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Abstract
We present the first dataset for tracking state
changes in procedural text from arbitrary do-
mains by using an unrestricted (open) vo-
cabulary. For example, in a text describing
fog removal using potatoes, a car window
may transition between being foggy, sticky,
opaque, and clear. Previous formulations of
this task provide the text and entities involved,
and ask how those entities change for just a
small, pre-defined set of attributes (e.g., lo-
cation), limiting their fidelity. Our solution
is a new task formulation where given just a
procedural text as input, the task is to gen-
erate a set of state change tuples (entity, at-
tribute, before-state, after-state) for each step,
where the entity, attribute, and state values
must be predicted from an open vocabulary.
Using crowdsourcing, we create OPENPI1, a
high-quality (91.5% coverage as judged by
humans and completely vetted), and large-
scale dataset comprising 29,928 state changes
over 4,050 sentences from 810 procedural real-
world paragraphs from WikiHow.com. A cur-
rent state-of-the-art generation model on this
task achieves 16.1% F1 based on BLEU met-
ric, leaving enough room for novel model ar-
chitectures.

1 Introduction

By one estimate, only about 12% of what we under-
stand from text is expressed explicitly (Graesser,
1981). This is especially apparent in text about ac-
tions where the effects of actions are left unstated.
Humans fill that gap easily with their common-
sense but machines need to model these effects in
the form of state changes. For example, when a
potato is rubbed on a car window (to defog it), then
the unstated effects of this action are the following
state changes: windows becomes sticky, opaque,
and the potato becomes dirty, etc. These changes
can be tracked across the paragraph. An exem-
plary use case of text with actions is procedural

1Download OPENPI at https://allenai.org/data/openpi

Figure 1: Previous formulations of the state tracking
task are restricted to a small, fixed set of pre-defined
state change types that limits its fidelity to model real-
world procedures (they cannot cover the blue part in
this procedure comprising four steps). Our solution is
a new task formulation to track an unrestricted (open)
set of state changes (additionally covering blue).

text (recipes, how-to guides, etc.) where modeling
such state changes helps in various reasoning-based
end tasks, e.g. automatic execution of biology ex-
periments (Mysore et al., 2019), cooking recipes
(Bollini et al., 2012) and everyday activities (Yang
and Nyberg, 2015).

While there has been great progress in tracking
entity states in scientific processes (Dalvi et al.,
2018), tracking ingredients in cooking recipes
(Bosselut et al., 2018), and tracking the emotional
reactions and motivations of characters in simple
stories (Rashkin et al., 2018), prior tasks are re-
stricted to a fixed, small set of state change types
thus covering only a small fraction of the entire
world state. Figure 1 illustrates this for a real-world
procedure “How to Keep Car Windows Fog Free
Using a Potato”. Existing datasets such as ProPara
(Dalvi et al., 2018) only model the existence and
location attributes, limiting the fidelity with which
they model the world. Specifically:

• Attributes from domain-specific datasets such

https://allenai.org/data/openpi
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as ProPara (Dalvi et al., 2018) and Recipes
(Bosselut et al., 2018) together, only cover
∼40% of the state changes that people typi-
cally mention when describing state changes in
real-world paragraphs from WikiHow (§2.1).

• The set of attributes that people naturally use
to describe state changes is large, and hence
hard to pre-enumerate ahead of time (especially
when the target domain is unknown). Even a
comprehensive list of popular attributes failed
to cover 20% of those used in practice (§4.2).

• The dominant approach in existing datasets is
to assume that changing entities are mentioned
as spans in the procedural text. However, in
unconstrained human descriptions of changes,
∼40% of the referred-to entities were unmen-
tioned in the text (e.g., the knife and cutting
board in several cooking recipes) (§4.4).

Addressing these limitations, our solution is a
new task formulation to track an unrestricted (open)
set of state changes: Rather than provide the text
and entities, and ask how those entities change
for a pre-defined set of attributes at each step, we
instead provide just the input text, and ask for the
set of state changes at each step, each describing the
before and after values of an attribute of an entity
in the form (attribute of entity was valuebefore
before and valueafter afterwards.). Importantly, the
vocabularies for attributes, entities, and values is
open (not pre-defined). Our contributions are:

(i) we introduce a novel task of tracking an unre-
stricted (open) set of state change types (§2).

