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Abstract

In the financial domain, risk modeling and
profit generation heavily rely on the sophisti-
cated and intricate stock movement prediction
task. Stock forecasting is complex, given the
stochastic dynamics and non-stationary behav-
ior of the market. Stock movements are in-
fluenced by varied factors beyond the conven-
tionally studied historical prices, such as social
media and correlations among stocks. The ris-
ing ubiquity of online content and knowledge
mandates an exploration of models that factor
in such multimodal signals for accurate stock
forecasting. We introduce an architecture that
achieves a potent blend of chaotic temporal
signals from financial data, social media, and
inter-stock relationships via a graph neural
network in a hierarchical temporal fashion.
Through experiments on real-world S&P 500
index data and English tweets, we show the
practical applicability of our model as a tool
for investment decision making and trading.

1 Introduction

Stock prices have an intrinsically volatile and
non-stationary nature, making their rise and fall
hard to forecast (Adam et al., 2016). Investment
in stock markets involves a high risk regarding
profit-making. Prices are driven by diverse fac-
tors that include but are not limited to company
performance (Anthony and Ramesh, 1992), histori-
cal trends (Kohara et al., 1997), investor sentiment
(Neal and Wheatley, 1998). Uninformed trading
decisions can leave traders and investors prone to
financial risk and experience monetary losses. On
the contrary, careful investment choices can maxi-
mize profits (de Souza et al., 2018). Conventional
research focused on time series and technical anal-
ysis of a stock, i.e., using patterns from historical
price signals to forecast stock movements (B et al.,

* Equal contribution.

2013). However, price signals alone fail to capture
market surprises and impacts of sudden unexpected
events. Social media texts like tweets can have
huge impacts on the stock market. For instance,
US President Donald Trump shared tweets express-
ing negative sentiments against Lockheed Martin,
which led to a loss of around $5.8 Billion to the
company’s market capitalization.1

The Efficient Market Hypothesis (EMH)
(Malkiel, 1989) states that financial markets are
informationally efficient, such that stock prices re-
flect all known information. Existing works (Sec.
2) mainly focus on subsets of stock relevant data.
Although useful, they do not jointly optimize learn-
ing over modalities like social media text and inter
stock relations limiting their potential to capture a
broader scope of stock movement affecting data,
as we show in Sec. 6. Multimodal stock predic-
tion involves multiple challenges (Hu et al., 2018).
Both price signals and tweets exhibit sequential
context dependencies, where singular samples may
not be informative enough but can be considered a
sequence for a unified context. Tweets often have
diverse influence on stock prices, based on their
intrinsic content, such as breaking news as opposed
to noise like vague comments. Fusing multiple
modalities of vast stock related data generated with
varying characteristics (frequency, noise, source) is
complex and mandates the careful design of joint
optimization over modality-specific components.

Building on the EMH and prior work (Sec. 2),
we propose MAN-SF: Multipronged Attention Net-
work for Stock Forecasting that jointly learns from
historical prices, social media, and inter stock rela-
tions. MAN-SF through hierarchical attention cap-
tures relevant signals across diverse data to train a
Graph Attention Network (GAT) for stock predic-
tion (Sec. 3). MAN-SF (Sec. 4) jointly learns from

1https://medium.com/scoop-markets/7-tweets-which-
wiped-40-billion-off-the-stock-market

https://medium.com/scoop-markets/7-tweets-which-wiped-40-billion-off-the-stock-market-ac8652dffa1a
https://medium.com/scoop-markets/7-tweets-which-wiped-40-billion-off-the-stock-market-ac8652dffa1a
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price and tweets over graph-based models for stock
prediction. Through varied experiments (Sec. 5),
we show the predictive power of MAN-SF along
with profitability analysis (Sec. 6) and qualitatively
analyze MAN-SF in high risk scenarios (Sec. 7).

2 Related Work

Predicting stock movements spans multiple do-
mains (Jiang, 2020); 1) theoretical: quantitative
models like Modern Portfolio Theory (Elton et al.,
2009), Black-Scholes model (Black and Scholes,
1973), etc. and, 2) practical: investment strategies
(Blitz and Van Vliet, 2007), portfolio management
(Hocquard et al., 2013), and beyond the world of
finance (Erb et al., 1994; Rich and Tracy, 2004).
Financial models conventionally focused on tech-
nical analysis (TA) relying only on numerical fea-
tures like past prices (Ding and Qin, 2019; Nguyen
et al., 2019) and macroeconomic indicators like
GDP (Hoseinzade et al., 2019). Such TA methods
include discrete: GARCH (Bollerslev, 1986), con-
tinuous (Andersen, 2007), and neural approaches
(Nguyen and Yoon, 2019; Nikou et al., 2019).

