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Abstract

Interactive Fiction (IF) games with real human-
written natural language texts provide a new
natural evaluation for language understanding
techniques. In contrast to previous text games
with mostly synthetic texts, IF games pose lan-
guage understanding challenges on the human-
written textual descriptions of diverse and so-
phisticated game worlds and language genera-
tion challenges on the action command gener-
ation from less restricted combinatorial space.
We take a novel perspective of IF game solv-
ing and re-formulate it as Multi-Passage Read-
ing Comprehension (MPRC) tasks. Our ap-
proaches utilize the context-query attention
mechanisms and the structured prediction in
MPRC to efficiently generate and evaluate ac-
tion outputs and apply an object-centric his-
torical observation retrieval strategy to miti-
gate the partial observability of the textual ob-
servations. Extensive experiments on the re-
cent IF benchmark (Jericho) demonstrate clear
advantages of our approaches achieving high
winning rates and low data requirements com-
pared to all previous approaches.1

1 Introduction

Interactive systems capable of understanding natu-
ral language and responding in the form of natural
language text have high potentials in various appli-
cations. In pursuit of building and evaluating such
systems, we study learning agents for Interactive
Fiction (IF) games. IF games are world-simulating
software in which players use text commands to
control the protagonist and influence the world, as
illustrated in Figure 1. IF gameplay agents need
to simultaneously understand the game’s informa-
tion from a text display (observation) and generate

⇤ Primary authors.
1Source code is available at: https://github.com/

XiaoxiaoGuo/rcdqn.

Figure 1: Sample gameplay for the classic dungeon game
Zork1. The objective is to solve various puzzles and collect
the 19 treasures to install the trophy case. The player receives
textual observations describing the current game state and ad-
ditional reward scalars encoding the game designers’ objective
of game progress. The player sends textual action commands
to control the protagonist.

natural language command (action) via a text in-
put interface. Without providing an explicit game
strategy, the agents need to identify behaviors that
maximize objective-encoded cumulative rewards.

IF games composed of human-written texts (dis-
tinct from previous text games with synthetic texts)
create superb new opportunities for studying and
evaluating natural language understanding (NLU)
techniques due to their unique characteristics. (1)
Game designers elaborately craft on the literari-
ness of the narrative texts to attract players when
creating IF games. The resulted texts in IF games
are more linguistically diverse and sophisticated
than the template-generated ones in synthetic text
games. (2) The language contexts of IF games

https://github.com/XiaoxiaoGuo/rcdqn
https://github.com/XiaoxiaoGuo/rcdqn
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Figure 2: Overview of our approach to solving the IF games as Multi-Paragraph Reading Comprehension (MPRC) tasks.

are more versatile because various designers con-
tribute to enormous domains and genres, such as
adventure, fantasy, horror, and sci-fi. (3) The text
commands to control characters are less restricted,
having sizes over six orders of magnitude larger
than previous text games. The recently introduced
Jericho benchmark provides a collection of such IF
games (Hausknecht et al., 2019a).

The complexity of IF games demands more so-
phisticated NLU techniques than those used in syn-
thetic text games. Moreover, the task of designing
IF game-play agents, intersecting NLU and rein-
forcement learning (RL), poses several unique chal-
lenges on the NLU techniques. The first challenge
is the difficulty of exploration in the huge natural
language action space. To make RL agents learn
efficiently without prohibitive exhaustive trials, the
action estimation must generalize learned knowl-
edge from tried actions to others. To this end, pre-
vious approaches, starting with a single embedding
vector of the observation, either predict the ele-
ments of actions independently (Narasimhan et al.,
2015; Hausknecht et al., 2019a); or embed each
valid action as another vector and predict action
value based on the vector-space similarities (He
et al., 2016). These methods do not consider the
compositionality or role-differences of the action
elements, or the interactions among them and the
observation. Therefore, their modeling of the ac-
tion values is less accurate and less data-efficient.