(ii) we create a large-scale (∼30K state changes),
high-quality ∼ 91.5% coverage and human vet-
ted) crowdsourced annotated dataset OPENPI,
from a general domain text serving as training
dataset for this task (§4).

(iii) we establish a strong generation baseline
demonstrating the difficulty of this task (§5),
and present an error analysis suggesting av-
enues for future research (§6.3).

2 Proposed Task: OPENPI

From a procedural paragraph with sentences (i.e.,
steps) step1 . . . stepK , construct K data points,
one per step.

Input: As input we are given a procedural text
comprising current step stepi as query and all past
step as context step1 · · · stepi−1. We denote the

input as x = (xq, xc), where xq is the step for
which we need the state changes (i.e. the query)
and xc is the context.

Here, we use the common assumption (Dalvi
et al., 2018) that the steps in procedural text are
ordered such that the context required for stepi is
mentioned in step1 · · · stepi−1.

Output: The output is a set of zero or more state
changes y= {yi}. A state change yi is of the form:
attr of ent was valpre before and valpost afterwards

Here, attr is the attribute or state change type,
and ent is the changed entity. valpre is the precon-
dition (i.e., the state value before), and valpost is
the postcondition (i.e., the state value afterwards).
Pre/ postcondition adj or relp(yprei ) can be an ad-
jectival phrase or a relational phrase. In this task,
attr, ent, valpre and valpost are open form text i.e.
they are not tied to any fixed, constrained vocabu-
lary.

Example: Consider the running example:
x=(context: The window of your car is foggy,
query: Rub half potato on the window). Then,
{y} = { transparency of window was fogged
before and partially clear afterwards, stickiness of
window was smooth before and sticky afterwards
}. In y1, attr = transparency, ent = window,
valpre = fogged and valpost = partially clear

2.1 Unique Challenges

OPENPI has two unique challenges that are not
found in any existing state change dataset.

• Variable size, low-specificity output: (Jas
and Parikh, 2015) introduce the notion of image
specificity which measures the amount of vari-
ance in multiple viable descriptions of the same
image (typically, each image has exactly K de-
scriptions from K annotators). Low specificity
implies very different descriptions that are not
mere re-phrasings. In OPENPI the output y has
low-specificity (low specificity is also called
high complexity output). To achieve low speci-
ficity outputs, existing methods learn to gen-
erate diverse responses by sampling different
keywords and using a reinforcement learning
approach for training (Gao et al., 2019) or use a
diverse beam search (Vijayakumar et al., 2018)
based approach on a typical encoder to decode
diverse outputs. However, they all assume that
the output set size is fixed to K (typically each
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Input x Output y

Apply insecticide to peonies. the location of insecticide was in bottle before and on peonies afterwards.
the health of bugs were healthy before and dying afterwards.

Dip the peony flowers in water. the moisture of flowers was dry before and wet afterwards.
the cleanliness of peonies were dirty before and clean afterwards.

Stop ants from climb.. use trap the organization of trap was disassembled before and assembled after..
the well being of plants were troubled before and healthy afterwards.

Combine apricots, .. in blender. the location of apricots was on counter before and in blender afterwards.
the state of ingredients were separate before and combined afterwards.
the weight of blender was light before and heavy afterwards.

Add oil until dressing thick. the state of ingredients were separate before and combined afterwards.
the location of oil was on counter before and in blender afterwards.

Stir in the basil. the location of dressing was in blender before and on serving plate..
the location of basil was outside blender before and in blender afterwards.
the weight of blender was heavy before and light afterwards.

Table 1: Examples of the task based on our dataset. The input x comprises a query xq and a context xc (past
sentences before this step in the paragraph– not shown due to limited space). The output is a set y of pre and
postconditions. The paragraphs in this table are: above (how to clean oven) and below (cooking recipe).

sample is annotated by exactly K annotators).
In our case, however, the number of items in
y is variable, making these existing solutions
inapplicable.