Newer models based on the EMH that are cate-
gorized under fundamental analysis (FA) (Dichev
and Tang, 2006), account for stock affecting factors
beyond numerical ones such as investor sentiment
through news, etc. Work in natural language pro-
cessing (NLP) from sources such as news (Hu et al.,
2018), social media data (Xu and Cohen, 2018),
earnings calls (Qin and Yang, 2019; Sawhney et al.,
2020b) shows the merit of FA in capturing mar-
ket sentiment, surprises, mergers, acquisitions that
traditional TA based methods fail to account. A
limitation of existing NLP methods for stock pre-
diction is that they assume stock movements to be
independent of each other, contrary to true market
function (Diebold and Yilmaz, 2014). This assump-
tion hinders NLP centric FA’s ability to learn latent
patterns for the study of interrelated stocks.

Another line of FA revolves around employing
graph-based methods to improve TA (e.g., price-
based models) by augmenting them with inter
stock relations (Feng et al., 2019b; Sawhney et al.,
2020a). Matsunaga et al. (2019) combine historical
prices with stock graphs through Graph Convolu-
tion Networks (GCNs), outperforming price-only
models. Similarly, Kim et al. (2019) further im-
prove graph neural network methods by weighing
stock relations through attention mechanisms, as
not all stock movements are equally correlated.

Despite the popularity of NLP and graph-based
stock prediction, multimodal methods that capture
inter stock relations and market sentiment through
linguistic cues are seldom explored. Jue Liu (2019)
combines feature extraction from news sentiment
scores, financial information (price-earnings ra-
tio, etc.) along with knowledge graph embed-
dings through TransR. However, such existing ap-
proaches (Deng et al., 2019) are unable to represent
textual signals from social media and prices tem-
porally, as they only utilize sentiment scores and
do not account for stock correlations. To cover this
gap in prior research, MAN-SF captures a broader
set of features as opposed to both conventional TA
and FA that singularly focus on either text or graph
modalities, but not both together.

3 Problem Formulation

MAN-SF’s main objective is to learn temporally
relevant information jointly from tweets and histor-
ical price signals and make use of corporate rela-
tions among stocks to predict movements. Follow-
ing Xu and Cohen (2018), we formalize movement
based on the difference between the adjusted clos-
ing prices of the stock s ∈ S on trading days d and
d− 1. We formulate stock movement prediction as
a binary classification problem.

Problem Statement: Given stock s ∈ S, and
historical price data and tweets for stock s over a
lookback window of T days over the day range
[t − T, t − 1], we define the price movement of
stock s from day t− 1 to t as:

Yt =

{
0, pcd < pcd−1
1, pcd ≥ pcd−1

(1)

where pcd represents the widely used (Yang et al.,
2020; Qin and Yang, 2019) adjusted closing price2

of a given stock on day t. Here, 0 represents a price
downfall, and 1 represents a rise in the price.

4 MAN-SF: Components and Learning

In this section, we first give an overview of MAN-
SF, followed by a detailed explanation of each com-
ponent. As shown in Figure 1, MAN-SF first en-
codes market data for each stock over a fixed pe-
riod. Formally, we encode stock features xt ∈ Rw

for each trading day t as, xt = B(ct, qt); where,
ct ∈ Ru represents a social media feature that we

2Source: https://www.investopedia.com/
terms/a/adjusted_closing_price.asp

 https://www.investopedia.com/terms/a/adjusted_closing_price.asp
 https://www.investopedia.com/terms/a/adjusted_closing_price.asp
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Figure 1: An overview of MAN-SF: Encoding Mechanisms, GAT Mechanism, Joint Optimization.

Figure 2: An overview of the Price Encoder.

obtain by encoding tweets over the lag window for
each stock s ∈ S = {s1, s2, . . . sS}. Similarly,
qt ∈ Rv are the features obtained from historical
prices for a stock in the lag window. We detail
these encoders first, and then explain the fusion
B(·) over ct and qt to obtain xt ∈ Rw. We then
describe the graph to represent the inter stock re-
lations. Lastly, we explain the GAT to which the
fused feature vector xt is passed to propagate fea-
tures based on inter-stock relations along with the
joint optimization of MAN-SF.

