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Introduction

Welcome to the Tutorials Session of EMNLP 2020.

The EMNLP tutorials session in 2020 includes courses on a variety of topics reflecting recent advances in
Natural Language Processing methods and applications, especially selected to give conference attendees
comprehensive overviews ranging from introductory to cutting-edge topics targeted to wide audience
and presented by experts from academia and industry.

This year, continuing the tradition of the past few years, the call, submission, reviewing and selection
of tutorials were coordinated jointly for multiple conferences: ACL, AACL-IJCNLP, COLING and
EMNLP. The reviewing committee consisted of 19 members, among them the tutorial chairs of the
various conferences (Agata Savary and Yue Zhang for ACL, Aline Villavicencio and Benjamin Van
Durme for EMNLP, Daniel Beck and Lucia Specia for COLING and Timothy Baldwin and Fei Xia for
AACL-IJCNMP), and 11 external reviewers (Emily Bender, Erik Cambria, Gaël Dias, Stefan Evert,
Yang Liu, João Sedoc, Xu Sun, Yulia Tsvetkov, Taro Watanabe, Aaron Steven White and Meishan
Zhang). Each proposal received 3 reviews, that evaluated criteria including clarity, preparedness, novelty,
timeliness, instructors’ experience, likely audience, open access to the teaching materials, diversity
(multilingualism, gender, age and geolocation) and the compatibility of preferred venues. From the
43 tutorial submissions received, 7 were selected for presentation at EMNLP.

We solicited two types of tutorials, including cutting-edge and introductory themes. From the 7 tutorials
accepted for EMNLP, 1 is introductory and 6 are cutting-edge tutorials, all reflecting current topics of
interest to the community. The introductory tutorial offers an overview of research in fact-checking,
“fake news”, and media bias detection (T2). The cutting-edge tutorials present research on methods
for interpreting predictions of NLP models (T1), for improving efficiency for high-performance NLP
(T3), along with methods for machine reasoning (T4) and spatial language understanding (T5), and
the latest advances on applications including simultaneous translation systems (T6) and neural network
architectures for text generation (T7).

We would like to thank the ACL, AACL-IJCNLP and COLING tutorial chairs, along with the members
of the reviewing committee, who all collaborated to ensure a smooth selection process. Our thanks to
the conference organizers for a wonderful and effective collaboration, and in particular to the general
chair Bonnie Webber, the website chair Andy MacKinlay, the publicity chairs Anna Rogers and Ruifeng
Xu, the ACL anthology director Matt Post, the general publication chair Fei Liu and publication chairs
Philippe Muller, Yang Gao and Veronika Laippala, and to the virtual infrastructure chairs Jan-Christoph
Klie, Yang Feng, Zhongyu Wei, Eduardo Blanco and Yangsong Feng. Finally, our huge thanks to the
tutorial authors for their amazing tutorial proposals, and for their flexibility and collaboration in a period
of adaption to virtual conferences.

We hope you enjoy the tutorials.

EMNLP 2020 Tutorial Co-chairs
Aline Villavicencio
Benjamin Van Durme
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Cutting-edge Tutorial:
Machine Reasoning: Technology, Dilemma and Future

Nan Duan, Duyu Tang, Ming Zhou
Microsoft Research

{nanduan,dutang,mingzhou}@microsoft.com

1 Introduction

Machine reasoning research aims to build inter-
pretable AI systems that can solve problems or
draw conclusions from what they are told (i.e. facts
and observations) and already know (i.e. models,
common sense and knowledge) under certain con-
straints. Although its “formal” definitions vary
in different publications (McCarthy, 1958; Pearl,
1988; Khardon and Roth, 1994; Bottou, 2011; Ben-
gio, 2019), machine reasoning methods usually
share some commonalities. First, such systems
are based on different types of knowledge, such
as logical rules, knowledge graphs, common sense,
text evidence, etc. Second, such systems use differ-
ent inference algorithms to manipulate available
knowledge for problem-solving. Third, such sys-
tems have good interpretability to the predictions.

The developments of machine reasoning systems
go through several stages. Symbolic reasoning
methods represent knowledge using symbolic logic
(e.g., propositional logic and first order logic) and
perform inference using algorithms such as truth-
table approach, inference rules approach, resolu-
tion, forward chaining and backward chaining. A
major defect is that such methods cannot handle the
uncertainty in data. Probabilistic reasoning meth-
ods combine probability and symbolic logic into a
unified model. Such methods can deal with uncer-
tainty, but suffer the combinatorial explosion when
searching in a large discrete symbolic space. With
the rapid developments of deep learning, neural
reasoning methods attract much attention. Neural-
symbolic reasoning methods represent knowledge
symbols (such as entities, relationships, actions,
logical functions and formulas) as vector or ten-
sor representations, and allow the model to per-
form end-to-end learning effectively as all compo-
nents are differentiable. Neural-evidence reason-
ing methods allow the model to communicate with

the environment to acquire evidence for reasoning.
As such models assume the reasoning layer is not
required to be logical, both structured and unstruc-
tured data can be used as knowledge. Besides, as
the interaction with the environment can be con-
ducted multiple times, such approaches are good at
solving sequential decision-making problems.

However, existing machine reasoning methods
face with a dilemma: although they have many
merits such as good abstraction, generalization
and interpretability, their performance are still
worse than black-box neural networks (such as pre-
trained models) on most downstream tasks such as
question answering, text classification, etc.

In this tutorial, we will review typical machine
reasoning frameworks and talk about the dilemma
between black-box neural networks with state-of-
the-art performance and machine reasoning meth-
ods with better interpretability. We will also discuss
possible research directions to escape this dilemma
as the future work.

2 Description

We first review four machine reasoning frameworks.

Symbolic Reasoning This approach, also known
as the Good, Old-Fashioned AI (GOFAI), was the
dominant paradigm in the AI community before
the late 1980s. By manipulating knowledge in the
form of symbolic logic using inference algorithms,
a symbolic reasoning system can solve deductive
and inductive reasoning tasks. We will use deduc-
tive reasoning as an example to show how this task
can be solved based on knowledge in the form of
propositional logic and first-order logic, respec-
tively. This part is also closely related to probabilis-
tic reasoning and neural-symbolic reasoning.

Probabilistic Reasoning One drawback of sym-
bolic reasoning is that it cannot handle data un-
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certainty. To alleviate this problem, probabilistic
reasoning is proposed, which integrates probabilis-
tic models with symbolic knowledge in a unified
framework. In such systems, probabilistic models
handle the uncertainty issue while the symbolic
logic represents types, relations, and the complex
dependencies between them. We will use Bayesian
Network (Pearl, 1988) and Markov Logic Network
(Richardson and Domingos, 2006) as two represen-
tative models to show how probabilistic reasoning
can solve typical reasoning tasks, such as diagnosis,
prediction and maximum probable explanation.

Neural-Symbolic Reasoning Both symbolic
reasoning and probabilistic reasoning support
strong abstraction and generalization. Such sys-
tems have good interpretability but are fragile and
inflexible duo to the finite and discrete symbolic
representations. On the contrary, neural network
models achieve state-of-the-art performance on var-
ious AI tasks, due to their good representation and
learning capabilities. However, such models can-
not capture compositionality and generalization in
a systematic way. They cannot provide explicit
decision-making evidence to explain their outputs
as well, which make such systems look like a black
box. So it is straightforward to integrate neural
networks with symbolic reasoning, which is called
neural-symbolic reasoning in this tutorial. In gen-
eral, a neural-symbolic reasoning system (1) inte-
grates existing reasoning technologies with sym-
bolic knowledge based on neural networks and
(2) implements inference as a chain of differen-
tiable modules, where each module represents a
program with a specific function. By doing these,
such systems are usually more interpretable than
black-box neural networks. We will review knowl-
edge graph reasoning (Bordes et al., 2013; Wang
et al., 2014; Lin et al., 2015; Wang et al., 2017;
Glorot et al., 2013; Socher et al., 2013; Dong et al.,
2014; Liu et al., 2016; Dettmers et al., 2018; Guo
et al., 2019; Ren et al., 2020; Xiong et al., 2017;
Dong et al., 2019; Rocktäschel and Riedel, 2017;
Qu and Tang, 2019; K. Teru et al., 2020), neural
semantic parsing (Dong and Lapata, 2016, 2018;
Sun et al., 2018; Guo et al., 2018; Mao et al., 2019;
Zhong et al., 2020), neural module network (An-
dreas et al., 2016; Hu et al., 2017; Gupta et al.,
2020; Chen et al., 2020) and symbolic knowledge
as constraints (Rocktaschel et al., 2015; Hu et al.,
2016; Xu et al., 2018; Li and Srikumar, 2019; Wang
et al., 2020) as four representative models.

Neural-Evidence Reasoning Previously men-
tioned three reasoning pipelines have the merits of
utilizing abstractive logical or symbolic functions,
which are interpretable to developers and users at
concept level. The design of such symbolic func-
tions in real applications are typically conducted
by domain experts, thus these models cannot be
easily extend to broader applications. Here, we
review neural-evidence models that find external
evidence and combine evidence with the input to
make predictions. We group existing methods into
three categories, including unstructured textual ev-
idence retrieval models, structured fact evidence
retrieval models, and iterative evidence retrieval
models. Applications include open question an-
swering (Chen and Yih, 2020), CommonsenseQA
(Talmor et al., 2019), fact checking and verification
(Thorne et al., 2018), inferential text generation
(Rashkin et al., 2018; Sap et al., 2019), and multi-
hop question answering (Yang et al., 2018).

We then talk about the dilemma between black-
box neural networks with state-of-the-art perfor-
mance and machine reasoning approaches with
better interpretability.