• Open vocabulary: In OPENPI attr, ent,
valpre and valpost are not restricted to any
fixed, small vocabulary. Previous task formu-
lations such as (Bosselut et al., 2018; Dalvi
et al., 2018), made the assumption that ent is
given, attr is from a vocabulary of less than 10
classes, and valpre or valpost are either from a
small external vocabulary or a span in x2. In
contrast, in OPENPI, the entities may not be
present in the sentence or even the context, and
the state change types and values can come
from a rather open vocabulary. This openness
brings a variety of challenges: (i) presupposed
entities: these are entities that are not present
in x and perceived through background knowl-

2We matched an exhaustive list of synonyms of existing at-
tributes from existing datasets ProPara and Recipes: existence,
location, temperature, composition, cleanliness, cookedness,
shape, rotation, accessibility and found that only ∼40% of
the attributes in OPENPI are covered by these (however, these
datasets cannot cover the open vocabulary of entities and at-
tribute values)

Task Vocab. Specificity Output
size

Story CSK open high fixed
ProPara closed high fixed
Recipes Task closed low fixed
ALFRED closed high fixed
VirtualHome closed high fixed
OpenPI open low variable

Table 2: Comparison of our dataset to existing datasets

edge, (ii) zero shot learning: during inference
on a previously unseen domain, there are pre-
viously unseen attributes, entities, and state
change types. This makes the problem very
challenging and places this task in a novel set-
ting (see §3.1)

3 Related Work

Tracking state changes: Procedural text under-
standing addresses the task of tracking entity states
throughout the text (Bosselut et al., 2018; Henaff
et al., 2017). This ability is an important part of



6411

text understanding. While syntactic parsing meth-
ods such as AMR (abstract meaning representation)
(Banarescu et al., 2013) represent “who did what to
whom” by uncovering stated facts, tracking entity
states uncovers unstated facts such as how ingredi-
ents change during a recipe.

Datasets with closed state changes: The bAbI
dataset (Weston et al., 2015) includes questions
about objects moved throughout a paragraph, us-
ing machine-generated language over a determin-
istic domain with a small lexicon. The SCoNE
dataset (Long et al., 2016) contains paragraphs de-
scribing a changing world state in three synthetic,
deterministic domains. However, approaches de-
veloped using synthetic data often fail to handle
the inherent complexity in language when applied
to organic, real-world data (Hermann et al., 2015;
Winograd, 1972). The ProPara dataset (Dalvi et al.,
2018) contains three state changes (create, destroy,
move) for natural text describing scientific pro-
cedures. Other domain specific datasets include
recipe domain (Bosselut et al., 2018), and biology
experiments (Mysore et al., 2019). These datasets
contain a small, closed set of state change types
that are relevant to a specific domain. Our dataset
is general domain, and to accommodate this gener-
ality we have an open vocabulary of state changes.

Datasets with open state changes: (Isola et al.,
2015) propose manually defined antonymous ad-
jective pairs (big, small) to define transformations
in images, and this was an inspiration for us to
use adjectives as open state changes in OPENPI
Knowledge bases such as ConceptNet (Speer and
Havasi, 2013) and ATOMIC (Sap et al., 2019) con-
tain (open) pre-conditions and post-conditions but
they are agnostic to context. Context plays a role
when dealing with a large number of state changes
types e.g., if “a stone hits a glass” then the glass
would break but this is not the case if “a soft toy or
a sound wave hits the glass”. Our dataset contains
context information, an important training signal
for neural models.

Current knowledge bases (such as ATOMIC)
contain social rather than physical effects. As a re-
sult, generation models trained on these knowledge
bases incorrectly force the effects to be social. For
example, COMET (Bosselut et al., 2019), trained
on ATOMIC data, when applied on “Cans are tied
together and transported to a recycling center”, in-
correctly predicts3 person goes to recycle center,

3Manually inspecting the 45 predictions made by COMET

Person needs to be arrested ) Person is arrested,
gets dirty.

