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Abstract
This paper presents a comprehensive study on
resume classification to reduce the time and la-
bor needed to screen an overwhelming number
of applications significantly, while improving
the selection of suitable candidates. A total of
6,492 resumes are extracted from 24,933 job
applications for 252 positions designated into
four levels of experience for Clinical Research
Coordinators (CRC). Each resume is manually
annotated to its most appropriate CRC position
by experts through several rounds of triple an-
notation to establish guidelines. As a result, a
high Kappa score of 61% is achieved for inter-
annotator agreement. Given this dataset, novel
transformer-based classification models are de-
veloped for two tasks: the first task takes a re-
sume and classifies it to a CRC level (T1), and
the second task takes both a resume and a job
description to apply and predicts if the applica-
tion is suited to the job (T2). Our best models
using section encoding and multi-head atten-
tion decoding give results of 73.3% to T1 and
79.2% to T2. Our analysis shows that the pre-
diction errors are mostly made among adjacent
CRC levels, which are hard for even experts to
distinguish, implying the practical value of our
models in real HR platforms.

1 Introduction

An ongoing challenge for Human Resource (HR) is
the process used to screen and match applicants to
a target job description with a goal of minimizing
recruiting time while maximizing proper matches.
The use of generic job descriptions not clearly strat-
ified by the level of competence or skill sets often
leads many candidates to apply every possible job,
resulting in misuse of recruiter and applicant’s time.
A more challenging aspect is the evaluation of un-
structured data such as resumes and CVs, which
represents about 80% of the data processed daily,
a task that is typically not an employer’s priority
given the manual effort involved (Stewart, 2019).

The current practice for screening applications in-
volves reviewing individual resumes via traditional
approaches, that rely on string/regex matching. The
scope of posted job positions varies by the hiring
organization type, job level, focus area, and more.
The latest advent in Natural Language Processing
(NLP) enables the large-scale analysis of resumes
(Deng et al., 2018; Myers, 2019). NLP models also
allow for a comprehensive analyses on resumes
and identification of latent concepts that may easily
go unnoticed using a general manual process. This
model’s ability to infer core skills and qualifications
from resumes can be used to normalize necessary
content into standard concepts for matching with
stated position requirements (Chifu et al., 2017;
Valdez-Almada et al., 2018). However, the task of
resume classification has been under-explored due
to the lack of resources for individual research labs
and the heterogeneous nature of job solicitations.

This paper presents new research that aims to
help applicants identify the level of job(s) they are
qualified for and to provide recruiters with a rapid
way to filter and match the best applicants. For this
study, resumes submitted to four levels of Clinical
Research Coordinator (CRC) positions are used.
To the best of our knowledge, this is the first time
that resume classification is explored with levels of
competence, not categories. The contributions of
this work are summarized as follows:

• To create a high-quality dataset that comprises
3,425 resumes annotated with 5 levels of real
CRC positions (Section 3).

• To present a novel transformer-based classifi-
cation approach using section encoding and
multi-head attention decoding (Section 4).

• To develop robust NLP models for the tasks of
competence-level classification and resume-
to-job_description matching (Section 5).
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Type Description

CRC1
Manage administrative activities associated with the conduct of clinical trials. Maintain data pertaining to research
projects, complete source documents/case report forms, and perform data entry. Assist with participant scheduling.

CRC2
Manage research project databases and development study related documents, and complete source documents and
case report forms. Interface with research participants and study sponsors, determine eligibility, and consent study
participants according to protocol.

CRC3

Independently manage key aspects of a large clinical trial or all aspects of one or more small trials or research
projects. Train and provide guidance to less experienced staffs, interface with research participants, and resolve
issues related to study protocols. Interact with study sponsors, monitor/report SAEs, and resolve study queries.
Provide leadership in determining, recommending, and implementing improvements to policies and procedures.

CRC4
Function as a team lead to recruit, orient, and supervise research staff. Independently manage the most complex
research administration activities associated with the conduct of clinical trials. Determine effective strategies for
promoting/recruiting research participants and retaining participants in long term clinical trials.

Table 1: Descriptions (and general responsibilities) of the four-levels of CRC positions.

2 Related Work

Limited studies have been conducted on the task of
resume classification. Zaroor et al. (2017) proposed
a job-post and resume classification system that in-
tegrated knowledge base to match 2K resumes with
10K job posts. Sayfullina et al. (2017) presented a
convolutional neural network (CNN) model to clas-
sify 90K job descriptions, 523 resume summaries,
and 98 children’s dream job descriptions into 27 job
categories. Nasser et al. (2018) hierarchically seg-
mented resumes into sub-domains, especially for
technical positions, and developed a CNN model
to classify 500 job descriptions and 2K resumes.

