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Abstract
Pre-trained neural language models bring sig-
nificant improvement for various NLP tasks,
by fine-tuning the models on task-specific
training sets. During fine-tuning, the param-
eters are initialized from pre-trained models
directly, which ignores how the learning pro-
cess of similar NLP tasks in different domains
is correlated and mutually reinforced. In this
paper, we propose an effective learning proce-
dure named Meta Fine-Tuning (MFT), serving
as a meta-learner to solve a group of similar
NLP tasks for neural language models. In-
stead of simply multi-task training over all
the datasets, MFT only learns from typical in-
stances of various domains to acquire highly
transferable knowledge. It further encour-
ages the language model to encode domain-
invariant representations by optimizing a se-
ries of novel domain corruption loss functions.
After MFT, the model can be fine-tuned for
each domain with better parameter initializa-
tion and higher generalization ability. We im-
plement MFT upon BERT to solve several
multi-domain text mining tasks. Experimental
results confirm the effectiveness of MFT and
its usefulness for few-shot learning. 1

1 Introduction

Recent years has witnessed a boom in pre-trained
neural language models. Notable works include
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), Transformer-XL (Dai et al., 2019), AL-
BERT (Lan et al., 2019), StructBERT (Wang et al.,
2019b) and many others. These models revolution-
ize the learning paradigms of various NLP tasks.
After pre-training, only a few fine-tuning epochs
are required to train models for these tasks.

The “secrets” behind this phenomenon owe to
the models’ strong representation learning power

∗Corresponding author.
1Our code will be available at: https://github.

com/alibaba/EasyTransfer/.

to encode the semantics and linguistic knowledge
from massive text corpora (Jawahar et al., 2019; Ko-
valeva et al., 2019; Liu et al., 2019a; Tenney et al.,
2019). By simple fine-tuning, models can trans-
fer the universal Natural Language Understand-
ing (NLU) abilities to specific tasks (Wang et al.,
2019a). However, state-of-the art language mod-
els mostly utilize self-supervised tasks during pre-
training (for instance, masked language modeling
and next sentence prediction in BERT (Devlin et al.,
2019)). This unavoidably creates a learning gap
between pre-training and fine-tuning. Besides, for
a group of similar tasks, conventional practices re-
quire the parameters of all task-specific models to
be initialized from the same pre-trained language
model, ignoring how the learning process in differ-
ent domains is correlated and mutually reinforced.

A basic solution is fine-tuning models by multi-
task learning. Unfortunately, multi-task fine-tuning
of BERT does not necessarily yield better perfor-
mance across all the tasks (Sun et al., 2019a). A
probable cause is that learning too much from
other tasks may force the model to acquire non-
transferable knowledge, which harms the overall
performance. A similar finding is presented in Bin-
gel and Søgaard (2017); McCann et al. (2018) on
multi-task training of neural networks. Addition-
ally, language models such as BERT do not have
the “shared-private” architecture (Liu et al., 2017)
to enable effective learning of domain-specific and
domain-invariant features. Other approaches mod-
ify the structures of language models to accom-
modate multi-task learning and mostly focus on
specific applications, without providing a unified
solution for all the tasks (Stickland and Murray,
2019; Zhou et al., 2019b; Gulyaev et al., 2020).

A recent study (Finn et al., 2017) reveals that
meta-learning achieves better parameter initializa-
tion for a group of tasks, which improves the mod-
els’ generalization abilities in different domains

https://github.com/alibaba/EasyTransfer/
https://github.com/alibaba/EasyTransfer/
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Figure 1: Comparison between fine-tuning and MFT.
“LM” refers to pre-trained language models.

and makes them easier to fine-tune. As pre-trained
language models have general NLU abilities, they
should also have the ability to learn solving a group
of similar NLP tasks. In this work, we propose a
separate learning procedure, inserted between pre-
training and fine-tuning, named Meta Fine-Tuning
(MFT). This work is one of the early attempts for
improving fine-tuning of neural language models
by meta-learning. Take the review analysis task
as an example. MFT only targets at learning the
polarity of reviews (positive or negative) in general,
ignoring features of specific aspects or domains.
After that, the learned model can be adapted to
any domains by fine-tuning. The comparison be-
tween fine-tuning and MFT is shown in Figure 1.
Specifically, MFT first learns the embeddings of
class prototypes from multi-domain training sets,
and assigns typicality scores to individuals, indi-
cating the transferability of each instance. Apart
from minimizing the multi-task classification loss
over typical instances, MFT further encourages the
language model to learn domain-invariant repre-
sentations by jointly optimizing a series of novel
domain corruption loss functions.