The second challenge is partial observability.
At each game-playing step, the agent receives a tex-
tual observation describing the locations, objects,
and characters of the game world. But the latest
observation is often not a sufficient summary of
the interaction history and may not provide enough

information to determine the long-term effects of
actions. Previous approaches address this problem
by building a representation over past observations
(e.g., building a graph of objects, positions, and spa-
tial relations) (Ammanabrolu and Riedl, 2019; Am-
manabrolu and Hausknecht, 2020). These methods
treat the historical observations equally and sum-
marize the information into a single vector without
focusing on important contexts related to the action
prediction for the current observation. Therefore,
their usages of history also bring noise, and the
improvement is not always significant.

We propose a novel formulation of IF game
playing as Multi-Passage Reading Comprehension
(MPRC) and harness MPRC techniques to solve
the huge action space and partial observability
challenges. The graphical illustration is shown in
Figure 2. First, the action value prediction (i.e.,
predicting the long-term rewards of selecting an
action) is essentially generating and scoring a com-
positional action structure by finding supporting
evidence from the observation. We base on the fact
that each action is an instantiation of a template,
i.e., a verb phrase with a few placeholders of object
arguments it takes (Figure 2b). Then the action
generation process can be viewed as extracting ob-
jects for a template’s placeholders from the textual
observation, based on the interaction between the
template verb phrase and the relevant context of
the objects in the observation. Our approach ad-
dresses the structured prediction and interaction
problems with the idea of context-question atten-
tion mechanism in RC models. Specifically, we
treat the observation as a passage and each tem-
plate verb phrase as a question. The filling of ob-
ject placeholders in the template thus becomes an
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extractive QA problem that selects objects from
the observation given the template. Simultaneously
each action (i.e., a template with all placeholder
replaced) gets its evaluation value predicted by the
RC model. Our formulation and approach better
capture the fine-grained interactions between ob-
servation texts and structural actions, in contrast
to previous approaches that represent the observa-
tion as a single vector and ignore the fine-grained
dependency among action elements.

Second, alleviating partial observability is es-
sentially enhancing the current observation with
potentially relevant history and predicting actions
over the enhanced observation. Our approach re-
trieves potentially relevant historical observations
with an object-centric approach (Figure 2a), so that
the retrieved ones are more likely to be connected to
the current observation as they describe at least one
shared interactable object. Our attention mecha-
nisms are then applied across the retrieved multiple
observation texts to focus on informative contexts
for action value prediction.

We evaluated our approach on the suite of Jeri-
cho IF games, compared to all previous approaches.
Our approaches achieved or outperformed the state-
of-the-art performance on 25 out of 33 games,
trained with less than one-tenth of game interac-
tion data used by prior art. We also provided abla-
tion studies on our models and retrieval strategies.

2 Related Work

IF Game Agents. Previous work mainly studies
the text understanding and generation in parser-
based or rule-based text game tasks, such as
TextWorld platform (Côté et al., 2018) or custom
domains (Narasimhan et al., 2015; He et al., 2016;
Adhikari et al., 2020). The recent platform Jeri-
cho (Hausknecht et al., 2019a) supports over thirty
human-written IF games. Earlier successes in real
IF games mainly rely on heuristics without learning.
NAIL (Hausknecht et al., 2019b) is the state-of-the-
art among these “no-learning” agents, employing a
series of reliable heuristics for exploring the game,
interacting with objects, and building an internal
representation of the game world. With the devel-
opment of learning environments like Jericho, the
RL-based agents have started to achieve dominat-
ing performance.

A critical challenge for learning-based agents is
how to handle the combinatorial action space in
IF games. LSTM-DQN (Narasimhan et al., 2015)

was proposed to generate verb-object action with
pre-defined sets of possible verbs and objects, but
treat the selection and learning of verbs and objects
independently. Template-DQN (Hausknecht et al.,
2019a) extended LSTM-DQN for template-based
action generation, introducing one additional but
still independent prediction output for the second
object in the template. Deep Reinforcement Rel-
evance Network (DRRN) (He et al., 2016) was
introduced for choice-based games. Given a set of
valid actions at every game state, DRRN projects
each action into a hidden space that matches the
current state representation vector for action se-
lection. Action-Elimination Deep Q-Network (AE-
DQN) (Zahavy et al., 2018) learns to predict invalid
actions in the adventure game Zork. It eliminates
invalid action for efficient policy learning via uti-
lizing expert demonstration data.