Prior studies in this area have focused on classi-
fying resumes or job descriptions into occupational
categories (e.g., data scientist, healthcare provider).
However, no work has yet been found to distinguish
resumes by levels of competence. Furthermore, we
believe that our work is the first to analyze resumes
together with job descriptions to determine whether
or not the applicants are suitable for particular jobs,
which can significantly reduce the intensive labor
performed daily by HR recruiters.

3 Dataset

3.1 Data Collection

Between April 2018 and May 2019, the department
of Human Resources (HR) at Emory University re-
ceived about 25K applications including resumes
in free text for 225 Clinical Research Coordina-
tor (CRC) positions. A CRC is a clinical research
professional whose role is integral to initiating and
managing clinical research studies. There are four
levels of CRC positions, CRC1-4, with CRC4 hav-
ing the most expertise. Table 1 gives the descrip-
tions about these four CRC levels.

Table 2 shows the statistics of the collected appli-
cations and the resumes. Out of the 24,933 applica-
tions, 89% are applied for the entry level positions,
CRC1-2, that is expected since CRC3-4 positions
require more qualifications (A). At any time, there
are various positions posted for the same level from
different divisions, cardiology, renal, infectious dis-
ease, etc. Thus, it is common to see resumes from
the same applicant applying to several job postings
within the same CRC level.

After removing duplicated resumes within the
same level, 9,286 resumes remain, discarding 63%
of the original applications (B). It is common to
see the same applicant applying to positions across
multiple levels. After removing duplicated resumes
across all levels and retaining only the resumes to
the highest level (e.g., if a person applied for both
CRC1 and CRC2, retain the resume for only CRC2),
6,492 resumes are preserved, discarding additional
11% from the original applications (C).

CRC1 CRC2 CRC3 CRC4 Total
A 13,794 8,415 2,238 486 24,933
B 4,779 3,005 1,106 396 9,286
C 2,961 2,250 885 396 6,492
Br 2,730 1,702 696 234 5,362
Cr 1,477 1,172 542 234 3,425

Table 2: The counts of applications (A), unique resumes
for each level (B), unique resumes across all levels (C),
and resumes from B and C selected for our research
while preserving level proportions (Br and Cr).

For our research, we carefully select 3,425 resumes
from C by discarding ones that are not clearly struc-
tured (e.g., no section titles) or contain too many
characters that cannot be easily converted into text,
while keeping similar ratios of the CRC levels (Cr).
We also create a set similar to B, say Br, that retains
only resumes in Cr. Cr and Br are used for our first
task (§4.1) and second task (§4.2), respectively.
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3.2 Preprocessing

The resumes collected by the HR come with several
formats (e.g, DOC, DOCX, PDF, RTF). All resumes
are first converted into the unstructured text format,
TXT, using publicly available tools. They are then
processed by our custom regular expressions de-
signed to segment different sections in the resumes.
As a results, every resume is segmented into the six
sections, Profile, Education, Work Experience, Ac-
tivities, Skills, and Others. Table 3 shows the ratio
of resumes in each level including those sections.

CRC1 CRC2 CRC3 CRC4 Total
WoE 98.0 98.3 97.2 97.4 98.0
EDU 96.0 95.6 96.3 96.6 96.0
PRO 94.4 94.3 94.1 94.0 94.3
ACT 40.4 43.4 47.4 40.2 42.5
SKI 37.7 36.4 33.6 41.5 36.9
OTH 32.2 32.8 30.8 37.2 32.5

Table 3: The existence ratio of each section in the CRC
levels. WoE: Work Experience, EDU: Education, PRO:
Profile, ACT: Activities, SKI: Skills, OTH: Others.

Most resumes consistently include the Work Experi-
ence, Education, and Profile sections, whereas the
others are often missing. To ensure the matching
quality of our regular expressions, 200 resumes are
randomly checked, where 97% of them are found to
have the sections segmented correctly. Finally, all
resumes comprising segmented sections are saved
in the JSON format for machine readability.

3.3 Annotation

2 experts with experience in recruiting applicants
for CRC positions of all levels design the annota-
tion guidelines in 5 rounds by labeling each resume
with either one of the four CRC levels, CRC1-4, or
Not Qualified (NQ), indicating that the applicant is
not qualified for any CRC level. Thus, a total of 5
labels are used for this annotation. For each round,
50 randomly selected resumes from Cr in Table 2,
by keeping similar ratios of the CRC levels as Cr,
are labeled by those two experts with improvement
to subsequent guidelines based on their agreement.