Dilemma: Interpretability vs. Performance
Despite the appealing properties of the previously
mentioned machine reasoning approaches in terms
of interpretability, the reality is that the leading
systems on open benchmarks, evaluated by accu-
racy, are typically black-box models. We will dis-
cuss this dilemma of “interpretability versus perfor-
mance” by showing the empirical success of pre-
trained models on natural language understanding
challenges, including Grade 8 New York Regents
science exam (Clark et al., 2019), discrete reason-
ing over natural language (Dua et al., 2019), rea-
soning over rules in natural language (Clark et al.,
2020), and logical reasoning (Yu et al., 2020). Af-
terwards, we will review model interpretation meth-
ods, including post-hoc ones and intrinsic ones.
Post-hoc methods aim to interpret what an existing
model learned without making changes to the origi-
nal model. We will cover saliency maps (Simonyan
et al., 2013), local interpretable model-agnostic
explanations (LIME) (Ribeiro et al., 2016), test-
ing with concept activation vectors (TCAV) (Kim
et al., 2018), and visual explanation generation
(Hendricks et al., 2016). Intrinsic methods are
that inherently interpretable (to some extent). We
will cover attention (Bahdanau et al., 2014), in-
terpretable CNN (Zhang et al., 2018), and neural
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module network (Andreas et al., 2016).
We last summarize the content of this tutorial

and discuss possible future directions.

Summary This tutorial classifies machine rea-
soning methods into 4 categories based on their
modeling mechanisms, including symbolic reason-
ing, probabilistic reasoning, neural-symbolic rea-
soning and neural-evidence reasoning. Symbolic
reasoning can handle complex reasoning tasks by
using logical rules. Probabilistic reasoning further
alleviates the data uncertainty issue in symbolic rea-
soning systems by introducing probabilistic mod-
els. Neural-symbolic reasoning provides more ro-
bust representation and learning capabilities based
on the latest deep learning technologies. Neural-
evidence reasoning doesn’t require the reasoning
layer to be logical, so they can leverage both sym-
bolic and non-symbolic evidence. All these meth-
ods have good applications in many real-world
scenarios like expert system, medical diagnosis,
knowledge base completion, question answering,
search engine, fact checking, etc.

Of course, we also notice the dilemma of ex-
isting machine reasoning methods. We think this
is only a short-term phenomenon. With the con-
tinue and rapid developments of different areas
at the same time, such as knowledge base engi-
neering, pre-training, interpretability modeling and
neural-symbolic computing, we believe machine
reasoning will definitely have a brighter future.

3 Outline

Opening (15 min.) will describe the motivation
and outline of this tutorial and give our definition
on machine reasoning.

Symbolic Reasoning (20 min.) will review typi-
cal methods based on propositional logic and first
order logic, respectively.

Probabilistic Reasoning (20 min.) will review
typical methods based on Bayesian Network and
Markov Logic Network, respectively.

Neural-Symbolic Reasoning (40 min.) will re-
view typical methods including knowledge graph
reasoning, neural semantic parsing, neural module
network and symbolic knowledge as constraints.

Neural-Evidence Reasoning (40 min.) will re-
view text-base evidence retrieval models, fact-
based evidence retrieval models, and interactive
evidence retrieval models.

Dilemma: Interpretability vs. Performance (30
min.) will review post-hoc models and intrinsic
models for interpretation, and discuss the dilemma
of “interpretability versus performance”.

Summary & Future Discussion (10 min.) will
summarize the content of this tutorial and discuss
possible future directions.

4 Prerequisites for the Attendees

We expect the attendees to be familiar with typical
NLP tasks (such as question answering, semantic
parsing, text generation, etc.), basic concepts of
logic (such as propositional logic and first order
logic) and knowledge graph, recent neural network
architectures (such as convolutional neural network,
recurrent neural network and Transformer) and pre-
trained language models (such as GPT and BERT).

5 Small Reading List

• Domingos and Richardson (2004) - an intro-
duction to Markov Logic as a unifying frame-
work for statistical relational learning, which
is closely related to probabilistic reasoning;

• Bottou (2011) - a nice introduction to machine
reasoning;

• Besold et al. (2017) and Garcez et al. (2019) -
two surveys on neural-symbolic reasoning;

• Storks et al. (2019) - a survey on benchmarks,
knowledge resources, learning and inference
approaches to natural language inference;

• Du et al. (2020) - a survey on interpretable
machine learning techniques;

• Chen and Yih (2020) - a tutorial on open-
domain question answering, in which many
work can be categorized as neural-evidence
reasoning;

• Sap et al. (2020) - a tutorial on commonsense
reasoning for natural language processing.

6 Tutorial Abstract

Machine reasoning research aims to build inter-
pretable AI systems that can solve problems or
draw conclusions from what they are told (i.e. facts
and observations) and already know (i.e. models,
common sense and knowledge) under certain con-
straints. In this tutorial, we will (1) describe the
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motivation of this tutorial and give our definition
on machine reasoning; (2) introduce typical ma-
chine reasoning frameworks, including symbolic
reasoning, probabilistic reasoning, neural-symbolic
reasoning and neural-evidence reasoning, and show
their successful applications in real-world scenar-
ios; (3) talk about the dilemma between black-box
neural networks with state-of-the-art performance
and machine reasoning approaches with better in-
terpretability; (4) summarize the content of this
tutorial and discuss possible future directions.

7 Presenters

Nan Duan is a Principal Researcher of the Nat-
ural Language Computing group at Microsoft Re-
search Asia. His research focuses on question an-
swering, semantic parsing, pre-trained models for
learning joint representations of natural language
and images/videos/codes/knowledge. His technolo-
gies have been widely used in Microsoft products
like Bing, Ads, Chatbot, Azure, etc.

Duyu Tang is a Senior Researcher of the Natu-
ral Language Computing group at Microsoft Re-
search Asia, working on natural language process-
ing. Duyu’s research has been advancing the state
of art of robust, interpretable and trustworthy NLP
systems, while making direct technical contribu-
tions to production. Over the years, Duyu worked
on a wide range of NLP problems, from sentiment
analysis, question answering, conversational se-
mantic parsing, knowledge-driven machine reason-
ing, fact checking and fake news detection, to AI
for software engineering. He has served as area
chair for EMNLP 2020.

Ming Zhou Dr. Ming Zhou is Research Man-
ager of the Natural Language Computing Group
at Microsoft Research Asia and leads numerous
research projects including next generation search
engines, neural machine translation, machine read-
ing comprehension, question-answering, chatbots,
computer poetry, knowledge graph and recommen-
dation systems. He has published over 200 papers
at top conferences and journals. He has served
as area chairs of ACL, EMNLP and many other
conferences. He was ACL president in 2019.
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1 Description

The rise of social media has democratized content
creation and has made it easy for anybody to share
and to spread information online. On the positive
side, this has given rise to citizen journalism, thus
enabling much faster dissemination of information
compared to what was possible with newspapers,
radio, and TV. On the negative side, stripping tra-
ditional media from their gate-keeping role has left
the public unprotected against the spread of dis-
information, which could now travel at breaking-
news speed over the same democratic channel.
This situation gave rise to the proliferation of false
information specifically created to affect individ-
ual people’s beliefs, and ultimately to influence
major events such as political elections; it also
set the dawn of the Post-Truth Era, where appeal
to emotions has become more important than the
truth. More recently, with the emergence of the
COVID-19 pandemic, a new blending of medical
and political misinformation and disinformation
has given rise to the first global infodemic. Limit-
ing the impact of these negative developments has
become a major focus for journalists, social media
companies, and regulatory authorities.

The tutorial offers an overview of the emerg-
ing and inter-connected research areas of fact-
checking, misinformation, disinformation, “fake
news”, propaganda, and media bias detection, with
focus on text and on computational approaches. It
further explores the general fact-checking pipeline
and important elements thereof such as check-
worthiness estimation, spotting previous fact-
checked claims, stance detection, source reliabil-
ity estimation, and detecting malicious users in so-
cial media. Finally, it covers some recent develop-
ments such as the emergence of large-scale pre-
trained language models, and the challenges and
opportunities they offer.

2 Outline of the Tutorial

Here is an outline of the tutorial. More informa-
tion and materials are available online.1

2.1 Introduction
(i) What is “fake news”?

(a) definitions
(b) properties

(ii) “Fake news” as a weapon of mass deception

(a) impact on politics, finances, health
(b) can we win the war on “fake news”?

2.2 Check-Worthiness
(i) Task definition

(ii) Datasets

(iii) Approaches

(a) ClaimBuster
(b) ClaimRank: modeling the context,

multi-source learning, multi-linguality
(c) CLEF shared tasks

2.3 Detecting Previously Fact-Checked
Claims

(i) Task definition

(ii) Datasets, e.g., CLEF

(iii) Approaches

2.4 Fact-checking
(i) Task definitions

(ii) Datasets, e.g., Snopes, FEVER, ClamsKG,
MultiFC

(iii) Information sources: knowledge bases,
Wikipedia, Web, social media, multimedia,
tables

1http://propaganda.qcri.org/
emnlp20-tutorial
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(iv) Tasks and approaches

(a) fact-checking against knowledge bases
(b) fact-checking against Wikipedia
(c) fact-checking claims using the Web
(d) fact-checking rumors in social media
(e) fact-checking multi-modal claims,

e.g., about images
(f) fact-checking the answers in community

question answering forums

(v) Shared tasks at SemEval and FEVER

2.5 Fake News Detection
(i) Task definitions

(ii) Datasets, e.g., FakeNewsNet, NELA-GT-
2018

(iii) The language of fake news

(iv) Tasks and approaches

2.6 Stance Detection
(i) Task definitions and examples

(ii) Datasets

(iii) Stance detection as a key element of fact-
checking

(iv) Information sources: text, social context,
user profile

(v) Tasks and approaches

(a) neural methods for stance detection
(b) cross-language stance detection

(vi) Shared tasks at SemEval and the Fake News
Challenge

2.7 Source Reliability and Media Bias
Estimation

(i) Task definitions and examples

(ii) Datasets: Media Bias Fact/Check, AllSides,
OpenSources, etc.