4.1 Price Encoder

Technical Analysis shows that historical price infor-
mation is a strong indicator of future trends (Jean-
blanc et al., 2009). Therefore, price data from each
day is a crucial input to MAN-SF. The Price En-
coder shown in Figure 2 encodes historical stock
price movements to produce price feature, qt. It
takes in a per-day price feature from the lookback
of T days and encodes the temporal trend in prices.
To capture such sequential dependencies across
trading days, we use a Gated Recurrent Unit (GRU)
(Cho et al., 2014; Giles et al., 2001). The output of
the GRU on day i is denoted by:

hi = GRUp(pi, hi−1) t− T ≤ i ≤ t (2)

where, pi ∈ Rdp is the price vector on day i for
each stock s in the lookback. The raw price vector,
pi = [pci , p

h
i , p

l
i] comprises of a stock’s adjusted

closing price, highest price and lowest price for a
trading day i. Since it is the price change that deter-
mines the stock movement rather than the absolute
price value, we normalize it with its last adjusted
closing price, pi = pi/p

c
i−1.

It has been shown that the stock trend of each
day has a different impact on stock trend prediction
(Feng et al., 2019a). Towards this end, we employ
temporal attention ζ(·) (Li et al., 2018) that learns
to weigh critical days and forms an aggregated
feature representation across all hidden states of
the GRU (Qin et al., 2017). The temporal attention
mechanism yields qt = ζ(hp); where, hp ∈ Rdp×T

is the concatenated hidden states ofGRUp for each
stock s. This temporal attention mechanism ζ(·)
rewards days with more impactful information and
aggregates it from all days in the lag window to
produce price features qt ∈ Rv.

Temporal Attention We use a temporal atten-
tion mechanism that is a form of additive attention
(Bahdanau et al., 2014). The mechanism ζ(·) ag-
gregates all the hidden representations of the GRU
across different time-steps into an overall represen-
tation with learned adaptive weights (Feng et al.,
2019a). We formulate this mechanism ζ(·) as:

βi =
exp (hTi Whz)∑T
i=1 exp (h

T
i Whz)

(3)

ζ(hz) =
∑
i

βihi (4)

where, hz ∈ RT×dm denotes the concatenated
hidden states of the GRU. βi represents the learned
attention weights for trading day i, and W is a
learnable parameter matrix.
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Figure 3: Social Media Information Encoder.

4.2 Social Media Information Encoder (SMI)
Xu and Cohen (2018) suggest that tweets not only
convey factual data, but also portray user sentiment
towards stocks that influence financial prediction
(Bollen et al., 2011). A variety of market factors
beyond historical prices drive stock trends (Abu-
Mostafa and Atiya, 1996). With the rising ubiquity
of the Internet, social media platforms, such as
Twitter, influence investors to follow market trends
(Tetlock, 2007; Hu et al., 2018). Tweets not only
convey factual information but also portray user
sentiment towards stocks (Xu and Cohen, 2018;
Fung et al., 2002). To this end, MAN-SF uses the
SMI encoder to extract a feature vector ct using
tweets. The encoder shown in Figure 3 extracts
social media features, ct, by first encoding tweets
for a day and then over multiple days using a hier-
archical attention mechanism (Yang et al., 2016).

Tweet Embedding For any given tweet tw, we
generate an embedding vector m ∈ Rd. We ex-
plored word and sentence level embedding methods
to learn tweet representations: Global Vectors for
Word Representation (GloVe) (Pennington et al.,
2014), Fasttext (Joulin et al., 2017), and Universal
Sentence Encoders (USE) (Cer et al., 2018). Empir-
ically, sentence-level embeddings generated using
a deep averaging network encoder variant of the
USE3 gave us the most promising results. Thus,
we encode each tweet tw using USE.