Another batch of 50 resumes are then selected
for the next round and annotated based on the re-
vised guidelines. For batches 2-5, a third person
(non-expert) is added and instructed to follow the
guidelines developed from prior rounds; thus, anno-
tation is completed by three people for these rounds.
Table 4 shows the Fleiss Kappa scores to estimate
the inter-annotator agreement (ITA) for each round
with respect to the five competence levels.

R1 R2 R3 R4 R5
NQ 13.2 53.8 38.5 52.0 66.8

CRC1 1.3 25.0 -7.3 57.3 65.3
CRC2 9.3 39.7 41.2 5.4 33.7
CRC3 29.1 63.5 66.7 69.8 69.6
CRC4 63.4 47.9 100.0 N/A -0.7

Overall 16.1 45.3 40.7 55.5 60.8

Table 4: Fleiss Kappa scores measured for ITA during
the five rounds of guideline development (R1-5). No
annotation of CRC4 is found in the batch used for R4.
The negative kappa scores are achieved for (CRC1, R3)
and (CRC4, R5) that have too few samples (≤ 2).

For R1 with no guidelines designed, poor ITA is
observed with the kappa score of 16.1%. The ITA
gradually improves with more rounds, and reaches
the kappa score of 60.8% among 3 annotators, in-
dicating the high quality annotation in our dataset.
The followings give brief summary of the guideline
revisions after each round:

Round 1 (1) Clarify qualified and not-qualified
applicants, (2) Define transferable skills (e.g, gen-
eral research experience vs. experiences in health-
care), (3) Define clinical settings, clinical experi-
ence, and clinical research experience (4) Set re-
quirements by levels of academic preparation.

Round 2 (1) Revise the length of clinical experi-
ence based on levels of academic preparation and
whether the degree is in a scientific/health related
field or non-scientific/non-health related field, (2)
Refine CRC2-4 degree requirements, years of clin-
ical research, and clinical experience requirements,
(3) Require clinical research certification for CRC4.

Round 3 (1) Update glossary examples of clini-
cal settings, research experience, and clinical expe-
riences with job titles, (2) Revise years of experi-
ence in clinical roles and research experience. (3)
Add categorization of foreign trained doctors and
bench/laboratory research personnel.

Round 4 (1) Remove clinical experience require-
ments from CRC2-4 and require a minimum of
1-year clinical research for those with a scientific
vs. non-scientific degree, (2) Revisit laboratory sci-
entist requirements, (3) Remove academic experi-
ence as a research assistant unless it involved over
1000 hours. Rationale: participation by semester is
typically data entry or participation in a component
of the research but not full engagement in a project.

Round 5 Increase the number of years required
for a bench/laboratory researcher.
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Figure 1: The whole context model using section trimming, used as baseline for T1 (§4.1.1) and T2 (§4.2.1).

During these five rounds, 250 resumes are triple
annotated and adjudicated. Given the established
annotation guidelines,1 additional 3,175 resumes
are single annotated and sample-checked. Thus, a
total of 3,425 resumes are annotated for this study.

4 Approach

This section introduces transformer-based neural
approaches to address the following two tasks:

T1 Given a resume, decide which level of CRC
positions that the corresponding applicant is
suitable for (Section 4.1).

T2 Given a resume and a CRC job description,
decide whether or not the applicant is suitable
for that particular job (Section 4.2).

T1 is a multiclass classification task where the la-
bels are the five CRC levels including NQ (Table 4).
This task is useful for applicants who may not have
clear ideas about what levels they are eligible for,
and recruiters who want to match the applicants to
the best suitable jobs available to them.
T2 is a binary classification task such that even

with the same resume, the label can be either posi-
tive (accept) or negative (reject), depending on the
job description. This task is useful for applicants
who have good ideas about what CRC levels they
fit into but want to determine which particular jobs
they should apply to, as well as recruiters who need
to quickly screen the applicants for interviews.

4.1 Competence-Level Classification
For the competence-level classification task (T1), a
baseline model that treats the whole resume as one
document (§4.1.1) is compared to context-aware
models using section pruning (§4.1.2), chunk seg-
menting (§4.1.3), and section encoding (§4.1.4).
1The annotation guidelines are available at our project page.