Other techniques focus on addressing the partial
observability in text games. Knowledge Graph
DQN (KG-DQN) (Ammanabrolu and Riedl, 2019)
was proposed to deal with synthetic games. The
method constructs and represents the game states
as knowledge graphs with objects as nodes and
uses pre-trained general purposed OpenIE tool and
human-written rules to extract relations between
objects. KG-DQN handles the action representa-
tion following DRRN. KG-A2C (Ammanabrolu
and Hausknecht, 2020) later extends the work for
IF games, by adding information extraction heuris-
tics to fit the complexity of the object relations in IF
games and utilizing a GRU-based action generator
to handle the action space.

Reading Comprehension Models for Question
Answering. Given a question, reading compre-
hension (RC) aims to find the answer to the ques-
tion based on a paragraph that may contain support-
ing evidence. One of the standard RC settings is
extractive QA (Rajpurkar et al., 2016; Joshi et al.,
2017; Kwiatkowski et al., 2019), which extracts a
span from the paragraph as an answer. Our formu-
lation of IF game playing resembles this setting.

Many neural reader models have been designed
for RC. Specifically, for the extractive QA task, the
reader models usually build question-aware pas-
sage representations via attention mechanisms (Seo
et al., 2016; Yu et al., 2018), and employ a pointer
network to predict the start and end positions of
the answer span (Wang and Jiang, 2016). Powerful
pre-trained language models (Peters et al., 2018;
Devlin et al., 2019; Radford et al., 2019) have been
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recently applied to enhance the encoding and at-
tention mechanisms of the aforementioned reader
models. They give performance boost but are more
resource-demanding and do not suit the IF game
playing task very well.

Reading Comprehension over Multiple Para-
graphs. Multi-paragraph reading comprehension
(MPRC) deals with the more general task of an-
swering a question from multiple related para-
graphs, where each paragraph may not necessarily
support the correct answer. Our formulation be-
comes an MPRC setting when we enhance the state
representation with historical observations and pre-
dict actions from multiple observation paragraphs.

A fundamental research problem in MPRC,
which is also critical to our formulation, is to se-
lect relevant paragraphs from all the input para-
graphs for the reader to focus on. Previous ap-
proaches mainly apply traditional IR approaches
like BM25 (Chen et al., 2017; Joshi et al., 2017), or
neural ranking models trained with distant super-
vision (Wang et al., 2018; Min et al., 2019a), for
paragraph selection. Our formulation also relates to
the work of evidence aggregation in MPRC (Wang
et al., 2017; Lin et al., 2018), which aims to infer
the answers based on the joint of evidence pieces
from multiple paragraphs. Finally, recently some
works propose the entity-centric paragraph retrieval
approaches (Ding et al., 2019; Godbole et al., 2019;
Min et al., 2019b; Asai et al., 2019), where para-
graphs are connected if they share the same-named
entities. The paragraph retrieval then becomes a
traversal over such graphs via entity links. These
entity-centric paragraph retrieval approaches share
a similar high-level idea to our object-based his-
tory retrieval approach. The techniques above have
been applied to deal with evidence from Wikipedia,
news collections, and, recently, books (Mou et al.,
2020). We are the first to extend these ideas to IF
games.

3 Multi-Paragraph RC for IF Games

3.1 Problem Formulation

Each IF game can be defined as a Partially Observ-
able Markov Decision Process (POMDP), namely
a 7-tuple of h S, A, T , O, ⌦, R, � i, representing
the hidden game state set, the action set, the state
transition function, the set of textual observations
composed from vocabulary words, the textual ob-
servation function, the reward function, and the

BiDAF

Glove Embedding

Encoder Block Encoder Block

Glove Embedding

Bi-GRU

LayerNorm

Encoder Block

Encoder Block

Textual Observation

Forward Layer

Self-Attention

+
Encoder Block

Arg1 GRU
Embedding

Arg0 GRU
Embedding

Q(o, a)