Learning Representations for one day On any
day i, a variable number tweets [tw1, tw2, . . . twK ]
for each stock s are posted, and these cap-
ture and influence the stock trends (Fung et al.,

3Implementation used: https://tfhub.dev/
google/universal-sentence-encoder/2

2002). For each tweet, we obtain a representa-
tion using the Tweet Embedding layer (USE) as
[m1,m2, . . .mK ] where mj ∈ Rd and K is the
number of tweets per stock on day i. To model the
sequence of tweets within a day, we use a GRU.
For stock s on each day i:

hj = GRUm(mj , hj−1); j ∈ [1,K] (5)

The influence of online tweets on the market can
vary greatly (Hu et al., 2018). To identify tweets
that are likely to have a more substantial influence
on the market, we use an intraday tweet level atten-
tion. For each stock s on each day i the mechanism
can be summarized as:

γj =
exp (hTj Whm)∑K
j=1 exp (h

T
j Whm)

(6)

ri =
∑
j

γjhj (7)

where, hm ∈ RK×dm denotes a concatenation of
all hidden states from GRUm and dm is the di-
mension of each hidden state. γj represents the
attention weights and ri represents the features ob-
tained from several published tweets on day i for
each stock s. W is a learned linear transformation.

Learning Representations across days Analyz-
ing a temporal sequence of tweets and combining
them can provide a more reliable assessment of
market trends (Zhao et al., 2017). We learn a so-
cial media representation from the sequence of day
level tweet representations ri. This feature vector
encodes all the information in a lookback window.
We then feed temporal day level tweet vectors to a
GRU for sequential modeling given by:

hi = GRUs(ri, hi−1) t− T ≤ i ≤ t (8)

where, hi summarizes the tweets on day i for stock
s as well as tweets from preceding days while fo-
cusing on day i. Like historical prices, tweets from
each day have a different impact on stock move-
ments. Hence, the previously described temporal
attention mechanism used for historical prices is
also used for social media. This mechanism learns
a procedure to aggregate impactful information to
form SMI features ct over a lookback of T days
for each stock s. The temporal attention mecha-
nism yields ct = ζ(hs); hs ∈ RT×ds represents
the concatenated hidden states of GRUs and ds is
the size of output space of the GRU. This temporal

https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/universal-sentence-encoder/2
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attention ζ(·), along with the intraday tweet-level
attention, forms a hierarchical attention mechanism.
This mechanism captures the fact that tweets are
differently informative and have varied impacts dur-
ing different market phases. The obtained SMI and
price features for each stock are then blended to
obtain a joint representation.

4.3 Blending Multimodal Information
Signals from different modalities often carry com-
plementary information about different events in
the market (Robert P. Schumaker, 2019). Direct
concatenation treats information from Price and
SMI encoders equally (Li et al., 2016). Further-
more, the interdependencies between price and
tweets are not appropriately captured, damping the
framework’s capacity to learn their correlations to
market trends (Li et al., 2014). We use a bilinear
transformation that learns the pairwise feature in-
teractions from historical price features and tweets.
Formally, qt ∈ Rv and ct ∈ Ru are obtained from
the Price Encoder and SMI Encoder, respectively.
The output xt∈Rw is given by:

xt = B(ct, qt, ) = ReLU(qTt Wct + b) (9)

where, W ∈ Rw×v×u is the weight matrix, and
b ∈ Rw is the bias. Methods like direct mean and
attention-based aggregation (Bahdanau et al., 2014)
do not account for pair-wise interactions as shown
in the results (Sec. 6). Other methods like fac-
torized bilinear pooling (Yu et al., 2017), reduce
computational complexity; however, we empiri-
cally find that the generalized bilinear layer out-
performs these techniques. This layer learns an
optimum blend of features from prices and tweets
in a translationally invariant manner.

4.4 Graph Attention Network (GAT)
Stocks are often interlinked with one another, and
thus, we model stocks and their relations as a graph.

Graph Creation Following Feng et al. (2019b),
we make use of Wiki company-based relations. Us-
ing Wikidata4, we extract first and second-order re-
lations between the company stocks in the S&P 500
index. A first-order relation is defined as X R1−→ Y
where X and Y denote entities in Wikidata that
correspond to the two stocks. A second-order re-
lation is defined by X R2−→ Z R3←− Y where Z de-
notes another entity connecting the two entities X

4https://www.wikidata.org/wiki/
Wikidata:List_of_properties/all

and Y. R1, R2, and R3, defined in Wikidata, are
different types of entity-relations. For instance,
Wells Fargo and Bank of America are related to
Berkshire Hathaway via a first-order company rela-
tion ”owned by.” Another example is Microsoft and
Berkshire Hathaway that are related through Bill
Gates (second-order relation: ”owned by” - ”is a
board member of”) since Bill Gates possesses own-
ership over Microsoft and is a Board member of
Berkshire Hathaway. We define the stock relation
network as a graph G(S,E) where S denotes the
set of nodes, and E is the set of edges. Each node
s ∈ S represents a stock, and two stocks s1, s2 ∈ S
are joined by an edge e∈E if s1, s2 are linked by
a first or second-order relation.

