample. Figure 8
visualizes the pseudo target BLEU score for dif-
ferent source-target language pairs when compar-
ing the Joint model under different types of sam-
pling. The shaded colour represents the difference
between the current sampling scheme versus the
unrestricted reference. We observe that letting the
model sample in unrestricted order was better than
either the chain or the common cause sampling.

5 Conclusion and Future Work

In this paper, we presented the Multichannel Gener-
ative Language Model (MGLM). MGLM is a gen-

erative joint distribution model that marginalizes
over all possible factorizations within and across
channels. MGLM endows flexible inference, in-
cluding unconditional, conditional, and partially
observed generation. We experimented with those
inference modes using the Multi30K dataset con-
taining English, French, Czech, and German. We
provide qualitative samples sampled uncondition-
ally from the generative joint distribution. We also
quantitatively analyze the quality-diversity trade-
offs and find MGLM outperform traditional bilin-
gual discriminative models.

Our work focused on a specific instantiation of
channels as languages. However, MGLM is not
limited to only languages and can generalize to
other notions of channels. In future work, we
will consider other textual channels, such as para-
phrases, premises and hypotheses, questions and
answers, and multimodal channels, such as images.
Another direction can investigate scaling MGLM
to dozens/hundreds of channels. Fully generative
models still often lag behind purely discriminative
counterparts in performance, but we hope our work
motivates future research on building generative
joint distribution models of the world.
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A Appendices

A.1 Multi30k Dataset Description
The statistics of the Multi30K dataset (Task 1) are
summarized in Table 2. The average number of
words across training, validation, and 2016 test for
English is 11.9, and for German is 11.1 (Elliott
et al., 2016a). Since we use SentencePiece (Kudo
and Richardson, 2018), MGLM sees more number
of tokens per sentence on average.

Subset Number of Sentences

Training 29,000
Validation 1,014
Test 2016 Flickr 1,000
Test 2017 Flickr 1,000
test 2017 MSCOCO 461

Table 2: Multi30k English→ Czech test BLEU.

A.2 Additional Quality-Diversity Curves For
Conditional Generation

We include additional Quality-Diversity Curves For
Conditional Generation: Figure 9 for the test
2017 Flickr, and Figure 10 for the test
2017 MSCOCO.

A.3 Additional Multi30K Translation Results
We include additional Multi30K Translation Re-
sults: Table 3 for English to French, Table 4 for
English to Czech, and Table 5 for German to En-
glish.

A.4 Unconditional Sampling Generation
Figure 11 illustrates the serial sampling (one token
at a time) from the joint model, every 20 timesteps.
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Figure 9: Quality-Diversity BLEU curve for several MGLM models (bilingual, multitarget, joint) on the Multi30k
text 2017 Flickr test set. The dotted diagonal line signifies BLEU equals Self-BLEU. Points indicate dif-
ferent temperatures, from 0.1 (low diversity, left in the graph) to 1.0 (high diversity, right in the graph)

102030405060708090

Self-BLEU

10

15

20

25

30

35

40

45

50
English / French

102030405060708090

Self-BLEU

10

15

20

25

30

35

40

45

50
English / German

Quality-Diversity BLEU (test_2017_mscoco)

Joint EN->*

Joint *->EN

Multitarget EN->*

Multitarget *->EN

Bilingual EN->*

Bilingual *->EN

Figure 10: Quality-Diversity BLEU curve for several MGLM models (bilingual, multitarget, joint) on the Multi30k
text 2017 MSCOCO test set. The dotted diagonal line signifies BLEU equals Self-BLEU. Points indicate dif-
ferent temperatures, from 0.1 (low diversity, left in the graph) to 1.0 (high diversity, right in the graph)



4219

Model Inference Test2016 Test2017 MSCOCO

Bilingual (EN→ FR) EN→ FR 58.80 50.35 42.82
Bilingual (EN↔ FR) EN→ FR 59.29 52.13 42.17

Multi-target (EN→ Rest) EN→ FR 58.08 50.39 42.19
EN→ FR,CS,DE 58.52 50.49 41.53

Multi-target (Any→ Rest) EN→ FR 57.64 50.01 40.18
EN→ FR,CS,DE 57.35 48.13 39.98

Joint (p(EN,FR,CS,DE)) EN→ FR 50.87 40.69 33.93
EN→ FR,CS,DE 48.85 39.92 33.45

Table 3: Multi30k English→ French test BLEU.

Model Inference Test2016

Bilingual (EN→ CS) EN→ CS 28.58
Bilingual (EN↔ CS) EN→ CS 29.03

Multi-target (EN→ Rest) EN→ CS 30.48
EN→ FR,CS,DE 30.15

Multi-target (Any→ Rest) EN→ CS 30.11
EN→ FR,CS,DE 30.11

Joint (p(EN,FR,CS,DE)) EN→ CS 26.45
EN→ FR,CS,DE 26.35

Table 4: Multi30k English→ Czech test BLEU.

Model Inference Test2016 Test2017 MSCOCO

Bilingual (DE→ EN) DE→ EN 39.40 34.90 27.75
Bilingual (EN↔ DE) DE→ EN 40.52 35.66 28.61

Multi-target (DE→ Rest) DE→ EN 40.75 36.38 28.91
DE→ EN, FR,CS 39.72 35.95 28.20

Multi-target (Any→ Rest) DE→ EN 40.69 36.02 28.89
DE→ EN, FR,CS 39.97 37.07 28.62

Joint (p(EN,FR,CS,DE)) DE→ EN 38.44 30.82 25.46
DE→ EN, FR,CS 36.30 29.68 24.87

Table 5: Multi30k German→ English test BLEU.
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Iterations Language Generated Sentence from Joint Model

1 English
French
Czech Mladý

German

20 English
French descendant
Czech Mladý muž v modré bundě stoupá po

German Mann klettert.

40 English blue jacket walking up a mountain.
French veste descendant paroi rocheuse en
Czech Mladý muž v modré bundě stoupá po horách.

German Mann klettert.

60 English A man blue jacket walking up a mountain.
French veste bleue descendant une paroi rocheuse en horu.
Czech Mladý muž v modré bundě stoupá po horách.

German Mann einer blauen klettert eine hoch.

80 English A young man in blue jacket walking up a mountain.
French veste bleue descendant une paroi rocheuse en horu.
Czech Mladý muž v modré bundě stoupá po horách.

German Ein junger Mann in einer blauen Jacke klettert eine Felswand hoch.

96 English A young man in a blue jacket walking up a mountain.
French Un jeune homme en veste bleue descendant une paroi rocheuse en horu.
Czech Mladý muž v modré bundě stoupá po horách.

German Ein junger Mann in einer blauen Jacke klettert eine Felswand hoch.

Figure 11: Example of serial sampling unconditional text generation from the joint p(EN,FR,CS,DE) model,
over 96 insertion time steps. Note that the model generates one long sequence, and we split them into the resulting
four sentences in each language here.