Template Text

Figure 3: Our RC-based action prediction model archi-
tecture. The template text is a verb phrase with place-
holders for objects, such as [pick up OBJ] and [break
OBJ with OBJ].

discount factor respectively. The game playing
agent interacts with the game engine in multiple
turns until the game is over or the maximum num-
ber of steps is reached. At the t-th turn, the agent
receives a textual observation describing the cur-
rent game state ot 2 O and sends a textual action
command at 2 A back. The agent receives ad-
ditional reward scalar rt which encodes the game
designers’ objective of game progress. Thus the
task of the game playing can be formulated to gen-
erate a textual action command per step as to maxi-
mize the expected cumulative discounted rewards
E
hP1

t=0 �
t
rt

i
. Value-based RL approaches learn

to approximate an observation-action value func-
tion Q(ot, at;✓) which measures the expected cu-
mulative rewards of taking action at when observ-
ing ot. The agent selects action based on the action
value prediction of Q(o, a;✓).

Template Action Space. Template action space
considers actions satisfying decomposition in
the form of hverb, arg0, arg1i. verb is an in-
terchangeable verb phrase template with place-
holders for objects and arg0 and arg1 are op-
tional objects. For example, the action com-
mand [east], [pick up eggs] and [break window
with stone] can be represented as template ac-
tions heast, none, nonei, hpick up OBJ, eggs, none
and hbreak OBJ with OBJ,window, stonei. We re-
use the template library and object list from Jericho.
The verb phrases usually consist of several vocabu-
lary words and each object is usually a single word.
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3.2 RC Model for Template Actions

We parameterize the observation-action value func-
tion Q(o, a=hverb, arg0, arg1i;✓) by utilizing the
decomposition of the template actions and context-
query contextualized representation in RC. Our
model treats the observation o as a context in
RC and the verb=(v1, v2, ..., vk) component of the
template actions as a query. Then a verb-aware
observation representation is derived via a RC
reader model with Bidirectional Attention Flow
(BiDAF) (Seo et al., 2016) and self-attention. The
observation representation responding to the arg0
and arg1 words are pooled and projected to a scalar
value estimate for Q(o, a=hverb, arg0, arg1i;✓).
A high-level model architecture of our model is
illustrated in Figure 3.

Observation and verb Representation. We to-
kenize the observation and the verb phrase into
words, then embed these words using pre-trained
GloVe embeddings (Pennington et al., 2014).
A shared encoder block that consists of Layer-
Norm (Ba et al., 2016) and Bidirectional GRU (Cho
et al., 2014) processes the observation and verb
word embeddings to obtain the separate observa-
tion and verb representation.

Observation-verb Interaction Layers. Given
the separate observation and verb representation,
we apply two attention mechanisms to compute
a verb-contextualized observation representation.
We first apply BiDAF with observation as the con-
text input and verb as the query input. Specifi-
cally, we denote the processed embeddings for ob-
servation word i and template word j as oi and
tj . The attention between the two words is then
aij=w1·oi+w2·tj+w3·(oi⌦tj), where w1, w2,
w3 are learnable vectors and ⌦ is element-wise
product. We then compute the “verb2observation”
attention vector for the i-th observation word
as ci=

P
j pijtj with pij=exp(aij)/

P
j exp(aij).

Similarly, we compute the “observation2verb”
attention vector as q=

P
i pioi with pi =

exp(maxj aij)/
P

i exp(maxj aij). We concate-
nate and project the output vectors as w4 · [oi,

ci,oi⌦ ci, q⌦ ci], followed by a linear layer with
leaky ReLU activation units (Maas et al., 2013).
The output vectors are processed by an encoder
block. We then apply a residual self-attention on
the outputs of the encoder block. The self-attention
is the same as BiDAF, but only between the obser-
vation and itself.