Graph Attention Graph-based representation
learning through graph neural networks can be con-
sidered as information exchange between related
nodes (Gilmer et al., 2017). As each stock has a
different degree of influence on another stock, it is
essential that the graph encoding suitably weighs
more relevant relations between stocks. To this end,
we use graph attention networks (GATs), which
are graph neural networks with node-level atten-
tion (Veličković et al., 2017).

We first describe a single GAT layer that is
used throughout the GAT component. The in-
put to the GAT is a set of stock (node) features,
h = [x1, x2, . . . x|S|], where xi is the encoded
multi-modal market information (Sec. 4.3). The
GAT layer produces an updated set of of node fea-
tures h′ = [z1, z2, . . . z|S|]; zi ∈ Rw′ based on the
GAT mechanism (shown in Figure 1). We first
apply a shared linear transform parameterized by
W ∈ Rw′×w to all the nodes. Then, we apply a
shared self-attention mechanism to each node i in
its immediate neighborhood Ni. For each node
j ∈ Ni, we compute normalized attention coeffi-
cients αij representing the importance of relations
among stocks i and j. Formally, αij is given as:

αij=
exp (LeakyReLU(aTw[Wxi ⊕Wxj ]))∑

k∈Ni

exp (LeakyReLU(aTw[Wxi⊕Wxk]))

(10)
where, .T and⊕ represent transpose and concatena-
tion respectively. aw∈R2w′ is a learnable weight
matrix of a single layer feed forward neural net-
work. The learned attention coefficients αij are
used to weigh and aggregate feature vectors from
neighboring with a non-linearity σ. The updated

https://www.wikidata.org/wiki/Wikidata:List_of_properties/all
https://www.wikidata.org/wiki/Wikidata:List_of_properties/all
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node feature vector zi is given as:

zi = σ

∑
j∈Ni

αijWxj

 (11)

We use multi-head attention to stabilise training
(Vaswani et al., 2017). Formally, U independent
executors apply the above attention mechanism.
Their output features are concatenated to yield:

zi =

U⊕
k=1

σ

∑
j∈Ni

αk
ijW

kxj

 (12)

where, αk
ij and W k denote normalised attention

coefficients and linear transformation parameter
matrix computed by the kth attention mechanism.

We use a two-layer GAT, the first layer is fol-
lowed by Exponential Linear Unit (Clevert et al.,
2015), and the second layer outputs a vector yi
for each stock i, which is then used to classify
the stock’s future price movements. MAN-SF is
trained using the Adam optimiser by optimizing
the cross-entropy loss, given as:

Lcse = −
|S|∑
i=1

Yi ln(yi)+(1−Yi) ln(1−yi) (13)

where, Yi is the true price movement of stock i.

5 Experiments

5.1 Dataset and Training Setup
We adopt the StockNet dataset (Xu and Cohen,
2018) for the training and evaluation of MAN-SF.
The dataset contains data of high-trade-volume
stocks in the S&P 500 index in the NYSE and
NASDAQ markets. Stock specific tweets are ex-
tracted using regex queries made out of NASDAQ
ticker symbols, for instance, $AMZN for Ama-
zon. The price data has been obtained from Ya-
hoo Finance5. We shift a 5-day lag window along
the trading days to generate samples. We label
the samples according to the movement percent-
age of the closing price such that those ≥ 0.55%
and ≤ −0.5% are labeled positive and negative
samples, respectively. This leaves us with 26, 614
samples divided as 49.78% and 50.22% in the two
classes. We temporally split the dataset in a ra-
tio of Train:Validation:Test in 70:10:20, leaving us
with date ranges from 01/01/2014 to 31/07/2015 for

5https://finance.yahoo.com/industries

training, 01/08/2015 to 30/09/2015 for validation,
and 01/10/2015 to 01/01/2016 for testing. Follow-
ing Xu and Cohen (2018), we align trading days by
dropping samples that lack either prices or tweets,
and further align the data across trading windows
for related stocks to ensure data is available for all
trading days in the window for all stocks. The hid-
den size of all GRUs is 64, and the USE embedding
dimension is 512. We use U = 8 attention heads
for both GAT layers. We use the Adam optimizer
with a learning rate set to 5e−4 and train MAN-SF
for 10, 000 epochs. It takes 3hrs to train and test
MAN-SF on Tesla K80 GPU. We use early stop-
ping based on Matthew’s Correlation Coefficient
(MCC) taken over the validation set.