For evaluation, we implement the MFT strategy
upon BERT (Devlin et al., 2019) for three multi-
domain text mining tasks: i) natural language infer-
ence (Williams et al., 2018) (sentence-pair classi-
fication), ii) review analysis (Blitzer et al., 2007)
(sentence classification) and iii) domain taxonomy
construction (Luu et al., 2016) (word-pair classifi-
cation). Experimental results show that the effec-
tiveness and superiority of MFT. We also show that
MFT is highly useful for multi-domain text mining
in the few-shot learning setting. 2

2 Related Work

We overview recent advances on pre-trained lan-
guage models, transfer learning and meta-learning.

2Although we focus on MFT for BERT only, MFT is gen-
eral and can be applied to other language models easily.

2.1 Pre-trained Language Models

Pre-trained language models have gained much at-
tention from the NLP community recently (Qiu
et al., 2020). Among these models, ELMo (Peters
et al., 2018) learns context-sensitive embeddings
for each token form both left-to-right and right-to-
left directions. BERT (Devlin et al., 2019) is usu-
ally regarded as the most representative work, em-
ploying transformer encoders to learn language rep-
resentations. The pre-training technique of BERT
is improved in Liu et al. (2019c). Follow-up works
employ transformer-based architectures, including
Transformer-XL (Dai et al., 2019), XLNet (Yang
et al., 2019), ALBERT (Lan et al., 2019), Struct-
BERT (Wang et al., 2019b) and many more. They
change the unsupervised learning objectives of
BERT in pre-training. MT-DNN (Liu et al., 2019b)
is the representative of another type of pre-trained
language models, which employs supervised learn-
ing objectives across tasks to learn representations.

After language models are pre-trained, they can
be fine-tuned for a variety of NLP tasks. The tech-
niques of fine-tuning BERT are summarized in Sun
et al. (2019a). Cui et al. (2019) improve BERT’s
fine-tuning by sparse self-attention. Arase and Tsu-
jii (2019) introduce the concept of “transfer fine-
tuning”, which injects phrasal paraphrase relations
into BERT. Compared to previous methods, fine-
tuning for multi-domain learning has not been suf-
ficiently studied.

2.2 Transfer Learning

Transfer learning aims to transfer the resources
or models from one domain (the source domain)
to another (the target domain), in order to im-
prove the model performance of the target domain.
Due to space limitation, we refer readers to the
surveys (Pan and Yang, 2010; Lu et al., 2015;
Zhuang et al., 2019) for an overview. For NLP
applications, the “shared-private” architecture (Liu
et al., 2017) is highly popular, which include sub-
networks for learning domain-specific represen-
tations and a shared sub-network for knowledge
transfer and domain-invariant representation learn-
ing. Recently, adversarial training has been fre-
quently applied (Shen et al., 2018; Hu et al., 2019;
Cao et al., 2018; Li et al., 2019b; Zhou et al.,
2019a), where the domain adversarial classifiers are
trained to help the models to learn domain-invariant
features. Multi-domain learning is a special case of
transfer learning whose goal is to transfer knowl-
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Figure 2: The neural architecture of MFT for BERT (Devlin et al., 2019). Due to space limitation, we only show
two corrupted domain classifiers and three layers of transformer encoders, with others omitted.

edge across multiple domains for mutual training
reinforcement (Pei et al., 2018; Li et al., 2019a; Cai
and Wan, 2019). Our work also addresses multi-
domain learning, but solves the problem from a
meta-learning aspect.

2.3 Meta-learning
Compared to transfer learning, meta-learning is a
slightly different learning paradigm. Its goal is to
train meta-learners that can adapt to a variety of
different tasks with little training data (Vanschoren,
2018), mostly applied to few-shot learning, which
is typically formulated as a K-way N-shot learning
problem. In NLP, existing meta-learning models
mostly focus on training meta-learners for single
applications, such as link prediction (Chen et al.,
2019), dialog systems (Madotto et al., 2019), lexi-
cal relation classification (Wang et al., 2020) and se-
mantic parsing (Guo et al., 2019). Dou et al. (2019)
leverage meta-learning for low-resource NLU.