Observation-Action Value Prediction. We gen-
erate an action by replacing the placeholders
(arg0 and arg1) in a template with objects appear-
ing in the observation. The observation-action
value Q(o, a=hverb, arg0=objm, arg1=objni; ✓)
is achieved by processing each object’s correspond-
ing verb-contextualized observation representation.
Specifically, we get the indices of an obj in the
observation texts I(obj, o). When the object is a
noun phrase, we take the index of its headword.2

Because the same object has different meanings
when it replaces different placeholders, we apply
two GRU-based embedding functions for the two
placeholders, to get the object’s verb-placeholder
dependent embeddings. We derive a single vec-
tor representation harg0=objm for the case that the
placeholder arg0 is replaced by objm by mean-
pooling over the verb-placeholder dependent em-
beddings indexed by I(objm, o) for the correspond-
ing placeholder arg0. We apply a linear transfor-
mation on the concatenated embeddings of the two
placeholders to obtain the observation action value
Q(o, a)=w5 · [harg0=objm ,harg1=objn ] for a=hverb,
arg0=objm, arg1=objni. Our formulation avoids
the repeated computation overhead among different
actions with a shared template verb phrase.

3.3 Multi-Paragraph Retrieval Method for
Partial Observability

The observation at the current step sometimes does
not have full-textual evidence to support action se-
lection and value estimation, due to the inherent
partial observability of IF games. For example,
when repeatedly attacking a troll with a sword, the
player needs to know the effect or feedback of the
last attack to determine if an extra attack is neces-
sary. It is thus important for an agent to efficiently
utilize historical observations to better support ac-
tion value prediction. In our RC-based action pre-
diction model, the historical observation utilization
can be formulated as selecting evidential obser-
vation paragraphs in history, and predicting the
action values from multiple selected observations,
namely a Multiple-Paragraph Reading Comprehen-
sion (MPRC) problem. We propose to retrieve past
observations with an object-centric approach.

Past Observation Retrieval. Multiple past ob-
servations may share objects with the current obser-

2Some templates may take zero or one object. We denote
the unrequired objects as none so that all templates take two
objects. The index of the none object is for a special token.
We set to the index of split token of the observation contents.
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Agents Action strategy State strategy Interaction data

TDQN Independent selection of template and the
two objects

None 1M

DRRN Action as a word sequence without distin-
guishing the roles of verbs and objects

None 1M

KG-A2C Recurrent neural decoder that selects the
template and objects in a fixed order

Object graph from historical observations
based on OpenIE and human-written rules

1.6M

Ours Observation-template representation for
object-centric value prediction

Object-based history observation retrieval 0.1M

Table 1: Summary of the main technical differences between our agent and the baselines. All agents use DQN to update the
model parameters except KG-A2C uses A2C. All agents use the same handicaps.

vation, and it is computationally expensive and un-
necessary to retrieve all of such observations. The
utility of past observations associated with each ob-
ject is often time-sensitive in that new observations
may entirely or partially invalidate old observa-
tions. We thus propose a time-sensitive strategy
for retrieving past observations. Specifically, given
the detected objects from the current observation,
we retrieve the most recent K observations with
at least one shared object. The K retrieved obser-
vations are sorted by time steps and concatenated
to the current observation. The observations from
different time steps are separated by a special to-
ken. Our RC-based action prediction model treats
the concatenated observations as the observation
inputs, and no other parts are changed. We use the
notation ot to represent the current observation and
the extended current observation interchangeably.

3.4 Training Loss
We apply the Deep Q-Network (DQN) (Mnih et al.,
2015) to update the parameters ✓ of our RC-based
action prediction model. The loss function is:

L(✓) = E(ot,at,rt,ot+1)⇠⇢(D)

h
||Q(ot, at; ✓)

� (rt + �max
b

Q(ot+1, b; ✓
�))||

i

where D is the experience replay consisting of re-
cent gameplay transition records and ⇢ is a distri-
bution over the transitions defined by a sampling
strategy.

Prioritized Trajectories. The distribution ⇢ has
a decent impact on DQN performance. Previous
work samples transition tuples with immediate pos-
itive rewards more frequently to speed up learn-
ing (Narasimhan et al., 2015; Hausknecht et al.,
2019a). We observe that this heuristic is often in-
sufficient. Some transitions with zero immediate

rewards or even negative rewards are also indis-
pensable in recovering well-performed trajectories.
We thus extend the strategy from transition level
to trajectory level. We prioritize transitions from
trajectories that outperform the exponential moving
average score of recent trajectories.