3.1 Positioning OPENPI
Figure 2.1 projects existing tasks and models along
two different dimensions (open vocabulary, and
variable-size low-specificity). We find that models
bottom-left quadrant represents majority of the ex-
isting work on state changes such as ProPara (Dalvi
et al., 2018) and bAbI (Weston et al., 2016)) in NLP
community, and ALFRED (Shridhar et al., 2019)
and VirtualHome (Puig et al., 2018) in Computer
Vision. Correspondingly many models exist in that
space ((Tandon et al., 2018), (Bosselut et al., 2018),
(Henaff et al., 2017)). Very few models exist that
can predict either open vocab (Rashkin et al., 2018),
or variable size output (Bosselut et al., 2018). How-
ever, no existing task has both open vocabulary and
variable-size low specificity– placing OPENPI in a
novel space.

4 Dataset

4.1 Data Collection
We set up a crowdsourcing task on Amazon Me-
chanical Turk where the annotators author the
y= {yi} for every sentence of a wikihow.com arti-
cle, filling in a sentence template for each yi as a
guide. WikiHow contains a wide variety of goals
(e.g., how to wash dishes) broken down into steps
with detailed descriptions and pictorial illustrations,
spanning across 19 categories. We selected a di-
verse subset of six popular categories and focus on
action-oriented articles4.

For a given WikiHow article, annotators were
asked to describe up to six state changes for each
step (0 ≤ |y| ≤ 6), and were paid fairly5. Each
state change description consists of precondition
(ypre

i ), postcondition (ypost
i ), and the (physical) at-

tribute. Restricting the annotators to a template
for state change described in §2, yields much bet-
ter quality than free-form. This was a pragmatic

on this sentence, we found only one partially correct prediction
that the human has to get to the recycle center before.

4We exclude WikiHow articles with steps containing sta-
tive verbs such as know, see, want, etc., and remove articles
with too few (less than 4) or too many steps (7 or more). The
selected categories are in Table 3.

5We set the reward to be $0.07 for each of the first three
state changes, and $0.14 for each of the additional three state
changes in order to encourage workers to write as many state
changes as possible. All annotators met the following pre-
requisites as a minimum qualification: (1) 5K previous HITs
approvals, (2) 99% or higher approval rate, (3) location is US,
UK, CA, AU, or NZ.

wikihow.com
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choice, to encourage Turkers to give a complete
description but not add extra noise. In an earlier pi-
lot, we tried upto 10 changes but Turkers found the
task too difficult and complained. Six empirically
resulted in the best level of agreement and com-
pleteness among annotations, while also retaining
diversity.

The annotators were encouraged (but not re-
quired) to pick from a pre-defined vocabulary of 51
WordNet derived attributes.

Figure 2: Data collection procedure: Crowdworkers
are shown the article title, step descriptions and option-
ally the corresponding image, and asked to write up to
six state changes (ypre

i , ypost
i , attr) per step. See the ap-

pendix for a sample of the annotation task.

We performed two sets of annotations for every
article, one where the annotators see the pictorial il-
lustration of a step and one without. Visuals helped
the annotators to provide more state changes (e.g.,

the color of cut potato turns gray). In total, one
article is annotated four times (two turkers each
for with and without images)– making the cost of
annotation $3.6 in average per article. See Figure 2
for an example of the annotation procedure.

After collecting the data, we cleaned up the state
changes by asking three crowd workers if each state
change is valid or not with the same annotation set-
ting as data collection (e.g., with or without visual
illustration). We discarded state changes that did
not get the agreement by the majority (2 or more
workers). With this cleaning step, the total number
of state changes changed from 33,065 to 29,928.

The small number of errors encountered during
vetting fell into five categories:

• (∼45% of the errors) Obscure attributes/ values,
e.g., state of clubhouse was spoken of before.

• (∼20%) State change of future steps, e.g., Pre-
pare the pot → location of veggies in pot

• (∼15%) Mismatch of attribute and value: shape
of lemon was solid

• (∼10%) State change of the reader, not the ac-
tor: knowledge of you becomes aware

• (∼10%) Factual errors: annotated change does
not occur or tautologously refers to the action.