4.1.1 Whole-Context: Section Trimming
Figure 1 shows an overview of the whole context
model. Let R = {S1, . . . , Sm} be a resume while
Si = {ri1, . . . , ri`i} is the i’th section in R where
rij is the j’th token in Si. Let N be the maximum
number of input tokens that a transformer encoder
can accept. Then, ni, the max-number of tokens in
Si allowed to be input, is measured as follows:

T =
∑
∀j |Sj |

ni = min(N,T ) · |Si|
T

Let S′i = {ri1, . . . , rini} be the trimmed section of
Si by discarding all tokens rij ∈ Si (ni < j ≤ `i).
All trimmed sections are appended in order with
the special token c, representing the entire resume,
which creates the input list I = {c}⊕S′1⊕· · ·⊕S′m.
I is fed into the transformer encoder (TE) that gen-
erates the list of embeddings {ec}⊕E′1⊕ . . .⊕E′m,
where E′i = {eri1, . . . , erini

} is the embedding list
of S′i, and ec is the embeddings of c. Finally, ec is
fed into the linear decoder (LDt) that generates the
output vector ot ∈ Rd to classify R into one of the
competence levels (in our case, d = 5).

4.1.2 Context-Aware: Section Pruning
Section trimming in Section 4.1.1 allows the whole-
context model to take part of every section as input.
However, it is still limited because not all features
necessary for the classification are guaranteed to be
in the trimmed range. Moreover, this model makes
no distinction between contents from different sec-
tions once S′1..m are concatenated. This section
proposes a context-aware model to overcome those
two issues by pruning tokens more intelligently and
encoding each section separately so that the model
learns weights for individual sections to make more
informed predictions. Figure 2 shows an overview
of the context-aware model using section pruning.
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Figure 2: The context-aware model using section pruning (§4.1.2) and section encoding (§4.1.4).
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Figure 3: The context-aware model using chunk segmenting (§4.1.3) and section encoding (§4.1.4).

Given the maximum number of tokens, N , that the
transformer encoder (TE) allows, any section Si ∈
R that contains more than N -number of tokens is
pruned by applying the following procedure:

1. If |Si| > N , remove all stop words in Si.

2. If still |Si| > N , remove all words whose
document frequencies are among the top 5%.

3. If still |Si| > N , remove all words whose
document frequencies are among the top 30%.

Then, the pruned section S′i is created for every Si,
where S′i ⊆ Si and |S′i| ≤ N . Each S′i is prepended
by the special token ci representing that section and
fed into the transformer encoder (TE) that generates
the list {eci , er

′
i1, . . . , e

r′
iN}, where ec is the embed-

ding of c, called section embedding, and the rest
are the embeddings of S′i. Let ecΣ =

∑m
i=1 e

c
i , that

is the sum of all section embeddings representing
the whole resume. Finally, ecΣ is fed into the lin-
ear decoder (LDp) that generates the output vector
op ∈ Rd to classify R into a competence level.

4.1.3 Context-Aware: Chunk Segmenting
Section pruning in §4.1.2 preserves relevant infor-
mation more than section trimming in §4.1.1; how-
ever, the model still cannot see the entire resume.

Thus, this section proposes another method that uni-
formly segments the resume into multiple chunks
and encodes each chunk separately. Figure 3 shows
the context-aware model using chunk segmenting.
Let Si = {Si.1, . . . , Si.k} be the i’th section in R,
where Si.j is the j’th chunk in Si and k = d|Si|/Le
given the maximum length L of any chunk so that
|Si.j | = L for ∀j < k and |Si.k| ≤ L.2 Each chunk
Si.j is prepended by the special token ci.j represent-
ing that chunk and fed into TE that generates the
embedding list Ei.j = {eci.j , eri.j1, . . . , eri.jL}. Let
ecΣ =

∑
∀i∀j e

c
i.j . Finally, ecΣ is fed into LDs that

generates the output vector os ∈ Rd to classify R.

4.1.4 Context-Aware: Section Encoding
Chunk segmenting in §4.1.3 allows the model to
see the entire resume; however, it loses information
about which sections the chunks belong to. This
section proposes a method to distinctively encode
chunks from different sections, that can be applied
to both models using section pruning (§4.1.2) and
chunk segmenting. Figures 2 and 3 describe how
section pruning can be applied to those two models.

Let H = {I1, . . . , Im} be the list of section IDs
where Ii is the ID of the i’th section. H is then fed
2Si.j = {ri.j1, . . . , ri.jL} and ri.jp is the p’th token in Si.j ,
that is riq ∈ Si where q = L · (j − 1) + p.
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Figure 4: The context-aware models using chunk segmenting (4.1.3) + section encoding (§4.1.4) + job description
embedding (§4.2.2), and multi-head attention between the resume and the job description (§4.2.3).

into the section encoder (SE), an embedding layer
that learns the embedding list EI = {eI1, . . . , eIm}
during training, where eIi is the embedding of Ii.
For the section pruning model in Figure 2, given
Ec = {ec1, . . . , ecm}, F = Ec + EI = {f1, .., fm}
and ec+I

Σ =
∑m

i=1 fi. For the chunk segmenting
model in Figure 3, given Ec = {ec1.1, . . . , ecm.k},
F = {f1.1, . . . , fm.k} where fi.j = eci.j + eIi. Let
ec+I

Σ =
∑
∀i∀j fi.j . Finally, ec+I

Σ is fed into LDse
that create ope ∈ Rd, ose ∈ Rd for the section prun-
ing and chunk segmenting models, respectively.