4 Experiments

We evaluate our proposed methods on the suite of
Jericho supported games. We compared to all previ-
ous baselines that include recent methods address-
ing the huge action space and partial observability
challenges.

4.1 Setup
Jericho Handicaps and Configuration. The
handicaps used by our methods are the same as
other baselines. First, we use the Jericho API
to check if an action is valid with game-specific
templates. Second, we augmented the observa-
tion with the textual feedback returned by the com-
mand [inventory] and [look]. Previous work also
included the last action or game score as additional
inputs. Our model discarded these two types of in-
puts as we did not observe a significant difference
by our model. The maximum game step number is
set to 100 following baselines.

Implementation Details. We apply spaCy3 to to-
kenize the observations and detect the objects in the
observations. We use the 100-dimensional GloVe
embeddings as fixed word embeddings. The out-
of-vocabulary words are mapped to a randomly
initialized embedding. The dimension of Bi-GRU
hidden states is 128. We set the observation rep-
resentation dimension to be 128 throughout the
model. The history retrieval window K is 2. For
DQN configuration, we use the ✏-greedy strategy

3https://spacy.io

https://spacy.io
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Human Baselines Ours
Game Max Walkthrough-100 TDQN DRRN KG-A2C MPRC-DQN RC-DQN

905 1 1 0 0 0 0 0
acorncourt 30 30 1.6 10 0.3 10.0 10.0
advent 350 113 36 36 36 63.9 36
adventureland 100 42 0 20.6 0 24.2 21.7
afflicted 75 75 1.3 2.6 – 8.0 8.0
anchor 100 11 0 0 0 0 0
awaken 50 50 0 0 0 0 0
balances 51 30 4.8 10 10 10 10
deephome 300 83 1 1 1 1 1
detective 360 350 169 197.8 207.9 317.7 291.3
dragon 25 25 -5.3 -3.5 0 0.04 4.84
enchanter 400 125 8.6 20 12.1 20.0 20.0
gold 100 30 4.1 0 – 0 0
inhumane 90 70 0.7 0 3 0 0
jewel 90 24 0 1.6 1.8 4.46 2.0
karn 170 40 0.7 2.1 0 10.0 10.0
library 30 30 6.3 17 14.3 17.7 18.1
ludicorp 150 37 6 13.8 17.8 19.7 17.0
moonlit 1 1 0 0 0 0 0
omniquest 50 50 16.8 10 3 10.0 10.0
pentari 70 60 17.4 27.2 50.7 44.4 43.8
reverb 50 50 0.3 8.2 – 2.0 2.0
snacktime 50 50 9.7 0 0 0 0
sorcerer 400 150 5 20.8 5.8 38.6 38.3
spellbrkr 600 160 18.7 37.8 21.3 25 25
spirit 250 8 0.6 0.8 1.3 3.8 5.2
temple 35 20 7.9 7.4 7.6 8.0 8.0
tryst205 350 50 0 9.6 – 10.0 10.0
yomomma 35 34 0 0.4 – 1.0 1.0
zenon 20 20 0 0 3.9 0 0
zork1 350 102 9.9 32.6 34 38.3 38.8
zork3 7 3a 0 0.5 0.1 3.63 2.83
ztuu 100b 100 4.9 21.6 9.2 85.4 79.1

Winning 24%/8 30%/10 27%/9 64%/21 52%/17
percentage / counts 76%/25

Table 2: Average game scores on Jericho benchmark games. The best performing agent score per game is in bold.
The Winning percentage / counts row computes the percentage / counts of games that the corresponding agent is best. The scores
of baselines are from their papers. The missing scores are represented as “–”, for which games KG-A2C skipped. We also added
the 100-step results from a human-written game-playing walkthrough, as a reference of human-level scores. We denote the
difficulty levels of the games defined in the original Jericho paper with colors in their names – possible (i.e., easy or normal)
games in green color, difficult games in tan and extreme games in red. Best seen in color.
a Zork3 walkthrough does not maximize the score in the first 100 steps but explores more. b Our agent discovers some unbounded
reward loops in the game Ztuu.

for exploration, annealing ✏ from 1.0 to 0.05. �

is 0.98. We use Adam to update the weights with
10�4 learning rate. Other parameters are set to their
default values. More details of the Reproducibility
Checklist is in Appendix A.