5.2 Evaluation
Following prior research for stock prediction (Ding
et al., 2014; Xu and Cohen, 2018), we use accuracy,
F1 score, MCC (implementations from sklearn6)
for classification performance. We use MCC be-
cause, unlike the F1 score, MCC avoids bias due to
data skew as it does not depend on the choice of the
positive class and accounts for the True Negatives.

For a given confusion matrix
(
tp fn
fp tn

)
:

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(14)

Like prior work (Kim et al., 2019; Feng et al.,
2019b), to evaluate MAN-SF’s applicability to real-
world trading, we assess its profitability on the
test data of the S&P 500 index using two metrics:
Cumulative Profit and Sharpe Ratio (Sharpe, 1994).
We follow a trading strategy where, if MAN-SF
predicts a rise in a stock’s value the next day, then
one share of that stock is bought (long position) at
the closing price of the current trading session and
sold on the next day’s closing price. Otherwise,
if the strategy speculates a fall in price, a short
sell7 is performed. We compute the cumulative
profit (Krauss, 2018) earned as:

Profitt =
∑
i∈S

pti − pt−1
i

pt−1
i

(−1)Actiont−1
i (15)

where, S denotes the set of stocks, pti denotes the
price of stock i at day t. Actiont−1i is a binary
value [0, 1]. TheActiont−1i is 0 if the long position
is taken at time t for stock i; otherwise it is 1.

6sklearn: https://scikit-learn.org
7Short sell: https://en.wikipedia.org/wiki/

Short_(finance)

https://finance.yahoo.com/industries
https://scikit-learn.org
https://en.wikipedia.org/wiki/Short_(finance)
https://en.wikipedia.org/wiki/Short_(finance)
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Model F1 ↑ Accuracy ↑ MCC ↑

RAND 0.502± 8e−4 0.509± 8e−4 −0.002± 1e−3
TA ARIMA (Brown, 2004) 0.513± 1e−3 0.514± 1e−3 −0.021± 2e−3

Selvin et al. (2017) 0.529± 5e−2 0.530± 5e−2 −0.004± 7e−2
RandForest (Venkata Sasank Pagolu, 2016) 0.527± 2e−3 0.531± 2e−3 0.013± 4e−3
TSLDA (Nguyen and Shirai, 2015) 0.539± 6e−3 0.541± 6e−3 0.065± 7e−3
HAN (Hu et al., 2018) 0.572± 4e−3 0.576± 4e−3 0.052± 5e−3
StockNet - TechnicalAnalyst (Xu and Cohen, 2018) 0.546±− 0.550±− 0.017±−
StockNet - FundamentalAnalyst (Xu and Cohen, 2018) 0.572±− 0.582±− 0.072±−
StockNet - IndependentAnalyst (Xu and Cohen, 2018) 0.573±− 0.575±− 0.037±−

FA StockNet - DiscriminativeAnalyst (Xu and Cohen, 2018) 0.559±− 0.562±− 0.056±−
StockNet - HedgeFundAnalyst (Xu and Cohen, 2018) 0.575±− 0.582±− 0.081±−
HATS (Kim et al., 2019) 0.560± 2e−3 0.562± 2e−3 0.117± 6e−3
Chen et al. (2018) 0.530± 7e−3 0.532± 7e−3 0.093± 9e−3
Adversarial LSTM (Feng et al., 2019a) 0.570±− 0.572±− 0.148±−
MAN-SF (This work) 0.605± 2e−4 0.608± 2e−4 0.195± 6e−4

Table 1: Results compared with baselines. Bold shows the best results. Green is indicative of higher performance.
TA and FA represent Technical Analysis and Fundamental Analysis models, respectively.

The Sharpe Ratio is a measure of the return of
a portfolio compared to its risk. We calculate the
Sharpe ratio by computing the ratio of the expected
return Ra of a portfolio to its standard deviation as:

Sharpe Ratioa =
E[Ra]

std[Ra]
(16)

5.3 Baselines

We compare MAN-SF with the below baselines
spanning both technical and fundamental analysis.