4.2 Dataset statistics

The resulting OPENPI dataset comprises 29,928
state changes over 4,050 sentences from 810 Wiki-
How articles. Of these, 15,445 (4.3 per step) state
changes were obtained from the with images setting
and 14,483 (3.8 per step) from without images, in-
dicating that the additional visual modality helped
workers to come up with more state changes (e.g.,
the color of cut potato turns gray). These WikiHow
articles were from six categories, see Table 3. The
number of state changes in a category depends on
the density of entities and their changes e.g., cook-
ing related articles include multiple ingredients and
instruments that undergo state changes.

Two thirds of the state changes are adjective
phrases (avg. length 1.07 words) and the remaining
one third are relational phrases (avg. length 2.36
words). Attributes, entities, adjective phrases, rela-
tional phrases all follow a power-law like distribu-
tion. The most popular adjectives were {dry, empty,
clean, wet, dirty, full, heavier, lighter, hot, whole,
cool, cold}, and the most popular relational phrases
were location-indicating prepositions. About 20%
of the attributes are present in 80% of the data.
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WikiHow cat. # para |y| w/ img w/o
Food & Entertain 197 9942 5399 4543
Home & Garden 199 6961 3758 3203
Hobbies & Craft 193 4766 2375 2391
Sports & Fitness 95 3361 1662 1699
Cars & Vehicles 43 1656 818 838
Health 77 3036 1433 1603
All 858 29928 15445 14483

Table 3: Basic statistics of the OPENPI dataset: the ar-
ticles’ WikiHow category, the number of WikiHow ar-
ticles (i.e., paragraphs) in each category and number of
state changes |y| (total), and data collected using with,
and without image setting).

The long tail of the remaining 80% attributes indi-
cates why open attributes are important. As sim-
ilar attributes can be expressed differently in text
e.g., wetness and moisture, we analyzed a few data
points to observe a large agreement between an-
notators in choosing attributes (the average size of
attribute clusters was only 1.2).

We split the data into training, development, and
test sets. To evaluate model generalization, all
the annotated articles in the Health category are
marked as out-of-domain and placed (only) in the
test set. All the remaining annotated articles are
randomly assigned to one of the splits. The result-
ing training set has 23,869 state changes (3,216
instances because one instance comprises |y| state
changes), dev set has 1,811 (274 instances), and
test set has 4,248 (160 instances in domain, and
394 instances out-of-domain “Health”).

4.3 Dataset quality

We measure the quality (coverage) of the dataset
by asking a human judge whether there is any
new state change they can add. The judge added
only 8.5% new state changes. This suggests that
OPENPI has a high coverage of ∼91.5%, and a
very high precision because of vetting.

These additions fell into four categories:

• (∼40% of additions) Indirect effect was missed,
e.g., Place in freezer → (existing) food cooler,
(added) food container cooler

• (∼35%) Extra dimension of change (attribute)
missed, e.g., (added) Change in texture, organi-
zation, open/closed state.

• (∼20%) Addition is a rewording hence not
helpful e.g., cleanliness of windshield, (added)
clarity of windshield

• (∼5%) Addition is incorrect/obscure.

4.4 Quantifying the reasoning challenges

Presupposed entities: About 61% of the entities
in our development set are mentioned as spans in
the context and paragraph, while the remaining
40% are unmentioned entities. About 35% of the
unmentioned entities were derivatives of mentioned
entities, i.e. synonym, hypernym-hyponym, or part-
whole. The remaining 65% were presupposed (as-
sumed) entities, e.g., containers of mentioned enti-
ties, surfaces, cooking instruments.

Open attributes: 78.9% of the examples con-
tain the 51 predefined attributes that the annotators
were supplied. The remaining examples contain
577 Turk authored open attributes and many of
these are difficult to anticipate, e.g., cookedness,
tightness, saltiness. This makes up a long tail dis-
tribution of an open vocabulary of attributes.

Zero-shot learning: The test-set contains: 1)
paragraphs from five categories covered in the train-
ing set, 2) paragraphs from Health category for
which there is no training data, to test zero-shot
learning. Health test-subset is particularly chal-
lenging with 55% unmentioned entities (40% other-
wise) and 33% unseen attributes (18% otherwise).