4.2 Resume-to-Job_Description Matching
For the resume-to-job_description matching task
(T2), the whole-context model is adapted to estab-
lish the baseline (§4.2.1), and compared to context-
aware models using chunk segmenting + section en-
coding coupled with the job description embedding
(§4.2.2), as well as multi-head attentions between
the resume and the job description (§4.2.3).

4.2.1 Whole-Context: Sec./Desc. Trimming
The whole context model is similar to the one using
section trimming in §4.1.1 with the additional input
from the job description, illustrated as the dotted
boxes in Figure 1. LetB = {b1, . . . , b`b} be the job
description where bi is the i’th token in B. Given
the max-number of tokens N that a transformer
encoder can accept, the max-numbers of tokens in
Si and B, that are ni and nb respectively, allowed
to be input are measured as followed:

T =
∑
∀j |Sj |+ |B|

ni = min(N,T ) · |Si|/T

nb = min(N,T ) · |B|/T

LetB′ = {b1, . . . , bnb
} be the trimmed job descrip-

tion discarding all tokens bj ∈ B (nb < j ≤ `b).
Then, the input list I = {c}⊕S′1⊕ · · · ⊕S′m⊕B′
is created and fed into TE that generates the em-
bedding list {ec}⊕E1⊕ . . .⊕Em ⊕Eb, where Eb
is the embeddings of B′. Finally, ec is fed into LD
that generates ot ∈ R2 to make the binary decision
of whether or not R is suitable for B.

4.2.2 Context-Aware: Chunk Segmenting +
Section Encoding + Desc. Embedding

The most advanced competence-level classification
model using chunk segmenting (§4.1.3) and section
encoding (§4.1.4) is adapted for the context-aware
model with the addition of B = {cb, b1, . . . , bN},
which is fed into TE to generate the embedding
list Eb = {ecb, bb1, . . . , bbN}. Then, the job descrip-
tion embedding ecb is concatenated with the section
encoded resume embedding ec+I

Σ (§4.1.4) and fed
into LDbe that generates obe ∈ R2.

4.2.3 Context-Aware: Multi-Head Attention
Figure 4 depicts an overview of the context-aware
model using the techniques in §4.2.2 empowered by
multi-head attention (Vaswani et al., 2017) between
the resume R and the job description B, which al-
lows the model to learn correlations between indi-
vidual tokens in R and B, r∗ and b∗, as well as the
chunk and job description representations, c∗.

Let Er ∈ Rγ×λ be the matrix representing R,
where γ is the total number of chunks across all sec-
tions in R, λ = L+ 1, and L is the max-length of
any chunk. Thus, each row in Er is the embedding
list Ei.j ∈ R1×λ of the corresponding chunk Si,j .
Let Eb ∈ Rγ×ν be the matrix representingB where
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ν = N+1 andN is the max-length ofB. Each row
in Eb is a copy of the embedding list Eb ∈ R1×ν

in §4.2.2. Thus, every row is identical to the other
rows in Eb. These two matrices, Er and Eb, are fed
into two types of multi-head attention (MHA) layers,
one finding correlations fromR toB (R2B) and the
other from B to R (B2R), which generate two at-
tention matrices, Ar2b ∈ Rγ×λ and Ab2r ∈ Rγ×ν .

The embeddings of the chunks, {ec1.1, . . . , ecm.k},
and the section encodings, {eI1, . . . , eIm}, as well as
the outputs of MHA-R2B, {ar2b1.1 , . . . , a

r2b
m.k}, and

MHA-B2R, {ab2r1.1 , . . . , a
b2r
m.k}, together make F a =

{fa1.1, . . . , fam.k} s.t. fi.j = eci.j + eIi + ar2bi.j + ab2ri.j .
Finally, ec+I+A

Σ =
∑
∀i∀j f

a
i.j is fed into LDba that

generates oba ∈ R2 for the binary classification.

5 Experiments

5.1 Data Distributions

Table 5 shows the data split used to develop models
for the competence-level classification task (T1).
The annotated data in the row Cr of Table 2 are
split into the training (TRN), development (DEV)
and test (TST) sets with the ratios of 75:10:15 by
keeping similar label distributions across all sets.