Technical Analysis: These methods uses only
historical price information.

• RAND: Random guess as price rise or fall.

• ARIMA: Autoregressive Integrated Moving
Average models historical prices as a non-
stationary time series (Brown, 2004).

• Selvin et al. (2017): Three deep neural archi-
tectures (RNN, CNN and LSTM) using prices.
We compare with the best performing LSTM.

Fundamental Analysis: These methods use
other modalities such as text information and com-
pany relationships along with historical prices.

• RandForest: Random Forests classifier
trained over word2vec (Mikolov et al., 2013)
embeddings for tweets.

• TSLDA: Topic Sentiment Latent Dirichlet Al-
location model is a generative model that uses
sentiments and topic modeling on social me-
dia (Nguyen and Shirai, 2015).

• HAN: A hierarchical attention mechanism to
encode textual information during a day and
across multiple days (Hu et al., 2018).

• StockNet: A variational Autoencoder (VAE)
that uses price and text information. Text is
encoded using hierarchical attention during
and across days. Price features are modeled
sequentially (Xu and Cohen, 2018). We com-
pare with all five variants of StockNet.

• HATS: A hierarchical graph attention method
that uses a multi-graph to weigh different rela-
tionships between stocks. It uses only histori-
cal price data (Kim et al., 2019).

• Chen et al. (2018): GCNs to model inter
stock relations with only historical price data.

6 Results and Analysis

We now discuss the experimental results and some
findings with their financial implications.

Performance Comparison Table 1 shows the
performance of the compared methods on Stock-
Net’s test data split from 01/10/2015 to 31/12/2015
on the S&P 500 index averaged over ten differ-
ent runs. Using a learned blend of historical price
and tweets using corporate relationships, MAN-
SF achieves the best performance, outperforming
the strongest baselines, StockNet, and Adversarial
LSTM. We also note that Fundamental Analysis
(FA) techniques outperform numerical only Tech-
nical Analysis (TA) methods, reiterating the effec-
tiveness of factoring in social media signals and
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Model Component F1 ↑ MCC ↑

LSTM + Historical Price 0.521 0.002
GRU + Social Media Text (BERT) 0.539 0.077
GCN + Historical Price 0.532 0.093
GRU + Social Media Text (USE) 0.546 0.101
GCN + Social Media Text (USE) 0.555 0.102
GAT + Historical Price 0.562 0.117
MAN-SF (Concatenation) 0.588 0.156
MAN-SF (Attention Fusion) 0.594 0.173
MAN-SF (Bilinear Transformation) 0.605 0.195

Table 2: Ablation study over MAN-SF’s components.

(a) Feature fusion maps (b) Graph attention map

Figure 4: Feature weight heatmaps for MAN-SF

inter stock relations. These results empirically vali-
date the effectiveness of multimodal signals due to
a broader capture of stock price influencing infor-
mation, including tweets and other related stocks.

Ablation Study In Table 2, we observe the abil-
ity of price and text models to predict the market
trend to an extent using unimodal features. Im-
provements over individual modalities are noted
with the inclusion of a graph-based learning model,
i.e., GCN and GAT validating the premise of us-
ing inter stock relations for enhanced forecasting.
When the text and price signals are fused, and more
relevant information is extracted using the atten-
tion mechanisms, a performance gain is seen. The
ablation study ties up with the EMH, as we add ad-
ditional modalities, we note an increment in MAN-
SF’s ability for stock prediction. Two critical obser-
vations from Table 2 are the substantial MCC gains
when using GAT over GCN and the contrast be-
tween fusing text and prices via concatenation and
bilinear transformations. We discuss these next.

Impact of Bilinear Transformations Bilinear
blending outperforms concatenation, and attention
fusion variants, as seen in Table 2. We postulate
that the bilinear transformation can better learn the
interplay between the signals compared to other
variants. On examining Figure 4a, we observe that
the bilinear layer blends highly non-linear relation-

Table 3: Annualized sharpe
Ratio comparison with
baselines. Bold and italics
denotes best and second
best results, respectively.

Model Sharpe Ratio↑
Stocknet 0.83
HATS 0.78
MAN-SF 1.05
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ships between the two signals leading to a joint
representation that captures more specific features
noticed by areas of concentrated attention as com-
pared to simple concatenation based fusion.