(iii) Source reliability as a key element of fact-
checking

(iv) Special case: hyper-partisanship

(v) Information sources: article text, Wikipedia,
social media

(vi) Tasks and approaches

(a) neural methods for source reliability es-
timation

(b) multi-modality
(c) multi-task learning

2.8 Propaganda Detection
(i) Task definitions and examples

(ii) Propaganda techniques and examples

(iii) Datasets

(iv) Tasks and approaches

2.9 Malicious User Detection
(i) Typology of malicious users

(ii) Datasets

(iii) Tasks and approaches

2.10 Recent Developments and Future
Challenges

(i) Deep fakes: images, voice, video, text

(ii) Text generation: GPT-2, GPT-3, GROVER

(iii) Defending against neural fake news

(iv) Fighting the COVID-19 Infodemic

3 Reading List

We recommend several surveys. Shu et al. (2017),
which adopted a data mining perspective on “fake
news” and focused on social media. Another sur-
vey (Zubiaga et al., 2018a) focused on rumor de-
tection in social media. The survey by Thorne
and Vlachos (2018) took a fact-checking perspec-
tive on “fake news” and related problems. The
survey by Li et al. (2016) covering truth discov-
ery in general. Lazer et al. (2018) offers a gen-
eral overview and discussion on the science of
“fake news”, while Vosoughi et al. (2018) fo-
cuses on the process of proliferation of true and
false news online. Other recent surveys focus on
stance detection (Küçük and Can, 2020), on pro-
paganda (Da San Martino et al., 2020b), on so-
cial bots (Ferrara et al., 2016), on false informa-
tion (Zannettou et al., 2019b) and on bias on the
Web (Baeza-Yates, 2018).

See also the list of references at the end.

4 Type of Tutorial

The tutorial is both introductory, covering a num-
ber of topics related to fact-checking, propaganda
and disinformation, but it is also cutting-edge,
covering some latest developments in these areas.

5 Prerequisites

Prior knowledge of natural language processing,
machine learning, and deep learning would be
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needed in order to understand large parts of the
contents of this tutorial.

6 Lecturers

6.1 Preslav Nakov
Dr. Preslav Nakov is a Principal Scientist at
the Qatar Computing Research Institute (QCRI),
HBKU. His research interests include computa-
tional linguistics, “fake news” detection, fact-
checking, machine translation, question answer-
ing, sentiment analysis, lexical semantics, Web as
a corpus, and biomedical text processing. He re-
ceived his PhD degree from the University of Cal-
ifornia at Berkeley, and he was a Research Fellow
in the National University of Singapore, a hon-
orary lecturer in the Sofia University, and research
staff at the Bulgarian Academy of Sciences.

At QCRI, he leads the Tanbih project,2 devel-
oped in collaboration with MIT, which aims to
limit the effect of “fake news”, propaganda and
media bias by making users aware of what they
are reading. The project was featured by over 100
news outlets, including Forbes, Boston Globe, Al-
jazeera, MIT Technology Review, Science Daily,
Popular Science, Fast Company, The Register,
WIRED, and Engadget, among others.

As part of the project, he co-organized several
shared tasks on fact-checking and propaganda de-
tection at SemEval and CLEF, as well as a related
NLP4IF workshop.

He is President of ACL SIGLEX, a Secretary
of ACL SIGSLAV, and a member of the EACL
advisory board. He is also member of the edi-
torial board of TACL, CS&L, NLE, AI Commu-
nications, and Frontiers in AI, as well as of the
Language Science Press Book Series on Phraseol-
ogy and Multiword Expressions. He co-authored
a Morgan & Claypool book on Semantic Rela-
tions between Nominals, two books on computer
algorithms, and many research papers in top-tier
conferences and journals. He received the Young
Researcher Award at RANLP’2011, and he was
the first to receive the Bulgarian President’s John
Atanasoff award, named after the inventor of the
first automatic electronic digital computer.

2Tanbih project: http://tanbih.qcri.org

6.2 Giovanni Da San Martino
Giovanni Da San Martino is a Senior Assistant
Professor at the University of Padova, Italy. His
research interests are at the intersection of ma-
chine learning and natural language processing.
He has been researching for 10+ years on these
topics, publishing more than 60 publications in
top-tier conferences and journals. He received his
PhD from the University of Bologna, he was a Re-
search Fellow at the University of Padova and a
Scientist at Qatar Computing Research Institute.
He has worked on several NLP tasks including
paraphrase recognition, stance detection and com-
munity question answering. Currently, he is ac-
tively involved in researching on disinformation
and propaganda detection. As part of this research
he has been co-organiser of the Checkthat! labs at
CLEF 2018-2020, the NLP4IF 2019-2020 work-
shops on ”censorship, disinformation, and propa-
ganda”, the 2019 Hack the News Datathon and
the SemEval-2020 task 11 on “Detection of pro-
paganda techniques in news articles.”
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Alberto Barrón-Cedeño, Mitra Mohtarami, Georgi
Karadjov, and James Glass. 2018. Fact check-
ing in community forums. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intel-
ligence, AAAI ’18, pages 5309–5316, New Orleans,
Louisiana, USA.

Sebastião Miranda, David Nogueira, Afonso Mendes,
Andreas Vlachos, Andrew Secker, Rebecca Garrett,
Jeff Mitchel, and Zita Marinho. 2019. Automated
fact checking in the news room. In Proceedings of
the World Wide Web Conference, WWW ’19, pages
3579–3583, San Francisco, California, USA.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
SemEval-2016 task 6: Detecting stance in tweets.
In Proceedings of the 10th International Workshop
on Semantic Evaluation, SemEval ’16, pages 31–41,
San Diego, California, USA.

Mitra Mohtarami, Ramy Baly, James Glass, Preslav
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Abstract

Although neural NLP models are highly ex-
pressive and empirically successful, they also
systematically fail in counterintuitive ways
and are opaque in their decision-making pro-
cess. This tutorial will provide a background
on interpretation techniques, i.e., methods for
explaining the predictions of NLP models. We
will first situate example-specific interpreta-
tions in the context of other ways to under-
stand models (e.g., probing, dataset analy-
ses). Next, we will present a thorough study
of example-specific interpretations, includ-
ing saliency maps, input perturbations (e.g.,
LIME, input reduction), adversarial attacks,
and influence functions. Alongside these de-
scriptions, we will walk through source code
that creates and visualizes interpretations for
a diverse set of NLP tasks. Finally, we will
discuss open problems in the field, e.g., eval-
uating, extending, and improving interpreta-
tion methods. The tutorial slides and the ac-
companying code is available online at https:
//www.ericswallace.com/interpretability.

1 Tutorial Description

Neural models have become the de-facto standard
tool for NLP tasks. These models are becoming in-
creasingly powerful—recent work shows that large
neural models substantially improve accuracy on
a wide range of downstream tasks (Devlin et al.,
2019; Brown et al., 2020). However, today’s mod-
els still make egregious errors: they reinforce racial
biases (Sap et al., 2019), fail in counterintuitive
ways (Jia and Liang, 2017; Feng et al., 2018), and
often solve tasks using simple surface-level pat-
terns (Gururangan et al., 2018; Min et al., 2019).

These model insufficiencies are exacerbated by
the inability to understand why models made the
predictions they do. Interpretation methods seek to
fill this void. In particular, example-specific inter-
pretations provide post-hoc explanations for indi-

vidual model predictions. These explanations come
in various forms, e.g., attributing the importance of
the input features through saliency maps (Smilkov
et al., 2017), perturbing the inputs and observing
the model’s response (Feng et al., 2018; Ribeiro
et al., 2018b), or locating a model’s local decision
boundary (Ribeiro et al., 2016).

This tutorial will provide an introduction to
the various types of example-specific interpreta-
tions. We will present the technical details of ex-
isting methods, including saliency maps, adver-
sarial attacks, input perturbations, influence func-
tions, and other methods. We will cover how
these interpretations are applied to various tasks
and input-output formats, e.g., text classification
using LSTMs, masked language modeling using
BERT (Devlin et al., 2019), and text generation
using GPT-2 (Radford et al., 2019).

For each task, we will walk through example use
cases of interpretations: highlighting model weak-
nesses (Jia and Liang, 2017), increasing/decreasing
user trust (Feng et al., 2018), and understanding
hard-to-formalize criteria such as bias, safety, and
fairness (Doshi-Velez and Kim, 2017). Alongside
the tutorial, we will present source code imple-
mentations of various interpretation methods using
AllenNLP Interpret (Wallace et al., 2019b).

2 Details and Prerequisites

The tutorial will be of the cutting-edge type.
The tutorial slides and the accompanying code
is available online at https://www.ericswallace.
com/interpretability.

Prerequisites Attendees should have a basic un-
derstanding of different tasks in NLP such as text
classification, sequence tagging, and reading com-
prehension (predicting spans in a passage).

Attendees should also have a basic understand-
ing of neural network methods for NLP, including:
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• How backpropagation can compute gradients
with respect to the parameters.

• How tokens/words are represented (i.e., word
and sub-word embeddings).

• High-level ideas behind different model archi-
tectures (e.g., RNNs, Transformers).

• Optional knowledge of contextualized embed-
ding models such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019).

Finally, a portion of the tutorial will walk
through Python code samples in PyTorch and Al-
lenNLP (Gardner et al., 2018b). Participants do
not need to understand this code to follow the main
tutorial material.