Compared with traditional meta-learning re-
search, the task of our work is not K-way N-shot.
Instead, we aim to employ meta-learning to train a
better “meta-learner” which captures transferable
knowledge across domains. In this sense, our work
can be also viewed as a transfer learning algorithm
which employs meta-learning for better knowledge
transfer and fast domain adaptation.

3 MFT: The Proposed Framework

In this section, we start with some basic notations
and an overview of MFT. After that, we describe
the algorithmic techniques of MFT in detail.

3.1 Overview
Denote Dk = {xki , yki |i ∈ [1, Nk]} as the training
set of the kth domain, where xki and yki are the

input text and the class label of the ith sample, re-
spectively3. Nk is the number of total samples in
Dk. The goal of MFT is to train a meta-learner ini-
tialized from a pre-trained language model, based
on the training sets of K domains: D =

⋃K
k=1Dk.

The meta-learner provides better parameter initial-
izations, such that it can be easily adapted to each
of the K domains by fine-tuning the meta-learner
over the training set of the kth domain separately.

Due to the large parameter space of neural lan-
guage models, it is computationally challenging to
search for the optimal values of the meta-learner’s
parameters. As discussed earlier, building a trivial
multi-task learner over D does not guarantee sat-
isfactory results either (Sun et al., 2019a). Here,
we set up two design principles for MFT: Learn-
ing from Typicality and Learning Domain-invariant
Representations, introduced as follows:

Learning from Typicality To make the meta-
learner easier to be fine-tuned to any domains, the
encoded knowledge should be highly general and
transferable, not biased towards specific domains.
Hence, only typical instances w.r.t. all the domains
should be the priority learning targets. We first
generate multi-domain class prototypes from D to
summarize the semantics of training data. Based
on the prototypes, we compute typicality scores for
all training instances, treated as weights for MFT.

Learning Domain-invariant Representations
A good meta-learner should be adapted to any do-
mains quickly. Since BERT has strong represen-
tation power, this naturally motivates us to learn
domain-invariant representations are vital for fast

3Note that xk
i can be either a single sentence, a sentence

pair, or any other possible input texts of the target NLP task.
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domain adaptation (Shen et al., 2018). In MFT, be-
sides minimizing the classification loss, we jointly
minimize new learning objectives to force the lan-
guage model to have domain-invariant encoders.

Based on the two general principles, we design
the neural architecture of MFT, with the example
for BERT (Devlin et al., 2019) shown in Figure 2.
The technical details are introduced subsequently.

3.2 Learning from Typicality
Denote M as the class label set of all K do-
mains. Dk

m is the collection of input texts in
Dk that have class label m ∈ M, i.e., Dk

m =
{xki |(xki , yki ) ∈ Dk, yki = m}. As class proto-
types can summarize the key characteristics of the
corresponding data (Yao et al., 2020), we treat the
class prototype ckm as the averaged embeddings
of all the input texts in Dk

m. Formally, we have
ckm = 1

|Dk
m|

∑
xk
i ∈Dk

m
E(xki ) where E(·) maps xki to

its d-dimensional embeddings. As for BERT (De-
vlin et al., 2019), we utilize the mean pooling of
representations of xki from the last transformer en-
coder as E(xki ).

Ideally, we regard a training instance (xki , y
k
i ) to

be typical if it is semantically close to its class pro-
totype ckm, and also is not too far away from class
prototypes generated from other domains for high
transferability. Therefore, the typicality score tki of
(xki , y

k
i ) can be defined as follows:4

tki =α cos(E(xki ), ckm)

+
1− α
K − 1

·
K∑
k̃=1

1(k̃ 6=k) cos(E(x
k
i ), c

k̃
m),

where α is the pre-defined balancing factor (0 <
α < 1), cos(·, ·) is the cosine similarity function
and 1(·) is the indicator function that returns 1 if
the input Boolean function is true and 0 otherwise.