Variable size, low specificity output: A sys-
tem needs to decide relevant entities and attributes
would be relevant and generate possibly varying
number of state changes for different steps. The
dev set has on average seven state changes per step,
and 3% of the steps have no state change.

5 Model

OPENPI dataset poses unique challenges includ-
ing presupposed entities, open attributes, zero-shot
learning and variable-size, low specificity output
(see Section 4.4). These challenges make it diffi-
cult to apply existing entity tracking methods like
ProStruct (Tandon et al., 2018), EntNet (Henaff
et al., 2017), NPN (Bosselut et al., 2018) without
making significant changes to either the model or
the task. E.g., the commonsense constraints in
ProStruct do not scale with a large number of at-
tributes, and EntNet is not suitable for a set output.

OPENPI is well-suited for a generation model
because the output attr of ent was valpre before
and valpost afterwards must be predicted using an
open vocabulary. Therefore, as our baseline, we
use the state-of-the-art pre-trained language model,
GPT-2 (Radford et al., 2019), and fine-tune it for
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Figure 3: Our GPT-2 based model for OPENPI

OPENPI task. The model takes as input a special
[SEP] token separated xc and xq. The output is
expected to be a set y of variable size. As noted in
§2.1, existing methods do not produce a variable
size, low-specificity output. Instead we train the
model to generate a long sequence of comma sepa-
rated yi. If there are no changes i.e., |y| = 0, then
we set y = {there will be no change}.

Figure 3 shows the model architecture. During
decoding, we sample yi as a sequence of output
tokens generated by the model. The generation
output accounts for all aspects of the state change -
the attribute, entity, and before, after values.

6 Experiments

6.1 Metrics

To measure the performance on OPENPI we com-
pare the predicted set y and gold set y*, for
every point x. Precision for a data point x is
computed based on the best matching gold state
change for each predicted state change i.e., P (x) =
1
2

∑
y∈y maxy∗ O(y∗pre, ypre)+O(y∗post, ypost).

Similarly, recall is based on the best matching
predicted state change for each gold state change
i.e. R(x) = 1

2

∑
y∗∈y* maxy O(y∗pre, ypre) +

O(y∗post, ypost). The string overlap function O(.)
can use any of the standard generation metrics:
exact match, BLEU, METEOR or ROUGE6. We

6github.com/allenai/abductive-commonsense-reasoning

report micro-averaged precision, recall, F1 scores
for different choices of O(.).

We remove template words before string com-
parison to avoid inflating scores for template words.
We did not perform facet-based evaluation of the
templated output for two reasons. Firstly, while it
might seem when computing overlaps of gold and
predicted state changes as two long strings, BLEU
or ROUGE may accidentally see an overlap when
there was none. That is unlikely in practice because
the entities, attributes, and values are quite distinct
and scoring accidental overlaps is uncommon. Sec-
ondly, our evaluation metric (F1, precision, recall)
matches a list of predictions against a list of gold
references. It is unclear how to compute F1 over
individual facets that requires the best match based
on all facets as tuple.

We also found that when manually evaluating on
∼200 dev datapoints, the score was systematically
a few (∼10%) points higher than BLEU, while
the trends and model rankings remained the same,
indicating robustness of the automatic metric.

Therefore, the proposed metric aligns with hu-
man evaluation, and is able to use existing genera-
tion metrics thereby simplifying evaluation, allow-
ing easier reproducibility.

6.2 Evaluation

We evaluate state of the art generation model GPT-
2 on OPENPI dataset. As mentioned in Section 4.2,

github.com/allenai/abductive-commonsense-reasoning
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OPENPI consists of two kinds of annotations: with-
images (turkers were shown images along with text
for each step of the procedure) and without-image
(turkers looked at only text to predict state changes).
GPT-2 gets to see only text as input but the state
changes it has to predict are different depending
on the setting. Table 4 reports P, R and F1 when
GPT-2 model is tested on different subsets.