TRN DEV TST Total Dist.
NQ 355 48 72 475 13.87%
CRC1 1,510 202 302 2,014 58.80%
CRC2 286 38 58 382 11.15%
CRC3 392 53 79 524 15.30%
CRC4 22 3 5 30 0.88%
Total 2,565 344 516 3,425 100.00%

Table 5: Data statistics for the competence-level classi-
fication task (T1) in Section 4.1.

70% of the data are annotated with the entry levels,
CRC1 and CRC2, that is not surprising since 77.3%
of the applications are submitted for those 2 levels.
The ratio of CRC4 is notably lower than the appli-
cation ratio submitted to that level, 6.8%, implying
that applicants tend to apply to jobs for which they
are not qualified. 13.9% of the applicants are NQ;
thus, if our model detects even that portion robustly,
it can remarkably reduce human labor.

Table 6 shows the data split used for the resume-
to-job_description matching task (T2). The same
ratios of 75:10:15 are applied to generate the TRN:
DEV:TST sets, respectively. Note that an applicant
can submit resumes to more than one CRC level.
Algorithm 1 is designed to avoiding any overlap-
ping applicants across datasets while keeping the
similar label distributions (Appendix A.1).

TRN DEV TST Total Dist.

CRC1
Y 1,279 171 257 1,707 31.84%
N 772 100 151 1,023 19.08%

CRC2
Y 183 25 38 246 4.59%
N 1,086 148 222 1,456 27.15%

CRC3
Y 153 21 32 206 3.84%
N 373 46 71 490 9.14%

CRC4
Y 8 0 2 10 0.19%
N 169 22 33 224 4.18%

Total 4,023 533 806 5,362 100.00%

Table 6: Data statistics for the resume-to-job_ descrip-
tion matching task (T2) in Section 4.2. Y/N: applicants
whose applied CRC levels match/do not match our an-
notated label, respectively.

Out of the 5,362 applications, 40.5% of them match
our annotation of the CRC levels, indicating that
less than a half of applications are suitable for the
positions they apply. The number of matches drops
significantly for CRC2; only 14.5% are found to be
suitable according to our labels. Too few instances
are found for CRC4; only 4.3% of the applicants
applying for this level match our annotation.

5.2 Models
For our experiments, the BERT base model is used
as the transformer encoder (Devlin et al., 2019)
although our approach is not restricted to any par-
ticular type of encoder. The following models are
developed for T1 (Section 4.1):

• Wr: Whole context model + section trimming (§4.1.1)

• P: Context-aware model + section pruning (§4.1.2)

• P⊕I: P + section encoding (§4.1.4)

• C: Context-aware model + chunk segmenting (§4.1.3)

• C⊕I: S + section encoding (§4.1.4)

The followings are developed for T2 (Section 4.2):
• Wr+b: Whole context + sec./job_desc. trimming (§4.2.1)

• P⊕I⊕J: P⊕I + job_desc. embedding (≈§4.2.2)

• P⊕I⊕J⊕A: P⊕I⊕J + multi-head attention (≈§4.2.3)

• P⊕I⊕J⊕A	E: P⊕I⊕J - Ec (§4.1.4)

• C⊕I⊕J: C⊕I + job_desc. embedding (§4.2.2)

• C⊕I⊕J⊕A: C⊕I⊕J + multi-head attention (§4.2.3)

• C⊕I⊕J⊕A	E: C⊕I⊕J - Ec (§4.1.4)

The P⊕I⊕J model adapts section pruning to gen-
erate ec+I

Σ instead of chunk segmenting in §4.2.2.
For the P⊕I⊕J⊕A model, the attention matrices
in §4.2.3 are reconfigured as Ar2b,Ab2r ∈ Rm×ν
(m: the number of sections inR). These models are
developed to make comparisons between those two
approaches for T2. Also, the *	E models exclude
the embedding list Ec such that fi.j is redefined as
fi.j = eIi + ar2bi.j + ab2ri.j in §4.2.3 to estimate the
pure impact of multi-head attention.
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5.3 Results
Labeling accuracy is used as the evaluation metric
for all our experiments. Each model is developed
three times and their average score as well as the
standard deviation are reported.3 Table 7 shows the
results for T1 achieved by the models in Sec. 5.2.
All context-aware models without section encod-
ing perform significantly better, 1.5% with section
pruning (P) and 3.3% with chunk segmenting (C),
than the baseline model (Wr). C shows a greater
improvement of 1.8% than P, implying that the ad-
ditional context used in C is essential for this task.
Section encoding (I) helps both P and C. As the
result, C⊕I shows 4.2% improvement over Wr and
also gives the least variance of 0.16.