As one prototype may not be insufficient to rep-
resent the complicated semantics of the class (Cao
et al., 2017), we can also generate multiple proto-
types by clustering, with the jth prototype to be
ckmj

. Here, tki is extended by the following formula:

tki = α

∑
n∈M βn cos(E(xki ), ckn)∑

n∈M βn

+
1− α
K − 1

·
K∑
k̃=1

1(k̃ 6=k)

∑
n∈M βn cos(E(xki ), ck̃n)∑

n∈M βn
,

4Here, we assume that the training instance (xk
i , y

k
i ) has

the class label m ∈ M. Because each instance is associated
with only one typicality score, for simplicity, we denote it as
tki , instead of tki,m.

where βn > 0 is the cluster membership of xki w.r.t.
each class label n ∈M.

After typicality scores are computed, we discuss
how to set up the learning objectives for MFT. The
first loss is the multi-task typicality-sensitive label
classification loss LTLC . It penalizes the text clas-
sifier for predicting the labels of typical instances
of all K domains incorrectly, which is defined as:5

LTLC =− 1

|D|
∑

(xk
i ,y

k
i )∈D

∑
m∈M

1(yki =m)t
k
i ·

log τm(f(xki )),

where tki serves as the weight of each training in-
stance. τm(f(xki )) is the predicted probability of
xki having the class label m ∈ M, with the d-
dimensional “[CLS]” token embeddings of the last
layer of BERT (denoted as f(xki )) as features.

3.3 Learning Domain-invariant
Representations

Based on previous research of domain-invariant
learning (Shen et al., 2018; Hu et al., 2019), we
could add an additional domain adversarial clas-
sifier for MFT to optimize. However, we observe
that adding such classifiers to models such as BERT
may be sub-optimal. For ease of understanding, we
only consider two domains k1 and k2. The loss of
the adversarial domain classifier LAD is:

LAD =− 1

Nk1 +Nk2

∑
(xk

i ,y
k
i )∈Dk1∪Dk2

(yki log σ(x
k
i ) + (1− yki ) log(1− σ(xki ))),

where yki = 1 if the domain is k1 and 0 otherwise.
σ(xki ) is the predicated probability of such adver-
sarial domain classifier. In the min-max game of
adversarial learning (Shen et al., 2018), we need
to maximize the loss LAD such that the domain
classifier fails to predict the true domain label. The
min-max game between encoders and adversarial
classifiers is computationally expensive, which is
less appealing to MFT over large language models.
Additionally, models such as BERT do not have
the “shared-private” architecture (Liu et al., 2017),
frequently used for transfer learning. One can also
replace LAD by asking the classifier to predict the
flipped domain labels directly (Shu et al., 2018; Hu

5For clarity, we omit all the regularization terms in objec-
tive functions throughout this paper.
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et al., 2019). Hence, we can instead minimize the
flipped domain loss LFD:

LFD =− 1

Nk1 +Nk2

∑
(xk

i ,y
k
i )∈Dk1∪Dk2

((1− yki ) log σ(xki ) + yki log(1− σ(xki ))).

We claim that, applying LFD to BERT as an aux-
iliary loss does not necessarily generate domain-
invariant features. When LFD is minimized, σ(xki )
always tends to predict the wrong domain label
(which predicts k1 for k2 and k2 for k1). The opti-
mization of LFD still makes the learned features to
be domain-dependent, since the domain informa-
tion is encoded implicitly in σ(xki ), only with do-
main labels inter-changed. A similar case holds for
multiple domains where we only force the classifier
to predict the domain of the input text xkji into any
one of the reminder K − 1 domains (excluding kj).
Therefore, it is necessary to modify LFD which
truly guarantees domain invariance and avoids the
expensive (and sometimes unstable) computation
of adversarial training.

In this work, we propose the domain corruption
strategy to address this issue. Given a training in-
stance (xki , y

k
i ) of the kth domain, we generate a

corrupt domain label zi from a corrupted domain
distribution Pr(zi). zi is unrelated to the true do-
main label k, which may or may not be the same
as k. The goal of the domain classifier is to ap-
proximate Pr(zi) instead of always predicting the
incorrect domains as in Hu et al. (2019). In practice,
Pr(zi) can be defined with each domain uniformly
distributed, if the K domain datasets are relatively
balanced in size. To incorporate prior knowledge
of domain distributions into the model, Pr(zi) can
also be non-uniform, with domain probabilities esti-
mated from D by maximum likelihood estimation.