Reading List Doshi-Velez and Kim (2017) pro-
vide a great overview and motivation for inter-
pretability research. Lipton (2018) and Jain and
Wallace (2019) discuss some of the challenges of
defining and evaluating interpretability. Jia and
Liang (2017) help demonstrate the fragility of NLP
models. LIME (Ribeiro et al., 2016) and saliency
maps (Simonyan et al., 2014) are now standard
interpretations. Wallace et al. (2019b) provides ex-
ample NLP interpretations (interested readers can
inspect their code).

3 Tutorial Outline

The tutorial will present three hours of content with
a thirty-minute break.

Motivation This section will discuss why we
care about interpretability. It will paint a landscape
of today’s neural models, describe how models are
brittle and behave counterintuitively, and explain
how interpretations can open the “black box” of
machine learning.

Introduction to Interpretations This section
will situate example-specific interpretations in the
context of other methods. We will discuss:
• Dataset analyses, e.g., error analysis, Erru-

dite (Wu et al., 2019), diagnostic “challenge”
test sets (Naik et al., 2018; Gardner et al., 2020)

• “Probing”, i.e., inspecting a model’s embed-
dings for certain properties (Liu et al., 2019;
Tenney et al., 2019).

• Rationale-based explanations, i.e., a model gen-
erates text for why it made its prediction.

• Example-specific interpretations (our tutorial’s
focus), e.g., saliency maps (Simonyan et al.,
2014), LIME (Ribeiro et al., 2016), adversar-

ial attacks (Szegedy et al., 2014), and input
perturbations (Feng et al., 2018).

Example-specific Interpretations This section
will introduce example-specific interpretations in
more detail. We will discuss the challenges and
approaches to evaluating such interpretations. We
will also cover the critiques and shortcomings of
using attention as explanations (Jain and Wallace,
2019; Serrano and Smith, 2019). We will then ex-
plain why we focus on gradient-based methods:
they are model-agnostic, easy to compute, and
(largely) faithful to a model’s behavior.

Understanding What Parts of An Input Led to
a Prediction This section will discuss:
• Saliency maps, i.e., generating visualizations

of “salient” input tokens. We will discuss how
to generate saliency maps using gradient-based
techniques (Simonyan et al., 2014; Sundarara-
jan et al., 2017; Smilkov et al., 2017)) and
black-box techniques (Ribeiro et al., 2016).

• Input Perturbations, i.e., showing how changes
to the input do (or do not) change the prediction.
For example, leave-one-out (Li et al., 2016) and
input reduction (Feng et al., 2018). We will
also cover adversarial perturbations such as to-
ken flipping (Ebrahimi et al., 2018) and adding
distractor sentences (Jia and Liang, 2017).

Break

Understanding How Global Decision Rules Led
to a Prediction This section will discuss how
certain global “decision rules” can explain model
predictions. We will cover Anchors (Ribeiro et al.,
2018a) and Universal Adversarial Triggers (Wal-
lace et al., 2019a). We will also discuss how spu-
rious patterns in datasets, e.g., lexical overlap in
textual entailment (McCoy et al., 2019), can cause
models to learn certain undesirable decision rules.

Understanding Which Training Examples
Caused a Prediction This section will discuss
how to trace model predictions back to the training
data, i.e., identifying “influential” training points.
We will cover influence functions (Koh and Liang,
2017) and representor points (Yeh et al., 2018).

Coding Interpretations This section will walk
through source code for selected interpretation
methods. Using AllenNLP Interpret (Wallace et al.,
2019b), we will cover example use cases such as in-
terpreting LSTM-based sentiment analysis models
and BERT-based masked language models.
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Open Problems We will conclude with a discus-
sion of areas for future research:
• Evaluation: There is fundamentally no ground-

truth to use for evaluating interpretations; how
do we define evaluation?

• Robustness & Faithfulness: Interpretations may
be unfaithful to the underlying model and can be
adversarially manipulated. What are the implica-
tions of this, and how can we improve existing
interpretation methods?

• Interpretation Beyond Classification: Most in-
terpretations focus on classification models; how
are interpretations best applied to the complex
input-output formats seen in NLP tasks (e.g.,
machine translation)?

• Closing the loop with Humans: Humans are
the end-users of interpretations; how can we
make interpretations interactive, collaborative,
customizable, and ultimately more effective?

• Pretrained Transformer Models: How do our
methods, and the field of interpretability, change
with the rise of massively-pretrained models?

4 Instructors

Eric Wallace is a PhD student at the University
of California, Berkeley. His research focuses on the
interpretability and robustness of machine learning
models for NLP. He is the lead developer of the
AllenNLP Interpret toolkit and has published nu-
merous papers on interpreting neural NLP models.
Website: http://ericswallace.com

Matt Gardner is a senior research scientist at
the Allen Institute for Artificial Intelligence (AI2).
His research focuses on question answering, se-
mantic parsing, and model analysis. Matt received
his PhD from the Language Technologies Institute
at Carnegie Mellon University. He is the lead de-
signer of the AllenNLP toolkit and a host of the
NLP Highlights podcast.

Matt was an instructor at the Neural Semantic
Parsing Tutorial (Gardner et al., 2018a) at ACL
2018, and the Writing Code for NLP Research
Tutorial (Gardner et al., 2018c) at EMNLP 2018.
Website: https://matt-gardner.github.io/

Sameer Singh is an Assistant Professor of Com-
puter Science at the University of California, Irvine.
He is working on large-scale and interpretable
machine learning models for NLP. Before UCI,
Sameer was a Postdoctoral Research Associate
at the University of Washington, and he received

his PhD from the University of Massachusetts,
Amherst in 2014.

Sameer presented the Deep Adversarial Learning
Tutorial (Wang et al., 2019) at NAACL 2019 and
the Mining Knowledge Graphs from Text Tutorial
at WSDM 2018 and AAAI 2017. Sameer has also
received teaching awards at UCI. Website: http:
//sameersingh.org/
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Abstract

Scale has played a central role in the rapid
progress natural language processing has en-
joyed in recent years. While benchmarks
are dominated by ever larger models, efficient
hardware use is critical for their widespread
adoption and further progress in the field. In
this cutting-edge tutorial, we will recapitulate
the state-of-the-art in natural language pro-
cessing with scale in perspective. After estab-
lishing these foundations, we will cover a wide
range of techniques for improving efficiency,
including knowledge distillation, quantization,
pruning, more efficient architectures, along
with case studies and practical implementation
tricks.

1 Tutorial Proposal

Recent advances in natural language processing
(Radford et al. (2018); Devlin et al. (2018); Liu
et al. (2019); Brown et al. (2020), among many
others) have substantially improved model capa-
bilities. Notably, pre-trained checkpoints can be
fine-tuned without substantial task specific mod-
ifications to create powerful models for a wide
range of tasks (Wang et al., 2018, 2019). For many
applications, production systems with models up
to date with the state-of-the-art are meeting high
quality bars for adoption across a wide variety of
language tasks.

However, the ever larger computational re-
quirements of such cutting-edge models—which
quickly approximates the scale of a trillion pa-
rameters (Lepikhin et al., 2020)—imposes chal-
lenges to their widespread adoption and further
progress in the field. This has driven increasing
attention to methods that allow more efficient use
of hardware, through techniques such as knowl-
edge distillation (Hinton et al., 2015; Turc et al.,
2019), quantization (Shen et al., 2020; Zafrir et al.,

2019), pruning (Sanh et al., 2020), and architec-
tural changes (Kitaev et al. (2020); Wang et al.
(2020b); Katharopoulos et al. (2020); Zaheer et al.
(2020), among others). Altogether, these tech-
niques are promising avenues for more efficient
natural language processing.

This tutorial starts with an introduction cover-
ing recent trends in NLP with scale in perspec-
tive, and covers foundational knowledge such as
the transformer architecture (Vaswani et al., 2017)
and the fine-tuning paradigm. We then move
to core techniques for improving efficiency, in-
cluding knowledge distillation, quantization and
pruning, later covering recent work on architec-
tural improvements, focusing on the move towards
self-attention with linear complexity. Then, we
dive into case studies by examining specific mod-
els such as Iandola et al. (2020) and Sun et al.
(2020). Finally, we end with practical implemen-
tation considerations including model and data
parallelism, gradient accumulation and floating
point precision, ending the tutorial with closing
notes and a questions and answers section. We
outline the structure of this tutorial in Table 1.

1.1 Type of the tutorial
Cutting edge.

1.2 Reading list
Fundamentals: Bahdanau et al. (2014);
Vaswani et al. (2017); Devlin et al. (2018); Brown
et al. (2020); Lepikhin et al. (2020); Nakkiran
et al. (2019).

Core techniques: Hinton et al. (2015); Turc
et al. (2019); Jiao et al. (2019); Shen et al. (2020);
Zafrir et al. (2019); Frankle and Carbin (2018);
Brix et al. (2020); Sanh et al. (2020).

Efficient attention: Beltagy et al. (2020); Ki-
taev et al. (2020); Wang et al. (2020b); Stickland
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Section Subsection Duration
Introduction Overview of the field with scale into perspective 10 min
Fundamentals Self-attention and the transformer architecture 25 min

Core techniques
Knowledge distillation 15 min
Quantization 15 min
Pruning 15 min

Efficient attention Towards linear complexity in attention 30 min

Case studies
Efficient language models 20 min
Retrieval 10 min

Scaling in practice Practical considerations for scaling NLP models 35 min
Final considerations Closing notes, Q&A 5 min
Total - 180 min

Table 1: Structure of the tutorial with duration of each section.

and Murray (2019); Correia et al. (2019); Vyas
et al. (2020); Katharopoulos et al. (2020); Zaheer
et al. (2020).

Case studies: Botha et al. (2017); So et al.
(2019); Sun et al. (2020); Yan et al. (2020); Wang
et al. (2020a); Iandola et al. (2020); Mehta et al.
(2020); Reimers and Gurevych (2019); Khandel-
wal et al. (2019); Guu et al. (2020).