Analyzing Graph Attention We notice that
equally weighing all correlations using GCN-based
models leads to smaller performance gains, as
shown in Table 2, as compared to GAT (GAT, and
MAN-SF variants). To analyze this difference, we
first calculate each neighbor’s attention scores in
the stock relations graph, as shown in Figure 4b.
By analyzing the different stock associations with
the highest and lowest attention scores, we observe
that some relations between stocks, such as being
a part of the same industry or having the same
founder, are more critical than other relations like
stocks having the same country of origin. For in-
stance, C (CitiCorp) and JPM (JP Morgan) have
a relatively high attention score and are a part of
the same investment and banking industry, whereas
the attention score for JPM and CSCO (Cisco) is
relatively low. We also observe that some stocks
share hidden correlations captured by the GAT due
to the market’s temporal nature. We explain one
such example in Section 7.

Profitability We examine MAN-SF’s practical
applicability through a profitability analysis on real-
world stock data. From Table 3 and Figure 6, we
note that MAN-SF achieves higher risk-adjusted
returns and an overall profit. MAN-SF outperforms
different baselines over the common testing period
of three months using the stocks data in the S&P
500 index. These observations show the profitabil-
ity of MAN-SF over models that do not capture
stock correlations (StockNet) and models that do
not use the impact of textual data (HATS). We
potentially attribute these improvements to MAN-
SF’s ability to learn a more concentrated blend of
text and price features as opposed to competitive
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Figure 5: Graph sample showing attention weights for stock correlations (top left); Stock price movement depicting
inter-stock relationships (bottom left); Tweets with hierarchical temporal attention weights (right)

models. We extend this analysis in the next section.

7 Qualitative Analysis

We conduct an extended analysis across two high-
risk scenarios, as shown in Figure 5, to study the ap-
plicability of MAN-SF to investors in the stock mar-
ket. The study is based on Apple’s (AAPL) trend
during 12th Nov - 18th Nov. Figure 5 shows some
of the tweets posted and AAPL’s relations with
relevant stocks such as Alibaba (BABA), Google
(GOOG), and among others during that period.

12th Nov to 16th Nov: Failure of StockNet and
models that do not capture inter stock relations:
From Figure 5, we see from the price movement
that 12th to 16th November 2015 shows a decline in
Apple’s stock price. Here, we observe that Stock-
Net predicts a further drop in Apple’s price, and
similar models that use only price and text are un-
able to predict the price rise for Apple on 17th
November correctly. However, we discover that
Apple shares a strong relationship with Alibaba
and Google during that time, as indicated by the at-
tention weights. MAN-SF incorporates inter-stock
relations through graph attention to learn latent cor-
relations between AAPL, BABA, and GOOG, as
shown by the graph snippet in Figure 5. MAN-SF
correctly predicts a rise in Apple’s price and makes
a profit, unlike StockNet. We attribute this predic-
tion to MAN-SF likely having a broader context by
blending multimodal signals.

14th Nov to 18th Nov: Failure of HATS and
models that do not leverage social media data:
Despite Apple’s sharp fall on 18th November, we
see tweets with positive sentiment having higher

attention weights during the lookback window,
indicating a possible increase in Apple’s price.
MAN-SF uses hierarchical attention mechanisms
over tweets and inter-stock correlations correctly.
Thereby likely predicting a rise in Apple’s stock
price, similar to models such as StockNet. As op-
posed to these, models such as HATS forecast a
continual decrease in Apple’s price, potentially due
to not factoring in social media data.

8 Conclusion and Future Work

We study stock movement prediction by using nat-
ural language, graph-based and numeric features.
We propose MAN-SF, a neural model that jointly
learns temporally relevant signals from chaotic
multimodal data spanning historical prices, tweets,
and inter stock correlations in a hierarchical fashion.
Extensive quantitative and qualitative experiments
on real market data demonstrate MAN-SF’s appli-
cability for neural stock forecasting. We plan to
further use news articles, earnings calls, and other
data sources to capture market dynamics better. An-
other interesting direction of future research is to
explore the cold start problem, where MAN-SF
could be leveraged to predict stock movements for
new stocks. Lastly, we would also like to extend
MAN-SF’s architecture to not be limited to model
all stocks together (because of its GAT component)
to increase scalability to cross-market scenarios.
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