Consider the neural architecture of transformer
encoders in BERT (Devlin et al., 2019). Let hl(x

k
i )

be the d-dimensional mean pooling of the token
embeddings of xki in the lth layer (excluding the
“[CLS]” embeddings), i.e.,

hl(x
k
i ) = Avg(hl,1(x

k
i ), · · · ,hl,Max(x

k
i )),

where hl,j(x
k
i ) represents the l-the layer embed-

ding of the jth token in xki , and Max is the max-
imum sequence length. Additionally, we learn a
d-dimensional domain embedding of the true do-
main label of (xki , y

k
i ), denoted as ED(k). The

input features are constructed by adding the two

Algorithm 1 Learning Algorithm for MFT
1: Restore BERT’s parameters from the pre-trained model,

with others randomly initialized;
2: for each domain k and each class m do
3: Compute prototype embeddings ckm;
4: end for
5: for each training instance (xk

i , y
k
i ) ∈ D do

6: Compute typicality score tki ;
7: end for
8: while number of training steps do not reach a limit do
9: Sample a batch {(xk

i , y
k
i )} from D;

10: Shuffle domain labels of {(xk
i , y

k
i )} to generate {zi};

11: Estimate model predictions of inputs {(xk
i , k)} and

compare them against {(yk
i , zi)};

12: Update all model parameters by back propagation;
13: end while

embeddings: hl(x
k
i ) + ED(k), with the typicality-

sensitive domain corruption loss LTDC as:

LTDC =− 1

|D|
∑

(xk
i ,y

k
i )∈D

K∑
k=1

1(k=zi)t
k
i

· log δzi(hl(x
k
i ) + ED(k)),

where δzi(·) is the predicted probability of the input
features having the corrupted domain label zi. We
deliberately feed the true domain embedding ED(k)
into the classifier to make sure even if the classifier
knows the true domain information from ED(k), it
can only generate corrupted outputs. In this way,
we force the BERT’s representations hl(x

k
i ) to hide

any domain information from being revealed, mak-
ing the representations of xki domain-invariant.

We further notice that neural language models
may have deep layers. To improve the level of
domain invariance of all layers and create a balance
between effectiveness and efficiency, we follow the
work (Sun et al., 2019b) to train a series of skip-
layer classifiers. Denote Ls as the collection of
selected indices of layers (for example, one can set
Ls = {4, 8, 12} for BERT-base). The skip-layer
domain corruption loss LSDC is defined as the
average cross-entropy loss of all |Ls| classifiers,
defined as follows:

LSDC =− 1

|Ls| · |D|
∑

(xk
i ,y

k
i )∈D

∑
l∈Ls

K∑
k=1

1(k=zi)t
k
i · log δzi(hl(x

k
i ) + ED(k)).

In summary, the overall loss L for MFT to mini-
mize is a linear combination of LTLC and LSDC ,
i.e., L = LTLC + λLSDC , where λ > 0 is a tuned
hyper-parameter.
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3.4 Joint Optimization
We describe how to optimize L for MFT. Based on
the formation of L, it is trivial to derive that:

L =− 1

|D|
∑

(xk
i ,y

k
i )∈D

(
∑
m∈M

1(yki =m)t
k
i ·

log τm(f(xki )) +
λ

|Ls|
∑
l∈Ls

K∑
k=1

1(k=zi)t
k
i ·

log δzi(hl(x
k
i ) + ED(k))).

As seen, MFT can be efficiently optimized via
gradient-based algorithms with slight modifica-
tions. The procedure is shown in Algorithm 1.
It linearly scans the multi-domain training set D
to compute prototypes ckm and typicality scores tki .
Next, it updates model parameters by batch-wise
training. For each batch {(xki , yki )}, as an efficient
implementation, we shuffle the domain labels to
generate the corrupted labels {zi}, as an approx-
imation of sampling from the original corrupted
domain distribution Pr(zi). This trick avoids the
computation over the whole dataset, and be adapted
to the changes of domain distributions if new train-
ing data is continuously added to D through time.
When the iterations stop, we remove all the ad-
ditional layers that we have added for MFT, and
fine-tune BERT for the K domains over their re-
spective training sets, separately.