Scaling in practice : Micikevicius et al. (2017);
Krizhevsky (2014); Sohoni et al. (2019); Kaplan
et al. (2020); Lepikhin et al. (2020)

1.3 Authors

Gabriel Ilharco is a PhD candidate at the Uni-
versity of Washington, where he is advised by
Ali Farhadi and Hannaneh Hajishirzi. Previously,
he worked at Google Research. His research
interests lie at the intersection of Natural Lan-
guage Processing and Computer Vision. His
previous experience in teaching includes the
tutorial Deep Learning for Natural Language
Processing with Tensorflow, at KDD 2019.
http://gabrielilharco.com/

Cesar Ilharco is a Research Engineer at Google,
developing ML models for News Intelligence
& Realtime Event Understanding, where per-
formance is important for efficient serving at
large scale. He was a guest lecturer and industry
partner at Harvard University (ML for knowledge
reconciliation), and co-organized the tutorials
Deep Learning for Natural Language Processing
with Tensorflow (KDD 2019) and Neural Struc-
tured Learning: Training neural networks with
structured signals (KDD 2020).

Iulia Turc is a Software Engineer at Google
Research, currently working on transfer learning.
Her past experience at Google includes feder-
ated learning and applied machine learning for
various products. Previously, Iulia completed
her master’s degree at the University of Ox-
ford where she focused on machine translation.
http://www.iuliaturc.com.

Tim Dettmers is a PhD student at the Uni-
versity of Washington where he is advised
by Luke Zettlemoyer. He also works as a
visiting researcher at Facebook AI Research,
Seattle. His main research interests are large
scale NLP models and efficient deep learning.
https://timdettmers.com/about

Felipe Tiengo Ferreira is a Senior Staff Soft-
ware Engineer leading News Intelligence and
Realtime Event Understanding, an applied re-
search team across Mountain View, NYC, Paris,
Vienna and Zurich. Felipe has an expertise
in making complex systems—including NLP
components—work in real-time at massive
scale across different product areas at Google.
https://research.google/people/
FelipeGoldstein/

Kenton Lee is a Research Scientist at Google. His
research spans several areas in NLP, including
structured prediction, question answering, and
transfer learning. Before joining Google Re-
search, Kenton completed a PhD at the University
of Washington while working with Luke Zettle-
moyer. https://kentonl.com.
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1.4 Prerequisites

• Math: Basic understanding of probability
theory and linear algebra;

• Machine Learning: Basic familiarity with
embeddings and sequence-to-sequence mod-
els. Familiarity with self-attention, trans-
formers, and large-scale pretraining is desir-
able;
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1 Description

This tutorial provides an overview over the cut-
ting edge research on spatial language understand-
ing. However, we cover some background material
from various perspectives given that ACL commu-
nity has not paid enough attention, in the last two
decades, to this topic. There are a few emerging re-
search work very recently looking back into the im-
portance of spatial language in various NLP tasks.
One of the essential functions of natural language
is to express spatial relationships between objects.
Linguistic constructs can encode highly complex,
relational structures of objects, spatial relations be-
tween them, and patterns of motion through space
relative to some reference point. Spatial language
understanding is useful in many research areas and
real-world applications. This topic recently has
attracted the attention of various sub-communities
in the intersection of Natural Language, Computer
Vision and Robotics. The complexity of spatial lan-
guage understanding and its importance in down-
stream tasks that involve grounding the language in
the physical world has become to some extent evi-
dent to the NLP research community. Compared to
other semantically specialized linguistic tasks, stan-
dardizing tasks related to spatial language seems
to be more challenging as it is harder to obtain an
agreeable set of concepts and relationships together
with a formal spatial meaning representation that is
domain independent (Pustejovsky et al., 2011; Ko-
rdjamshidi et al., 2010; Mani, 2009; Pustejovsky,
2017; Dan et al., 2020). For example, compare
this with recent work on temporal relations within
Computational Linguistics. This has made research
results on spatial language learning and reasoning
diverse, task-specific and, to some extent, not com-
parable. While formal meaning representation is a
general issue for language understanding, formaliz-
ing spatial concepts and building formal reasoning

and machine learning models based on those con-
stitute challenging research problems with a wealth
of prior foundational work that can be exploited
and linked to language understanding.

In this tutorial, we overview four themes: 1) Spa-
tial Semantic Representation; 2) Spatial Infor-
mation Extraction and; 3) Spatial qualitative
representation and reasoning 4) Downstream
applications of spatial semantic extraction and
spatial reasoning including language ground-
ing, robotics, navigation, dialogue systems and
tasks that require combining vision and lan-
guage.

The semantic representation section covers the
works that have attempted to arrive at a common
set of basic concepts and relationships (Bateman,
2010; Hois and Kutz, 2011), as well as making
existing corpora interoperable (Pustejovsky et al.,
2011; Mani and Pustejovsky, 2012; Kordjamshidi
et al., 2017; Kordjamshidi, 2013). We discuss the
existing qualitative and quantitative representation
and reasoning models that can be used for inves-
tigation of interoperabiltiy of machine learning
and reasoning over spatial semantics (Cohn et al.,
1997). Spatial language meaning representation
includes research related to cognitive and linguis-
tically motivated spatial semantic representations,
spatial knowledge representation and spatial on-
tologies, qualitative and quantitative representation
models used for formal meaning representation,
and various spatial annotation schema and efforts
for creating specialized corpora. We discuss var-
ious datasets that either focus on spatial annota-
tions or downstream tasks that need spatial lan-
guage learning and reasoning. Particularly, natural
language visual reasoning data (Suhr et al., 2017,
2018). Moreover, continuous meaning representa-
tions for spatial concepts is another aspect to be
highlighted in the tutorial, e.g., (Collell Talleda and
Moens, 2018; Collell Talleda et al., 2018; Deruyt-
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tere et al.).

We overview the state-of-the-art for extraction
of spatial information from language, both the
abstract semantic extraction (Kordjamshidi et al.,
2011; Kordjamshidi and Moens, 2015) and extrac-
tion that is driven by various target tasks and ap-
plications. We discuss machine learning models
including structured output prediction models, deep
learning architectures and probabilistic graphical
models that have been used in the related work.

Finally, we overview the usage of spatial seman-
tics by various downstream tasks and killer appli-
cations including language grounding, navigation,
self-driving cars, robotics (Tellex et al., 2011; Kol-
lar et al., 2010), dialogue systems (Kelleher and
Kruijff, 2006) and human machine interaction, and
geographical information systems and knowledge
graphs (Stock et al., 2013; Mai et al., 2020). Spatial
semantics is very closely connected and relevant
to visualization of natural language and grounding
language into perception, central to dealing with
configurations in the physical world and motivat-
ing a combination of vision and language for richer
spatial understanding. The related tasks include:
text-to-scene conversion; image captioning; spatial
and visual question answering; and spatial under-
standing in multimodal settings (Rahgooy et al.,
2018) for robotics and navigation tasks and lan-
guage grounding (Thomason et al., 2018).

The current research using end-to-end mono-
lithic deep models fail to solve complex tasks
that need deep language understanding and rea-
soning capabilities (Hudson and Manning, 2019).
Throughout this proposal, we will highlight the im-
portance of combining learning and reasoning for
spatial language understanding and its influence on
the semantic representation and type of the learning
models as well as the performance on various appli-
cations. Regarding the question of reasoning, we
(a) point out the role of qualitative and quantitative
formal representations in helping spatial reasoning
based on natural language and the possibility of
learning such representations from data to support
compositionality and inference (Hudson and Man-
ning, 2018; Hu et al., 2017); and (b) examine how
continuous representations contribute to supporting
reasoning and alternative hypothesis formation in
learning (Krishnaswamy et al., 2019). We point
to the cutting edge research that shows the influ-
ence of explicit representation of spatial entities
and concepts (Hu et al., 2019; Liu et al., 2019).

The main goal of this tutorial is to combine these
current related efforts from different communities
and application domains into one unified treatment,
to identify the challenges, problems and future di-
rections for spatial language understanding.

2 Outline

The tutorial will cover the following syllabus:

• Spatial Representations

– Linguistic corpora and semantic annota-
tions

– Spatial knowledge representation and
spatial calculi models

– Distributed representations

• Spatial Information Extraction

– Spatial entity and relation extraction
– Spatial ontology population
– Considering domain knowledge and

pragmatics in spatial extractions

• Spatial Semantic Grounding

– Combining vision and language (sym-
bolic and multimodal embeddings)

– Capturing spatial common sense
– Grounding language in 2D and 3D phys-

ical worlds
– Generating referring expressions

• Spatial Reasoning

– Overview on natural language and visual
reasoning tasks and data

– Modeling compositionality and spatial
reasoning in (Deep) learning models

• Downstream tasks

– Spatial concepts in dialogue systems
– Spatial reasoning for QA and VQA
– HRI, navigation and way-finding instruc-

tions
– Corpus-based GIS systems

3 Prerequisites and reading list

Familiarity with machine learning and natural lan-
guage processing will be helpful for this tutorial.
Our selected reading list is as follows.
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• Qualitative spatial representation and reason-
ing. Anthony G. Cohn, and Jochen Renz.
Foundations of Artificial Intelligence 3 (2008):
551-596. http://dai.fmph.uniba.sk/

˜sefranek/kri/handbook/chapter13.pdf

• A linguistic ontology of space for natural
language processing. John A. Bateman,
Joana Hois, Robert Ross, and Thora Ten-
brink. Artificial Intelligence 174, no. 14
(2010): 1027-1071. https://core.ac.uk/

download/pdf/82158176.pdf

• Spatial Role Labeling: Task Definition and
Annotation Scheme. Parisa Kordjamshidi,
Marie-Francine Moens, Martijn van Otterlo,
(2010). Proceedings of the Seventh confer-
ence on International Language Resources
and Evaluation (LREC’10).