Baselines. We compare with all the public results
on the Jericho suite, namely TDQN (Hausknecht
et al., 2019a), DRRN (He et al., 2016), and KG-
A2C (Ammanabrolu and Hausknecht, 2020). As
discussed, our approaches differ from them mainly
in the strategies of handling the large action space
and partial observability of IF games. We summa-
rize these main technical differences in Table 1. In
summary, all previous agents predict actions con-

ditioned on a single vector representation of the
whole observation texts. Thus they do not exploit
the fine-grained interplay among the template com-
ponents and the observations. Our approach ad-
dresses this problem by formulating action predic-
tion as an RC task, better utilizing the rich textual
observations with deeper language understanding.

Training Sample Efficiency. We update our
models for 100, 000 times. Our agents interact with
the environment one step per update, resulting in a
total of 0.1M environment interaction data. Com-
pared to the other agents, such as KG-A2C (1.6M),
TDQN (1M), and DRRN (1M), our environment
interaction data is significantly smaller.
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Game Template Action Avg. Steps Dialog Darkness Nonstandard Inventory
Space (⇥106) Per Reward Actions Limit

advent 107 7 X X X
detective 19 2
karn 63 17 X X
ludicorp 45 4 X X
pentari 32 5 X
spirit 195 21 X X X X
zork3 67 39 X X X

Table 3: Difficulty levels and characteristics of games on which our approach achieves the most considerable improvement.
Dialog indicates that it is necessary to speak with another character. Darkness indicates that accessing some dark areas requires a
light source. Nonstandard Actions refers to actions with words not in an English dictionary. Inventory Limit restricts the number
of items carried by the player. Please refer to (Hausknecht et al., 2019a) for more comprehensive definitions.

4.2 Overall Performance

We summarize the performance of our Multi-
Paragraph Reading Comprehension DQN (MPRC-
DQN) agent and baselines in Table 2. Of the 33
IF games, our MPRC-DQN achieved or improved
the state of the art performance on 21 games (i.e., a
winning rate of 64%). The best performing baseline
(DRRN) achieved the state-of-the-art performance
on only ten games, corresponding to the winning
rate of 30%, lower than half of ours. Note that
all the methods achieved the same initial scores
on five games, namely 905, anchor, awaken, deep-
home, and moonlit. Apart from these five games,
our MPRC-DQN achieved more than three times
wins. Our MPRC-DQN achieved significant im-
provement on some games, such as adventureland,
afflicted, detective, etc. Appendix C shows some
game playing trajectories.

We include the performance of an RC-DQN
agent, which implements our RC-based action pre-
diction model but only takes the current observa-
tions as inputs. It also outperformed the baselines
by a large margin. After we consider the RC-DQN
agent, our MPRC-DQN still has the highest win-
ning percentage, indicating that our RC-based ac-
tion prediction model has a significant impact on
the performance improvement of our MPRC-DQN
and the improvement from the multi-passage re-
trieval is also unneglectable. Moreover, compared
to RC-DQN, our MPRC-DQN has another advan-
tage of faster convergence. The learning curves of
our MPRC-DQN and RC-DQN agents on various
games are in Appendix B.

Finally, our approaches, overall, achieve the new
state-of-the-art on 25 games (i.e., a winning rate of
76%), giving a significant advance in the field of
IF game playing.

Competitors Win Draw Lose

MPRC-DQN v.s. TDQN 23 6 4
MPRC-DQN v.s. DRRN 18 13 2
MPRC-DQN v.s. KG-A2C 18 7 3

Table 4: Pairwise comparison between our MPRC-DQN
versus each baseline.

Pairwise Competition. To better understand the
performance difference between our approach and
each of the baselines, we adopt a direct one-to-one
comparison metric based on the results from Ta-
ble 2. Our approach has a high winning rate when
competing with any of the baselines, summarized
in Table 4. All the baselines have a rare chance to
beat us on games. DRRN gives a higher chance of
draw-games when competing with ours.