DEV TST δ

Wr 69.38 (±0.14) 69.06 (±1.56) -
P 68.99 (±0.49) 70.58 (±0.38) 1.52
P⊕I 69.19 (±0.63) 70.87 (±0.40) 1.81
C 70.36 (±0.34) 72.35 (±0.24) 3.29
C⊕I 70.64 (±0.41) 73.26 (±0.16) 4.20

Table 7: Accuracy (± standard deviation) on the devel-
opment (DEV) and test (TST) sets for T1, achieved by
the models in Section 5.2. δ: delta over Wr on TST.

Table 8 shows the results for T2 achieved by the
models in Section 5.2. Neither the context-aware
model using section pruning (P) or chunk segment-
ing (C) with section encoding (⊕I) performs better
than the baseline model (Wr+b) by simply concate-
nating the job description embedding (⊕J). Indeed,
none of the P⊕* models performs better than Wr+b,
that is surprising given the success they depict for
T1 (Table 7). However, Cwith multi-head attention
(C⊕I⊕J⊕A) show a significant improvement of
4.6% over its counterpart, that is very encouraging.

DEV TST δ

Wr+b 76.24 (±1.08) 77.70 (±0.59) -
P⊕I⊕J 74.73 (±0.54) 75.60 (±1.07) -2.1
P⊕I⊕J⊕A 75.36 (±0.57) 77.25 (±0.87) -0.5
P⊕I⊕J⊕A	E 76.42 (±0.22) 77.58 (±0.95) -0.1
C⊕I⊕J 73.85 (±0.87) 74.65 (±1.87) -3.1
C⊕I⊕J⊕A 76.99 (±1.10) 79.20 (±0.26) 1.5
C⊕I⊕J⊕A	E 76.20 (±0.96) 78.49 (±0.74) 0.8

Table 8: Accuracy (± standard deviation) on the devel-
opment (DEV) and test (TST) sets for T2, achieved by
the models in Section 5.2. δ: delta over Wr on TST.

Multi-head attention (A) gives good improvement
to P as well. Interestingly, the one excluding the
3Appdendix A.2 provides details of our experimental settings
for the replicability of this work.

embedding list (	E) performs slightly better than
the one including it (P⊕I⊕J⊕A), implying that
the embeddings from the pruned sections are not
as useful once the attention is in place.

5.4 Analysis
Figure 5 shows the confusion matrix for T1’s best
model, C⊕I. The prediction of CRC1 shows robust
performance, which has the most number of train-
ing instances (Table 5), whereas the other dimen-
sions are mostly confused around their neighbors,
often hard to distinguish even for human experts.

Figure 5: Confusion matrix for the best model of T1.

Figure 6 shows the confusion matrix for T2’s best
model, C⊕I⊕J⊕A. In general, this model shows
robust performance across all dimensions.

Figure 6: Confusion matrix for the best model of T2.

5.5 Error Analysis
This section provides a detailed analysis from our
experts about prediction errors made by our best
model in Section 5.3.

General The following observations are found
as general error cases:

• Classifying foreign trained MDs and persons
with PhDs with no clinical research experience
to overrate them. (1) It picks up research project
done in training as significant research. (2) It is
unable to identify clinical research experience.
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• Classifying laboratory personnel entering CRC
area.

• Counting research experience: identifying dates
of experience. (1) It needs to accumulate expe-
rience (e.g., CRC1: 6 months; CRC2: 2-3 years).
(2) It needs implications for creating a structured
entry form versus resume (3) Academic research
experiences that are less than 1000 hours not
counted; a semester experience not counted. (4)
It needs to count paid research experience.

• Not picking up research related titles or terms
such as (1) Research coordinator, research assis-
tant, senior assistant; (2) IRB, informed consent,
regulatory, specimen management, SOP, inter-
views, questionnaires; (3) Lab researcher: assays,
immunohistochemistry.

• Not recognizing transferable skills such as clin-
ical setting, clinical experience, and laboratory
experience.

• Recognizing correct certifications. CRC posi-
tions require Clinical Research Certification but
do not require CITI or CPR Certificates.

• Not distinguishing levels of preparation and asso-
ciated clinical experience or research experience.
Distinguishing scientific vs. nonscientific degrees
for CRC1 and CRC2 is particularly important.

The following error cases are found between the
adjacent pairs of CRC positions:

NQ vs. CRC1 It needs to distinguish transferable
skills, clinical setting, clinical experiences.