• The qualitative spatial dynamics of mo-
tion in language. James Pustejovsky, and
Jessica L. Moszkowicz. Spatial Cogni-
tion Computation 11, no. 1 (2011): 15-
44. http://www.cs-135.org/wp-content/

uploads/2017/12/SCC-2011.pdf

• Interpreting Motion: Grounded Representa-
tions for Spatial Language. Inderjeet Mani
and James Pustejovsky (2012), Explorations
in language and space. Oxford University
Press.

• Changing perspective: Local alignment of ref-
erence frames in dialogue, Simon Dobnik,
Christine Howes, JD Kelleher, Proceedings
of SEMDIAL (goDIAL), 24-32, 2015.

• Global machine learning for spatial ontol-
ogy population. Parisa Kordjamshidi, Marie-
Francine Moens, (2015). Journal of Web Se-
mantics, 30, 3-21.

• VoxML: A Visualization Modeling Language.
James Pustejovsky, and Nikhil Krishnaswamy.
In Proceedings of the Tenth International Con-
ference on Language Resources and Eval-
uation (LREC’16), pp. 4606-4613. 2016.
https://arxiv.org/pdf/1610.01508.pdf

• Do you see what I see? effects of pov
on spatial relation specifications. Nikhil
Krishnaswamy, and James Pustejovsky.
In Proc. 30th International Work-
shop on Qualitative Reasoning. 2017.

http://qrg.northwestern.edu/qr2017/

papers/QR2017_paper_4.pdf

• ISO-Space: Annotating static and dynamic
spatial information. James Pustejovsky
(2017). In Handbook of Linguistic Annota-
tion, pages 989–1024. Springer.

• Spatial role labeling annotation scheme.
Parisa Kordjamshidi, Martijn van Otterlo,
Marie-Francine Moens, (2017). In: Puste-
jovsky J., Ide N. (Eds.), Handbook of Linguis-
tic Annotation Springer Verlag.

• Source-target inference models for spatial in-
struction understanding. Hao Tan and Mohit
Bansal (2018). In Proceedings of the Thirty-
Second AAAI Conference on Artificial In-
telligence (AAAI-18) (5504-5511). https:

//arxiv.org/abs/1707.03804

• Acquiring common sense spatial knowledge
through implicit spatial templates. Guillem
Collell, Luc Van Gool and Marie-Francine
Moens (2018). In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelli-
gence (AAAI 2018) (pp. 6765-6772). AAAI.
https://arxiv.org/abs/1711.06821

• Generating a Novel Dataset of Multi-
modal Referring Expressions. Nikhil Kr-
ishnaswamy, and James Pustejovsky. In
Proceedings of the 13th International Con-
ference on Computational Semantics, pp.
44-51. 2019. https://www.aclweb.org/

anthology/W19-0507.pdf

4 Instructors

• Parisa Kordjamshidi is Assistant Professor
of Computer Science Department at Michi-
gan State University. Her research interests
are in NLP and Machine learning. She has
been working on spatial semantics extraction
and annotation schemes, mapping language
to formal spatial representations, spatial on-
tologies, structured output prediction models
for information extraction, combining vision
and language for spatial language understand-
ing. She has been organizing/co-organizing
shared tasks on Spatial role labeling, SpRL-
2012, SpRL-2013 and the Space Evaluation
workshop, SpaceEval-2015, in SemEval Se-
ries and Multimodal spatial role labeling work-
shop mSpRL at CLEF-2017 with the goal of
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considering vision and language media for
spatial information extraction and organized
SpLU-2018 and Robonlp-SpLU collocated
with NAACL-18 and NAACL-2019 respec-
tively.

Contact information. Email: kord-
jams@msu.edu, Phone: +1-2174187004,
Address: Engineering Building 428 S.
Shaw Lane, East Lansing, MI 48824,
USA. Webpage: http://www.cse.msu.edu/
˜kordjams.

• James Pustejovsky is the TJX Feldberg
Chair in Computer Science at Brandeis Uni-
versity, where he is also Chair of the Lin-
guistics Program, Chair of the Computational
Linguistics MA Program, and Director of the
Lab for Linguistics and Computation. He re-
ceived his B.S. from MIT and his Ph.D. from
UMASS at Amherst. He has worked on com-
putational and lexical semantics for 25 years
and is chief developer of Generative Lexicon
Theory. Since 2002, he has been working
on the development of a platform for tem-
poral reasoning in language, called TARSQI
(www.tarsqi.org). Pustejovsky is chief ar-
chitect of TimeML and ISO-TimeML, a re-
cently adopted ISO standard for temporal in-
formation in language, as well as the recently
adopted standard, ISO-Space, a specification
for spatial information in language. He has
developed a modeling framework for repre-
senting linguistic expressions and interactions
as multimodal simulations. This platform,
VoxML, enables real-time communication be-
tween humans and computers or robots for
joint tasks, utilizing speech, gesture, gaze, and
action. He is currently working with robotics
researchers in HRI to allow the VoxML plat-
form to act as both a dialogue management
system as well as a simulation environment
that reveals realtime epistemic state and per-
ceptual input to a computational agent. His
areas of interest include: Computational se-
mantics, temporal and spatial reasoning, lan-
guage annotation for machine.

Contact Information. Email: puste-
jovsky@gmail.com, jamesp@cs.brandeis.edu,
Phone: +1-781-736-2709, Address : Dept. of
Computer Science, Brandeis University, 415
South Street, MS-018, Waltham, MA 02454,

USA. Web-page: http://www.pusto.com.

• Marie-Francine Moens is Full Professor at
the Department of Computer Science, KU
Leuven. She has a special interest in machine
learning for natural language understanding
and in grounding language in a visual con-
text. She is holder of the prestiguous ERC
Advanced Grant CALCULUS (2018-2023)
granted by the European Research Council on
the topic of language understanding. She is
currently associate editor of the journal IEEE
Transactions on Pattern Analysis and Machine
Intelligence (TPAMI). In 2011 and 2012 she
was appointed as chair of the European Chap-
ter of the Association for Computational Lin-
guistics (EACL) and was a member of the
executive board of the Association for Com-
putational Linguistics (ACL). From 2014 till
2018 she was the scientific manager of the
EU COST action iVL Net (The European Net-
work on Integrating Vision and Language).

Contact information. Email:
sien.moens@cs.kuleuven.be, Phone: +32 16
32 83 53, Address: Department of Computer
Science, KU Leuven, Celestijnenlaan 200A,
B-3001 Heverlee, Belgium. Webpage: https:
//people.cs.kuleuven.be/˜sien.moens
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1 Brief Description

Simultaneous translation, which performs transla-
tion concurrently with the source speech, is widely
useful in many scenarios such as international con-
ferences, negotiations, press releases, legal pro-
ceedings, and medicine. This problem has long
been considered one of the hardest problems in AI
and one of its holy grails. Recently, with rapid im-
provements in machine translation, speech recog-
nition, and speech synthesis, there has been ex-
citing progress towards simultaneous translation.
This tutorial will focus on the design and evalu-
ation of policies for simultaneous translation, to
leave attendees with a deep technical understand-
ing of the history, the recent advances, and remain-
ing challenges in this field.

2 Type of the Tutorial

This is a cutting-edge proposal, and the first tuto-
rial on this topic (simultaneous translation) in the
history of ACL, EMNLP, NAACL, EACL, COL-
ING, and AACL.

3 Outline

• Background: Simultaneous Interpretation
(15 min.)

• Overview of Challenges and Existing Ap-
proaches to Simultaneous Translation (25
min.)

– tradeoff between quality and latency
– drastic word orders difference
– robustness, such as error propagation

• Prefix-to-Prefix Framework and Fixed-
Latency Policies (15 min.)

• Latency Metrics (20 min.)

– Average Proportion (AP)

– Consecutive Wait (CW)
– Average Lagging (AL)
– Differentiable Average Lagging (DAL)
– Ear-to-Voice Span (EVS)

• Dynamic Policies, Part I (15 min.)

– Adaptive policy with manually designed
criteria

– Reinforcement Learning-based methods
– Supervised policy-learning framework

• (Coffee Break)

• Dynamic Policies, Part II: Recent Advances
(30 min.)

– Monotonic Infinite Lookback attention
– Context-Aware translation

• Dataset for Training and Evaluating Simulta-
neous Translation (20 min.)

– Rewriting (paraphrasing) references of
parallel text

– Simultaneous Translation datasets:
∗ UN corpus
∗ EPIC corpus
∗ NAIST dataset
∗ BSTC dataset

• Towards Simultaneous Speech-to-Speech
Translation (20 min.)

• Practical System and Products (20 min.)

– Practical Issues (segmentation, punctua-
tion, error tolerance)

– speech-to-text and speech-to-speech
systems

– computer aided interpretation (CAI)
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4 Breadth

We envision a tutorial that emphasizes interdisci-
plinary breadth at the beginning and end (roughly
one half of the tutorial in total). The beginning
section on Human Interpretation will allow us to
discuss the strategies and behaviours that enable
humans to perform this challenging task, touching
on observations from Translation Studies. Mean-
while, the end sections on Practical Issues and
Moving Toward Speech to Speech Translation will
allow us to discuss issues in incremental Speech
Recognition and Text-to-Speech that are otherwise
under-represented at a typical *ACL conference.

At most 33% are work by the presenters, and at
least 77% are work by other researchers.

5 Diversity

Simultaneous translation techniques can greatly
improve the efficiency of human communication
across linguistic barriers. With this technology,
you will be able to understand any foreign lan-
guage by pulling out your smart phone to listen
to the machine-generated simultaneous translation
in your own language, with only less than 3 sec-
onds delay. If you travel to a remote country, you
will also be able to “talk” to the locals with this
technology using your smart phone and headsets.