4 Experiments

We conduct extensive experiments to evaluate MFT
on multiple multi-domain text mining tasks.

4.1 Datasets and Experimental Settings
We employ the Google’s pre-trained BERT model6

as the language model, with dimension d = 768.
Three multi-domain NLP tasks are used for evalua-
tion, with statistics of datasets reported in Table 1:

• Natural language inference: predicting the
relation between two sentences as “entail-
ment”, “neutral” or “contradiction”, using the
dataset MNLI (Williams et al., 2018). MNLI
is a large-scale benchmark corpus for evaluat-
ing natural language inference models, with
multi-domain data divided into five genres.

• Review analysis: classifying the product re-
view sentiment of the famous Amazon Review

6We use the uncased, base version of BERT. See: https:
//github.com/google-research/bert.

Dataset Domain #Train #Dev #Test

MNLI

Telephone 83,348 2,000 -
Government 77,350 2,000 -
Slate 77,306 2,000 -
Travel 77,350 2,000 -
Fiction 77,348 2,000 -

Amazon

Book 1,763 120 117
DVD 1,752 120 128
Electronics 1,729 144 127
Kitchen 1,756 119 125

Taxonomy
Animal 8,650 1,081 1,076
Plant 6,188 769 781
Vehicle 842 114 103

Table 1: Statistical summarization of datasets.

Dataset (Blitzer et al., 2007) (containing prod-
uct reviews of four domains crawled from the
Amazon website) as positive or negative.

• Domain taxonomy construction: predict-
ing whether there exists a hypernymy (“is-
a”) relation between two terms (words/noun
phrases) for taxonomy derivation. Labeled
term pairs sampled from three domain tax-
onomies are used for evaluation. The domain
taxonomies are constructed by Velardi et al.
(2013). with labeled datasets created and re-
leased by Luu et al. (2016) 7 .

Because MNLI does not contain public labeled
test sets that can be used for single-genre evalua-
tion, we hold out 10 thousand training instances
from the original training set for parameter tuning
and report the performance of the original develop-
ment sets. We hold out 2,000 labeled reviews from
the Amazon dataset (Blitzer et al., 2007) and split
them into development and test sets. As for the
taxonomy construction task, because BERT does
not naturally support word-pair classification, we
combine a term pair to form a sequence of tokens
separated by the special token “[SEP]” as input.
The ratios of training, development and testing sets
of the three domain taxonomy datasets are set as
80%:10%:10%.

The default hyper-parameter settings of MFT
are as follows: α = 0.5, Ls = {4, 8, 12} and
λ = 0.1. During model training, we run 1 ∼ 2
epochs of MFT and further fine-tune the model in
2 ∼ 4 epochs for each domain, separately. The
initial learning rate is set as 2× 10−5 in all exper-
iments. The regularization hyper-parameters, the

7Following Luu et al. (2016), in this task, we only do the
binary classification of domain term pairs as hypernymy or
non-hypernymy and do not consider reconstructing the graph
structures of the domain taxonomies.

https://github.com/google-research/bert
https://github.com/google-research/bert
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optimizer and the reminder settings are the same as
in Devlin et al. (2019). In MFT, only 7K∼11.5K
additional parameters need to be added (depend-
ing on the number of domains), compared to the
original BERT model. All the algorithms are imple-
mented with TensorFlow and trained with NVIDIA
Tesla P100 GPU. The training time takes less than
one hour. For evaluation, we use Accuracy as the
evaluation metric for all models trained via MFT
and fine-tuning. All the experiments are conducted
three times, with the average scores reported.

4.2 General Experimental Results
We report the general testing results of MFT. For
fair comparison, we implement following the fine-
tuning methods as strong baselines:

• BERT (S): It fine-tunes K BERT models,
each with single-domain data.

• BERT (Mix): It combines all the domain
data and fine-tunes a single BERT model only.

• BERT (MTL): It fine-tunes BERT by multi-
task fine-tuning (Sun et al., 2019a).

• BERT (Adv): It fine-tunes BERT by BERT
(C) with an additional adversarial domain loss
proposed in Hu et al. (2019).

We also evaluate the performance of MFT and
its variants under the following three settings:

• MFT (DC): It is MFT with domain corrup-
tion. All the typicality scores in the objective
function are removed.