Human-Machine Gap. We additionally com-
pare IF gameplay agents to human players to better
understand the improvement significance and the
potential improvement upper-bound. We measure
each agent’s game progress as the macro-average
of the normalized agent-to-human game score ra-
tios, capped at 100%. The progress of our MPRC-
DQN is 28.5%, while the best performing baseline
DRRN is 17.8%, showing that our agent’s improve-
ment is significant even in the realm of human
players. Nevertheless, there is a vast gap between
the learning agents and human players. The gap
indicates IF games can be a good benchmark for
the development of natural language understanding
techniques.

Difficulty Levels of Games. Jericho categorizes
the supported games into three difficulty levels,
namely possible games, difficult games, and ex-
treme games, based on the characteristics of the
game dynamics, such as the action space size, the
length of the game, and the average number of
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Figure 4: Learning curves for ablative studies. (left) Model ablative studies on the game Detective. (middle) Model ablative
studies on Zork1. (right) Retrieval strategy study on Zork1. Best seen in color.

steps to receive a non-zero reward. Our approach
improves over prior art on seven of the sixteen pos-
sible games, seven of the eleven difficult games,
and three of the six extreme games in Table 2. It
shows that the strategies of our method are gen-
erally beneficial for any difficulty levels of game
dynamics. Table 3 summarizes the characteristics
of the seven games in which our method improves
the most, i.e., larger than 15% of the game progress
in the first 100 steps.4 First, these mostly improved
games have medium action space sizes, and it is an
advantageous setting for our methods where mod-
eling the template-object-observation interactions
is effective. Second, our approach improves most
on games with a reasonably high degree of reward
sparsity, such as karn, spirit, and zork3, indicat-
ing that our RC-based value function formulation
helps in optimization and mitigates the reward spar-
sity. Finally, we remark that these game difficulty
levels are not directly categorized based on natu-
ral language-related characteristics, such as text
comprehension and puzzle-solving difficulties. Fu-
ture studies on additional game categories based
on those natural language-related characteristics
would shed light on related improvements.

4.3 Ablative Studies

RC-model Design. The overall results show
that our RC-model plays a critical role in per-
formance improvement. We compare our RC-
model to some alternative models as ablative stud-
ies. We consider three alternatives, namely (1)
our RC-model without the self-attention compo-
nent (w/o self-att), (2) without the argument-
specific embedding (w/o arg-emb) and (3) our
RC-model with Transformer-based block encoder
(RC-Trans) following QANet (Yu et al., 2018).
Detailed architecture is in Appendix A.

The learning curves for different RC-models are

4We ignore ztuu due to the infinite reward loops.

in Figure 4 (left/middle). The RC-models with-
out either self-attention or argument-specific em-
bedding degenerate, and the argument-specific em-
bedding has a greater impact. The Transformer-
based encoder block sometimes learns faster than
Bi-GRU at the early learning stage. It achieved
a comparable final performance, even with much
greater computational resource requirements.

Retrieval Strategy. We compare with history re-
trieval strategies with different history sizes (K)
and pure recency-based strategies (i.e., taking the
latest K observations as history, denoted as w/o
rec). The learning curves of different strategies
are in Figure 4 (right). In general, the impact of his-
tory window size is highly game-dependent, but the
pure recency based ones do not differ significantly
from RC-DQN at the beginning of learning. The is-
sues of pure recency based strategy are: (1) limited
additional information about objects provided by
successive observations; and (2) higher variance of
retrieved observations due to policy changes.

5 Conclusion

We formulate the general IF game playing as
MPRC tasks, enabling an MPRC-style solution
to efficiently address the key IF game challenges
on the huge combinatorial action space and the
partial observability in a unified framework. Our
approaches achieved significant improvement over
the previous state-of-the-art on both game scores
and training data efficiency. Our formulation
also bridges broader NLU/RC techniques to ad-
dress other critical challenges in IF games for fu-
ture work, e.g., common-sense reasoning, novelty-
driven exploration, and multi-hop inference.
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