CRC1 vs. CRC2 It needs to count for (1) Lev-
els of education; (2) Scientific vs. non-scientific
degree; (3) Clinical experience that is a must for
CRC2 at lower educational levels;

CRC2 vs. CRC3 It needs to count for (1) Length
of clinical research experience; (2) Foreign trained
MD; (3) Laboratory personnel length of time

CRC3 vs. CRC4 (1) Foreign MD are often clas-
sified too high. (2) CRC4 needs Certification in
Clinical Research

6 Conclusion

This paper proposes two novel tasks, competence-
level classification (T1) and resume-description
matching (T2), and provides a high-quality dataset
as well as robust models using several transformer-
based approaches. The accuracies achieved by our

best models, 73.3 for T1 and 79.2 for T2, show a
good promise for these models to be deployed in
real HR systems. To the best of our knowledge, this
is the first time that those two tasks are thoroughly
studies, especially with the latest transformer archi-
tectures. We will continuously explore to improve
these models by integrating expert’s knowledge.
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A Appendices

A.1 Spliting Algorithm for T2
Algorithm 1 is to split the TRN/DEV/TST sets for
T2 (Table 6) without overlapping applicants across
them while keeping the label distributions. The key
idea is to split the data by targeted label distribu-
tions but with a smaller training set ratio than the
original one. If there are overlapping applicants,
then it puts all of the overlaps into the training set
so that the training set ratio will be large enough to
be close to the targeted training set ratio while the
label distributions are still kept in a great extent.

Algorithm 1: Splitting Algorithm for T2
Result: The splitted dataset for T2
Initialize a random training set ratio Ti smaller than

the targeted training and evaluation ratio Tt;
while True do

Split the training and evaluation set by Ti based
on the ratio R of positions applied and
annotated matching results;

if There are overlap resumes between training
and evaluation set then

Put all overlap resumes into the splitted
training set;

Compute the new training ratio Tn;
if Tn is not closed to Tt then

Adjust Ti based on the relation between
Tn and Tt;

Continue;
else

Split the evaluation set into the
development and test set based on R;

Return the splitted set;
end

else
if Ti is not closed to Tt then

Adjust Ti based on the relation between
Ti and Tt;

Continue;
else

Split the evaluation set into the
development and test set based on R;

Return the splitted set;
end

end
end

A.2 Experimental Settings
Table 9 shows the hyper-parameters used for each
model (Section 5.2). For chunk segmenting in Sec-
tion 4.1.3, let ki be the number of chunks in the
i’th section, then K =

∑m
i=1 ki is the total number

of chunks in R. To utilize the GPU memory wisely,
resumes with the same K are put to the same
batch and different batches are trained with dif-
ferent batch sizes based on K and GPU memory to
maximum the GPU usage. Different seeds are used
when developing models for three times.

Model L GAS BS LR E T PS
Wr/Wr+b 512 2 5 2e-05 20 1-3h 109M
P/P⊕I 512 2 3 2e-05 20 4-6h 109M
C/C⊕I 128 1 1,2,4 2e-05 20 4-6h 109M
P⊕I⊕* 512 2 3 2e-05 20 6-8h 112M
C⊕I⊕* 128 1 1,2,4 2e-05 20 6-8h 112M

Table 9: Hyperparameters. L: TE input length; GAS:
gradient accumulation steps; BS: batch size; LR: learn-
ing rate; E: number of training epochs; T: approximate
training time(h: hours); PS: approximate models train-
ing parameters size.

A.3 Analysis on Section Pruning
Section pruning is used to discard insignificant to-
kens in order to meet the limit of input size required
by the transformer encoder (Section 4.1.2). Ta-
bles 10 and 11 show the section lengths before and
after section pruning, respectively. These tables
show that section pruning can noticeably reduce
the maximum and average lengths of the sections.

Section Average (±stdev) Max Ratio
Profile 100.65 (±215.75) 2139 94.93%
Skills 60.70 (±102.61) 1157 98.95%
Work Experience 314.61 (±316.61) 3605 80.26%
Education 174.30 (±289.37) 3662 89.50%
Other 77.41 (±145.40) 2184 98.34%
Activities 168.09 (±289.40) 3967 91.13%

Table 10: Section lengths before section pruning (Sec-
tion 4.1.2). Average/Max: the average and max lengths
of input sections. Ratio: the ratios of input sections that
are under the max-input length restricted by the trans-
former encoder.

Section Average(±stdev) Max Ratio
Profile 77.95(±127.70) 1514 99.60%
Skills 55.59 (±70.36) 546 99.93%
Work Experience 232.63 (±168.84) 2099 98.98%
Education 129.91 (±165.06) 1755 98.81%
Other 72.19 (±108.80) 1468 99.38%
Activities 125.71 (±57.74) 1514 99.13%

Table 11: Section lengths after section pruning (Sec-
tion 4.1.2). Average/Max: the average and max lengths
of input sections. Ratio: the ratios of input sections that
are under the max-input length restricted by the trans-
former encoder.