Both Mingbo Ma and Naveen Arivazhagan are
junior instructors. Colin Cherry works at Google
in Montreal, Liang Huang works Oregon State
University in Corvallis, and Zhongjun He works
at Baidu in Beijing.

6 Prerequisites

• Machine Learning: understand the basics of
the sequence-to-sequence framework.

• Linguistics: understand basic syntactic struc-
tures and appreciate the vast amount of diver-
sity of syntactic structures (esp. word order)
among human languages

7 Small Reading List

Only the last two (33%) were co-authored by the
presenters.

• Alvin Grissom II, He He, Jordan Boyd-
Graber, John Morgan, and Hal Daumé III,
Don’t Until the Final Verb Wait: Reinforce-
ment Learning for Simultaneous Machine
Translation, EMNLP 2014.

When source and target language have
drastically word orders difference, e.g.,
from verb-final languages (German) to verb-
medial languages (English), the final inal
verb is predicted in advance on source side
to avoid long latency.

• He He, Alvin Grissom II, Jordan Boyd-
Graber and Hal Daumé III, Syntax-based
Rewriting for Simultaneous Machine Trans-
lation, EMNLP 2015.

A sentence rewriting method is proposed
to generates more monotonic translations to
improve the speed-accuracy tradeof. Sev-
eral grammaticality and meaning-preserving
syntactic transformation rules are applied to
paraphrase reference translations to make
their word order closer to the source language
word order.

• Kyunghyun Cho and Masha Esipova, Can
neural machine translation do simultaneous
translation?, arXiv:1606.02012, 2016.

Several waiting criteria are manually de-
signed to serve as translation polices to de-
cide wait or read.

• Jiatao Gu, Graham Neubig, Kyunghyun Cho
and Victor O.K. Li, Learning to Translate in
Real-time with Neural Machine Translation,
EACL 2017.

The authors proposed a NMT framework
for simultaneous translation with a agent
which learn to make decisions on when to
translate or wait by interacting with a pre-
trained NMT environment.

• Mingbo Ma, Liang Huang, Hao Xiong,
Renjie Zheng, Kaibo Liu, Baigong Zheng,
Chuanqiang Zhang, Zhongjun He, Hairong
Liu, Xing Li, Hua Wu and Haifeng
Wang, STACL: Simultaneous Translation
with Implicit Anticipation and Controllable
Latency using Prefix-to-Prefix Framework,
ACL 2019.

Prefix-to-prefix framework is proposed
for simultaneous translation which implic-
itly learns to anticipate in a single translation
model. Within this framework, “wait-k” pol-
icy is trained to generate the target sentence
simultaneously with the source sentence with
k word delay.
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• Naveen Arivazhagan, Colin Cherry, Wolf-
gang Macherey, Chung-Cheng Chiu, Semih
Yavuz, Ruoming Pang Wei Li and Colin Raf-
fel, Monotonic Infinite Lookback Attention
for Simultaneous Machine Translation, ACL
2019.

A Monotonic Infinite Lookback (MILk)
technique is proposed to maintain both a
hard, monotonic attention head to schedule
the reading of the source sentence, and a soft
attention head to extend from the monotonic
head back to the beginning of the source.
MILk is trained to learn a adaptive schedule
by balancing the latency-quality trade-offs.

8 Presenters

• Liang Huang is an Assistant Professor at
Oregon State University and a Distinguished
Scientist of Baidu Research USA. He re-
ceived a Best Paper Award at ACL 2008 and
a Best Paper Honorable Mention at EMNLP
2016. He is an award-winning teacher and
has given four (4) popular tutorials in COL-
ING 2008, NAACL 2009, ACL 2014, and
ACL 2015. He gave an invited talk at ACL
2019 on simultaneous translation.

• Colin Cherry is a research scientist at
Google. He currently serves as secretary
of NAACL and an action editor of TACL.
He received Best Paper Award at NAACL
2009. He co-organized two workshops on
deep learning for low-resource languages:
DeepLo 2018 (at ACL 2018) and DeepLo
2019 (at EMNLP 2019). He also served as
research program co-chair for AMTA 2018.

• Mingbo Ma is a Senior Research Scien-
tist at Baidu Research USA. He received his
Ph.D. from Oregon State University. He is
a leading expert in simultaneous translation,
and has published 4 papers on this topic.

• Naveen Arizhabagan is a Software Engineer
at Google. He received BS from UIUC and
MS from Stanford. He works on simultane-
ous translation, speech translation, zero-shot
translation, and multilingual translation.

• Zhongjun He is a Distinguished Architect of
Baidu Inc. He leads Baidu machine transla-
tion team and has released several versions

of Baidu’s simultaneous translation system
since 2017. He organized the first simultane-
ous translation evaluation campaign in China
in 2019 and released the Baidu Speech Trans-
lation Corpus.

9 Estimated Audience Size

150–200.

10 Special Technical Requirements

Internet access

11 Venue Preference

• First Choice: ACL

• Second Choice: EMNLP

12 Open Access

All materials (slides, videos, etc.) will be openly
available online.
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Abstract
Neural Language Generation (NLG) – using
neural network models to generate coherent
text – is among the most promising methods
for automated text creation. Recent years have
seen a paradigm shift in neural text generation,
caused by the advances in deep contextual lan-
guage modeling (e.g., LSTMs, GPT, GPT2)
and transfer learning (e.g., ELMo, BERT).
While these tools have dramatically improved
the state of NLG, particularly for low re-
sources tasks, state-of-the-art NLG models
still face many challenges: a lack of diversity
in generated text, commonsense violations in
depicted situations, difficulties in making use
of factual information, and difficulties in de-
signing reliable evaluation metrics. In this tu-
torial, we will present an overview of the cur-
rent state-of-the-art in neural network archi-
tectures, and how they shaped recent research
directions in text generation. We will discuss
how and why these models succeed/fail at gen-
erating coherent text, and provide insights on
several applications.

Type. Cutting-edge.

1 Introduction

Natural Language Generation (NLG) forms the
basis of many Natural Language Processing
(NLP) tasks such as document summarization,
machine translation, image captioning, conversa-
tional dialogue, and creative writing, making it an
essential component in human-machine communi-
cation tasks. With recent progress in training deep
neural networks, there has been a paradigm shift
from template based approaches to neural meth-
ods as the predominant building blocks for text
generation systems. Specifically, the rich repre-
sentation learning capabilities of neural networks
have allowed NLG models to be trained directly
from large amounts of training data, significantly
reducing the need for manual feature engineering.

Many benefits have emerged from this new re-
search direction. First, the prototypical framework
for training neural networks in an end-to-end fash-
ion has allowed for a diverse array of contextual
information to be incorporable into text genera-
tion systems (Vaswani et al., 2017; Radford et al.,
2019; Ziegler et al., 2019; Keskar et al., 2019), al-
lowing for a richer range of stylistic variability in
generated text. Simultaneously, the combination
of deep neural networks, large-scale text data and
cheap computational power has accelerated new
developments in neural network language models.

However, NLG models still raise many chal-
lenges which are the focus of a growing body of
work. Examples of such limitations are the lack
of diversity in generated texts, difficulty in con-
trolling the discourse coherence of the generated
text, the lack of commonsense in generated out-
puts, an uncertain reliance on provided factual in-
formation, and more general open questions on ar-
chitecture design and optimization settings.

In this tutorial, we will start with an intro-
duction to neural language generation, present-
ing neural language models and encoder-decoder
models. We will then discuss the capabilities and
limitations of recent text generation models, the
suitable architectures for text generation in vari-
ous specific applications, and then provide insights
into why and how these generation models can be
adapted for a particular task (Wiseman et al., 2017;
Li et al., 2017; See et al., 2017; Xie, 2017). The
discussion on evaluation metrics will start from n-
gram matching up to the recent progress on text
generation evaluation metrics. In the end, this
tutorial will be concluded by presenting and dis-
cussing major current research directions in the
field of neural language generation. All materi-
als (including slides, code, and demos) will be
publicly available online on the day of the tuto-
rial. We do not assume any particular prior knowl-
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edge in text generation or language modeling. Fa-
miliarity with standard neural network modules
(LSTM/CNN/Transformer) is a plus but not re-
quired. The intended length of the tutorial is 3
hours, including a coffee break.

2 Tutorial Goal and Description

2.1 Overview

This tutorial will mainly focus on the recent ad-
vances in neural networks for language genera-
tion and will have minimal coverage on traditional
methods. We will provide an overview on the re-
cent progress of neural language generation for
those working in this research area, and will also
introduce this exciting research area to the NLP
researchers who are not familiar with newest ad-
vancements in neural text generation. This tuto-
rial is designed for anyone who has basic knowl-
edge background of NLP or deep learning, which
makes it accessible to any attendee of an NLP con-
ference.

2.2 Tutorial Organization

Fundamentals and Progression of Neural Text
Generation. Interest in neural text generation
was recently catalyzed by the renaissance of neu-
ral network research in natural language process-
ing, particularly with the development of neu-
ral language models and encoder-decoder models.
Requiring minimal templates and hand-designed
rules, unlike classical language generation meth-
ods, neural language generation models massively
reduce the time needed to design and build new
text generation system.

In particular, language models and encoder-
decoder models conveniently allows to incorpo-
rate contexts such as previous or parallel sen-
tences, as exemplified in machine translation mod-
els. However the spectrum of applications of NLG
systems extends far beyond machine translation
and can involve: (1) complex reasoning processes
that go behind semantically preserving mapping
from one language to another, for instance to
model discourse, dialog flows or multi-hop rea-
soning; (2) a wide range of context information,
from memory to multi-modalities like images or
speech; and (3) challenging evaluation, as multi-
ple generated outputs can be simultaneously valid
for a given context (so called high-entropy tasks).
The tutorial will highlight some these topics and
provide a comprehensive overview of the advances

of neural language generation.

