INSPIRED: Toward Sociable Recommendation Dialog Systems
Shirley Anugrah Hayati, Dongyeop Kang, Qingxiaoyang Zhu, Weiyan Shi, Zhou Yu
Abstract
In recommendation dialogs, humans commonly disclose their preference and make recommendations in a friendly manner. However, this is a challenge when developing a sociable recommendation dialog system, due to the lack of dialog dataset annotated with such sociable strategies. Therefore, we present INSPIRED, a new dataset of 1,001 human-human dialogs for movie recommendation with measures for successful recommendations. To better understand how humans make recommendations in communication, we design an annotation scheme related to recommendation strategies based on social science theories and annotate these dialogs. Our analysis shows that sociable recommendation strategies, such as sharing personal opinions or communicating with encouragement, more frequently lead to successful recommendations. Based on our dataset, we train end-to-end recommendation dialog systems with and without our strategy labels. In both automatic and human evaluation, our model with strategy incorporation outperforms the baseline model. This work is a first step for building sociable recommendation dialog systems with a basis of social science theories.- Anthology ID:
- 2020.emnlp-main.654
- Volume:
- Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
- Month:
- November
- Year:
- 2020
- Address:
- Online
- Venue:
- EMNLP
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 8142–8152
- Language:
- URL:
- https://aclanthology.org/2020.emnlp-main.654
- DOI:
- 10.18653/v1/2020.emnlp-main.654
- Cite (ACL):
- Shirley Anugrah Hayati, Dongyeop Kang, Qingxiaoyang Zhu, Weiyan Shi, and Zhou Yu. 2020. INSPIRED: Toward Sociable Recommendation Dialog Systems. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8142–8152, Online. Association for Computational Linguistics.
- Cite (Informal):
- INSPIRED: Toward Sociable Recommendation Dialog Systems (Hayati et al., EMNLP 2020)
- PDF:
- https://preview.aclanthology.org/ingestion-script-update/2020.emnlp-main.654.pdf
- Code
- sweetpeach/Inspired
- Data
- Inspired