The GPT-2 model struggles to predict the right
set of state changes indicating that the task is hard.
Challenges include lexical variation on entities (in
context vs. in gold), unseen categories, limited
context for the initial sentences in the paragraph an
so on. Detailed error analysis is presented in §6.3.

F1 based on
Exact BLEU ROUGE

with-image 5.1 14.3 29.1
without-image 3.6 13.4 28.2

Entire dataset 4.3 16.1 32.4

Table 4: GPT-2 on OpenPI, and its sub-categories.

Models BLEU scores
P R F1

seen category 25.1 18.4 17.1
unseen categories 24.4 17.4 15.7

Table 5: GPT-2 on topics seen, unseen during training.

OPENPI testset comprises of both unseen and
seen categories, and we report BLEU separately on
these subsets. Results from table 5 presents an en-
couraging result that GPT-2 generalizes to unseen
topics even though the scores on seen categories is
understandably a little higher (F1 of 17.1 for seen
category vs 15.7 for unseen categories).

6.3 Error analysis

To better understand model shortcomings, the error
types in dev predictions are illustrated (Table 6).

1. Wrong attribute (attr(yi)): In 51% state
changes produced by the GPT-2 model, pre-
dicted attribute is incorrect. Often (∼20%
of cases) predicted attribute is state, i.e. the
model couldn’t name the attribute.

Gold: wetness of potatoes was wet before, and dry after

Pred: state of potatoes was wet before, and dry after

Error type freq %

Wrong attribute 826 51
Wrong entity 964 59
Wrong adjective 989 41
Wrong relation phrase 456 17

Any of the above 1,622 100

Table 6: Error types in 1,811 dev predictions. One state
change prediction can have multiple error types.

2. Wrong entity (ent(yprei )): The model pre-
dicted incorrect entity 59% of the times. For
32% of the entity errors, the gold entity was
unmentioned in the input text.

(i) Entities present as span (68%): Typically,
a related but not same entity is predicted:

G: ..furniture was worn out before, and renewed after

P: ..chairs was dirty before, and clean after

(ii) Derivable entities: (3%) These entities
are typically a lexical variation of the enti-
ties in the paragraph. E.g., spray paint
silk floral arrangement to change color
or freshen its hue, the model predicted

G: ..plant was dry before, and wet after

P: ..cloth was dry before, and wet after

The following example also mentions a
derivable entity and both gold and predic-
tion are imply the same but it is difficult to
automatically check that. E.g., Keep the
craft steady as others board.

G: stability of boat was rocking ... steadied after

P: stability of craft was wobbling ... steady after

(iii) Unmentioned entities: (29%). These
types of errors are very difficult to
overcome because the entities are typ-
ically not mentioned at all in the gen-
erated output. For instance in the
following, loser and rider both re-
fer to the same person in the text,

G: ..loser was alive before, and dead after

P: ..rider was alive before, and killed after

In about 20% of such erroneous predic-
tions, the model predicted the adj(yprei )
correctly. This may be because attribute is
a good indicator of the adjectives.

3. Wrong adj(yprei ) : (41%) The model pre-
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dicts incorrect adjectives, such that in some
cases the erroneous adjectives might not
apply to the given entity, or the adjective
values are swapped between pre and post
condition. An example is shown below:
G ..curtains was white before, and painted after

P: ..double curtains was colorless ... colorful after

4. Wrong relp(yprei ) (17%): We find that
relational phrases are very hard for the
model currently. 184 out of 210 rela-
tional state changes predicted by the
model have incorrect relational phrase.
We believe that this poses a challeng-
ing research problem for future models.
G: knowledge of animals was absent ... present after

P: details afterwards was ignored ... discussed after

5. Length of the context plays an important role.
Without any context (e.g., for the first step),
the model gets a low accuracy of 8.3%.

7 Conclusion

We presented the first dataset to track entities in
open domain procedural text. To this end, we
crowdsourced a large, high-quality dataset with ex-
amples for this task. We also established a strong
generation baseline highlighting the difficulty of
this task. As future work, we will explore more so-
phisticated models that can address the highlighted
shortcomings of the current model. An exciting
direction is to leverage visuals of each step to deal
with unmentioned entities and indirect effects.
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