• MFT (TW): It is MFT with typicality weight-
ing. The domain corruption loss is removed.

• MFT (Full): It is the full implementation.

The results of three multi-domain NLP tasks are
reported in Table 2, Table 3 and Table 4, respec-
tively. Generally, the performance trends of all
three tasks are pretty consistent. With MFT, the ac-
curacy of fine-tuned BERT boosts 2.4% for natural
language inference, 2.6% for review analysis and
3% for domain taxonomy construction. The simple
multi-task fine-tuning methods do not have large
improvement, of which the conclusion is consistent
with Sun et al. (2019a). Our method has the highest
performance in 10 domains (genres) out of a total of
12 domains of the three tasks, outperforming previ-
ous fine-tuning approaches. For ablation study, we
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Figure 3: Tuning the learning epochs of MFT.

compare MFT (DC), MFT (TW) and MFT (Full).
The results show that domain corruption is more
effective than typicality weighting in MNLI, but
less effective in Amazon and Taxonomy.

4.3 Detailed Model Analysis

In this section, we present more experiments on
detailed analysis of MFT. We first study how many
training steps of MFT we should do before fine-
tuning. As datasets of different tasks vary in size,
we tune the epochs of MFT instead. In this set of
experiments, we fix parameters as default, vary the
training epochs of MFT and then run fine-tuning
for 2 epochs for all domains. The results of two
NLP tasks are shown in Figure 3. It can be seen that
too many epochs of MFT can hurt the performance
because BERT may learn too much from other do-
mains before fine-tuning on the target domain. We
suggest that a small number of MFT epochs are
sufficient for most cases. Next, we tune the hyper-
parameter λ from 0 to 0.5, with the results shown in
Figure 4. The inverted-V trends clearly reflect the
balance between the two types of losses in MFT,
with very few exceptions due to the fluctuation of
the stochastic learning process.

We also vary the number of corrupted domain
classifiers by changing Ls. Due to space limita-
tion, we only report averaged accuracy across all
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Method Telephone Government Slate Travel Fiction Average
BERT (S) 82.5 84.9 78.2 83.1 82.0 82.1
BERT (Mix) 83.1 85.2 79.3 85.1 82.4 83.0
BERT (MTL) 83.8 86.1 80.2 85.2 83.6 83.8
BERT (Adv) 81.9 84.2 79.8 82.0 82.2 82.0
MFT (DC) 84.2 86.3 80.2 85.8 84.0 84.1
MFT (TW) 83.8 86.5 81.3 83.7 84.4 83.9
MFT (Full) 84.6 86.3 81.5 85.4 84.6 84.5

Table 2: Natural language inference results over MNLI (divided into five genres) in terms of accuracy (%).

Method Book DVD Elec. Kit. Avg.
BERT (S) 90.7 88.2 89.0 85.7 88.4
BERT (Mix) 91.8 89.4 87.8 88.4 89.3
BERT (MTL) 92.2 89.0 88.3 88.2 89.0
BERT (Adv) 89.3 87.4 86.5 86.7 87.5
MFT (DC) 90.6 89.4 92.5 88.7 90.3
MFT (TW) 90.4 88.9 94.5 89.1 90.7
MFT (Full) 91.2 88.8 94.8 89.2 91.0

Table 3: Review analysis results over Amazon Review
Dataset in terms of accuracy (%).

Method Animal Plant Vehicle Avg.
BERT (S) 93.6 91.8 84.2 89.3
BERT (Mix) 93.8 88.2 83.6 88.5
BERT (MTL) 94.2 89.2 82.4 88.6
BERT (Adv) 92.8 86.3 83.2 87.4
MFT (DC) 94.3 91.8 86.8 91.0
MFT (TW) 94.0 92.0 89.2 91.7
MFT (Full) 94.5 92.3 90.2 92.3

Table 4: Domain taxonomy construction results over
Taxonomy Dataset in terms of accuracy (%).
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Figure 4: Tuning the hyper-parameter λ.

domains, shown in Table 7. In a majority of sce-
narios, adding more corrupted domain classifiers
slightly improve the performance, as it poses strong
domain-invariance constraints to deeper layers of
transformer encoders in BERT.