Technical Details for Training and Optimiza-
tion Neural Text Generation. Many of the re-
cent progresses in neural language generation can
be characterized as approaches to address some
of the above mentioned issues. By investigating
the difference between language generation and
other sequential modeling problems, novel train-
ing methods (e.g., reinforcement learning or imi-
tation learning) can be designed to capture long-
term dependencies in generation. New decoding
methods like top-k (Fan et al., 2018), nucleus sam-
pling (Holtzman et al., 2019) or penalized sam-
pling (Keskar et al., 2019) are invented to resolve
the diversity issues.

Eventually, smarter ways to incorporate various
contextual information in neural network models
(Golovanov et al., 2019; Ziegler et al., 2019; Rad-
ford et al., 2019; Keskar et al., 2019) provide more
flexibility as well as a better reliance of the model
on the conditioning inputs.

Evaluation of Text Generation. Finally, there
is a formidable challenge in getting better met-
rics to evaluate the quality of generated texts that
stems from open-ended nature of these models
output. Leveraging recent advances in represen-
tation learning, the field of neural language gen-
eration has been able to move beyond evaluation
methods based on n-gram matching and incorpo-
rate promising approaches to design more reliable
evaluation metrics. This tutorial will cover recent
progress in this field as well as highlighting press-
ing issues with the current state of experimental
reporting in NLG. Together with evaluation, we
will overview several text generation benchmarks
commonly used in the field.

Lessons Learned, Future Directions and Prac-
tical Advances of Neural Text Geneation. The
last part of this tutorial will discuss practical is-
sues when using cutting-edge language generation
techniques. Most of the content covered in this
part will have corresponding code or demo imple-
mented in a standard deep learning framework like
PyTorch or TensorFlow. The concluding part of
the tutorial, we will provide a summary of current
and future research direction as well as of some
open questions to open the discussion.
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3 Diversity and Inclusion

Diversity. The background of the instructors of
this tutorial is evenly distributed among academia
and industry. The instructors consist of a group
of researchers ranging from an assistant profes-
sor at University of Virginia (Yangfeng Ji), a se-
nior Ph.D. student at University of Washington
with years of industry research experience (An-
toine Bosselut) and two senior research scientists
in industry (Thomas Wolf and Asli Celikyilmaz),
who both have years of industry research experi-
ence. The tutorial instructors are also from differ-
ent countries and continents (the Netherlands and
USA).

4 Outline

4.1 Schedule

The tutorial will be 3 hours long.

1. Introduction of Natural Language Gen-
eration (15 minutes long): This section
will introduce the tutorial by presenting
the recent impact of neural network mod-
eling approaches on the field. We will
briefly overview the classical text generation
pipeline, and introduce basic building blocks
of neural text generation: language model-
ing and the encoder-decoder frameworks. We
will also discuss the limitations of the sim-
ple encoder-decoder frameworks and moti-
vate the rest of the tutorial.

2. Building blocks of Neural Network Mod-
els for Language Generation (60 minutes
long): This section will comprise three
closely related topics corresponding to three
fundamental aspects of building a neural
language generation system: (1) selecting
the architecture of the model among a va-
riety of choices such as pre-trained lan-
guage models (Devlin et al., 2018; Radford
et al., 2019), variational autoencoders (Bow-
man et al., 2016; Hu et al., 2017), genera-
tive adversarial networks (Fedus et al., 2018;
Subramanian et al., 2018), or neural tem-
plate based methods (Wiseman et al., 2018;
Xu et al., 2018); (2) training the model us-
ing techniques which can range from sim-
ple maximum likelihood estimate up to more
advanced training techniques like scheduled

sampling (Bengio et al., 2015), unlikeli-
hood training (Welleck et al., 2019) or rein-
forcement/imitation learning (Kreutzer et al.,
2018; Tan et al., 2018; Huang et al., 2019;
Du and Ji, 2019) which can help alleviate
exposure bias (He et al., 2019) and repeti-
tion issues, and improve handling long-term
rewards; (3) selecting a decoding strategy,
from classical methods like greedy decod-
ing, beam search and random sampling up to
more recent techniques like top-k (Fan et al.,
2018), nucleus sampling (Holtzman et al.,
2019) or penalized sampling (Keskar et al.,
2019). This section will cover the material
on classical techniques (30% of time) and
mainly focus the recent progress on the re-
lated topics (70% of time)

3. Break (20 minutes)

4. Generation with Rich Context (25 minutes
long): This section will discuss recent works
on incorporating various types of context in-
formation in neural language generation. Go-
ing beyond simple context information pro-
vided by single sentence contexts, we will
overview the growing body of work explor-
ing various strategies to incorporate differ-
ent types of context information either tex-
tual, e.g., syntactic, topic, and discourse in-
formation (Wang et al., 2019; Shen et al.,
2019; Clark et al., 2018; Bosselut et al.,
2018), or beyond text, including knowledge
graph, database and images (Parthasarathi
and Pineau, 2018; Dinan et al., 2018).

5. Benchmarks and Evaluation (30 minutes
long): Given the diversity of text genera-
tion tasks and domains, it can be challeng-
ing to design reliable benchmarks and evalua-
tion metrics (Lowe et al., 2017; Reiter, 2018;
Clark et al., 2019; See et al., 2019). In this
section, we will summarize the current status
on these topics.

6. Building Neural Models for Generation
(20 minutes long): This section will pro-
vide hand-on exercise, using existing deep
learning packages, to build a neural lan-
guage generation model. This section
will also demonstrates how different learn-
ing/decoding strategies can have a strong im-
pact on the quality of generated texts.

39



7. Open problems and directions (10 minutes
long): In this final section, we will sum-
marize the topics covered in the tutorial and
point to a selection of open problems and fu-
ture research directions.

4.2 Breadth

We estimate that the 30% of the tutorial will cover
the recent work by the tutorial presenters, and the
rest will be on cutting-research work by other re-
searchers.

5 Information about the Presenters

Yangfeng Ji is the William Wulf Assistant Pro-
fessor in the Department of Computer Science at
the University of Virginia, where he leads the Nat-
ural Language Processing group. His research in-
terests include building machine learning models
for text understanding and generation. His work
on entity-driven story generation won an Out-
standing Paper Award at NAACL 2018.website

Antoine Bosselut is a PhD student in the Paul
G. Allen School of Computer Science at the Uni-
versity of Washington and a Student Researcher
at the Allen Institute for Artificial Intelligence
(AI2). His research interests are in integrat-
ing commonsense knowledge and reasoning into
downstream applications for text generation, sum-
marization, and conversational dialogue. He regu-
larly publishes papers at ACL, NAACL, EMNLP,
and ICLR. He organized the NeuralGen workshop
at NAACL 2019, and West Coast NLP (WeCNLP)
in 2018 and 2019. website

Thomas Wolf leads the Science Team at Hug-
gingface Inc., a Brooklyn-based startup working
on Natural Language Generation and Understand-
ing. He previously co-organized the NeuralGen
2019 workshop and the tutorial on Transfer Learn-
ing in NLP at NAACL 2019. His team has
open-sourced several widely used libraries for co-
reference resolution and transfer learning in NLP
and regularly publish research papers in ML and
CL conferences (ICLR, ACL, AAAI. . . ). His pri-
mary research interest is Natural Language Gener-
ation and Transfer Learning. website

Asli Celikyilmaz is Principal Researcher at Mi-
crosoft Research in Redmond, Washington. She
is also an Affiliate Professor at the University of
Washington. Her research interests are mainly

in deep learning and natural language, specif-
ically on long text generation, multi-document
summarization, conversational modeling, human-
computer interaction, and knowledge representa-
tion. She has presented several tutorials at venues
including CoLing’18, ACL’17, ICASSP’17, In-
terspeech’17 and organized workshops at ACL,
NAACL, Neurips. She has published sev-
eral papers in ACL, EMNLP, NAACL, CVPR,
NeurIPS, ICLR, ICASSP, IEEE TASLP, among
other venues. She received several ’best of’
awards including best paper award at Semantic
Computing 2009, CVPR 2019. She received her
Ph.D. degree from University of Toronto, Canada.
website

6 Additional details

Audience Size. Based on the increasing interest
in natural language generation (larger growth rate
in submissions compared to other areas of NLP1),
we anticipate that between 150 and 200 attendees
will be interested in this tutorial.

Special Requirements. The tutorial will require
internet access for participants to be able to access
the slides and, optionally, to access hands-on cod-
ing notebooks.

Preferred Venues. Our preferred venues are
EMNLP 2020, ACL 2020, and CoLing 2020.

Open Access. We agree to allow the publication
of our slides and a video recording of our tutorial
in the ACL Anthology. All our materials will ad-
ditionally be posted on our tutorial website.

Small Reading List.

1. (Gatt and Krahmer, 2018): traditional meth-
ods on natural language generation

2. (Radford et al., 2019): large-scale language
models as unsupervised multitask learners
with generative capabilities

3. (Khandelwal et al., 2019): example high-
lighting the rise of pretrained language mod-
els for neural text generation

4. (Holtzman et al., 2019): studying the dra-
matic effect of decoding strategies on the
quality of machine text

1http://acl2019pcblog.fileli.unipi.it/
?p=152
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5. (Kusner et al., 2015): going beyond n-gram
matching, using representation learning to
evaluate generation

6. (Ranzato et al., 2015): introduction to expo-
sure bias and training with sequence-level ob-
jective functions

7. (Bowman et al., 2016): variational autoen-
coders for language generation

8. (Holtzman et al., 2018): designing neural net-
works as scoring functions during decoding
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