For more intuitive understanding of MFT, we
present some cases from Amazon Review Dataset
with relatively extreme (low and high) typicality
scores, shown in Table 5. As seen, review texts with
low scores are usually related to certain aspects of
specific products (for example, “crooked spoon
handle” and “fragile glass”), whose knowledge is
non-transferable on how to do review analysis in
general. In contrast, reviews with high typicality
scores may contain expressions on the review polar-
ity that can be frequently found in various domains
(for example, “huge deal” and “a waste of money”).
From the cases, we can see how MFT can create
a meta-learner that is capable of learning to solve
NLP tasks in different domains.

4.4 Experiments for Few-shot Learning

Acquiring a sufficient amount of training data for
emerging domains often poses challenges for NLP
researchers. In this part, we study how MFT can
benefit few-shot learning when the size of the train-
ing data in a specific domain is small 8. Because
the original MNLI dataset (Williams et al., 2018)
is large in size, we randomly sample 5%, 10% and
20% of the original training set for each genre, and
do MFT and fine-tuning over BERT. For model
evaluation, we use the entire development set with-
out sampling. In this set of experiments, we do not
tune any hyper-parameters and set them as default.
Due to the small sizes of our few-shot training sets,
we run MFT for only one epoch, and then fine-tune
BERT for 2 epochs per genre.

In Table 6, we report the few-shot learning re-
sults, and compare them against fine-tuned BERT
without MFT. From the experimental results, we

8Note that this experiment is not conducted using the K-
way N-shot setting. Refer to Related Work for discussion.
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Typicality Domain Label Review Text
Book NEG More hate books. How could anyone write anything so wrong.

Low Kitchen NEG The spoon handle is crooked and there are marks/damage to the wood. Avoid.
Kitchen NEG The glass is quite fragile. I had two breaks.
Kitchen POS I would recommend them to everyone..and at their price, it’s a HUGE DEAL!

High Electronics NEG What a waste of money. For $300 you shouldn’t HAVE to buy a protection plan for...
Electronics NEG Do not waste your money, this was under recommendations, but I would NOT...

Table 5: Cases of review texts from Amazon Review Dataset with high and low typicality scores.

Genre With MFT? Improvement With MFT? Improvement With MFT? ImprovementNo Yes No Yes No Yes
Training data 5% of the original 10% of the original 20% of the original
Telephone 70.5 74.7 4.2%↑ 74.1 76.4 2.3%↑ 75.9 79.8 3.9%↑
Government 76.5 78.1 1.6%↑ 78.8 81.0 2.2%↑ 80.5 82.9 2.4%↑
Slate 64.2 69.8 5.7%↑ 67.6 71.8 4.2%↑ 71.8 74.1 2.3%↑
Travel 71.9 75.4 3.5%↑ 74.8 78.1 3.3%↑ 78.3 80.3 2.0%↑
Fiction 69.7 73.8 4.1%↑ 73.3 76.6 3.3%↑ 76.2 78.4 2.2%↑
Average 70.5 74.4 3.9%↑ 73.7 76.8 3.1%↑ 76.5 79.1 2.6%↑

Table 6: Few-shot natural language inference results over MNLI in terms of accuracy (%).

Ls ↓ Dataset→ Amazon Taxonomy
{12} 90.7 91.3
{6, 12} 90.8 92.0
{4, 8, 12} 91.4 92.5
{3, 6, 9, 12} 91.2 92.8

Table 7: Change of prediction accuracy when the se-
lected layer indices Ls take different values (%).

can safely come to the following conclusions. i)
MFT improves the performance for text mining of
all genres in MNLI, regardless of the percentages
of the original training sets we use. ii) MFT has
a larger impact on smaller training sets (a 3.9%
improvement in accuracy for 5% few-shot learn-
ing, compared to a 2.6% improvement for 20%).
iii) The improvement of applying MFT before fine-
tuning is almost the same as doubling the training
data size. Therefore, MFT is highly useful for
few-shot learning when the training data of other
domains are available.

5 Conclusion and Future Work

In this paper, we propose a new training procedure
named Meta Fine-Tuning (MFT) used in neural
language models for multi-domain text mining. Ex-
perimental results show the effectiveness of MFT
from various aspects. In the future, we plan to apply
MFT to other language models (e.g., Transformer-
XL (Dai et al., 2019) and ALBERT (Lan et al.,
2019)) and for other NLP tasks.
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