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Figure 4: Overview of the training strategy of the pro-
posed FENMT. MTL: multi-task learning.

where the mg is the margin, we empirically set to
0.2. The cross-entropy objective with this objec-
tive can prompt the decoder to translate fluent and
faithful sentences.

2.3 The Overall Training Strategy
The standard NMT training objective is to mini-
mize the negative log-likelihood by:

LT = −E{x,y}∈B logP (y|x). (6)

And the final training objective of our proposed
approach is:

LF = LT + α · LM + β · LA + γ · LC, (7)

where α, β and γ are used to balance the preference
among the external losses, which are empirically
set to 0.3 individually. Note that due to the different
inputs, LM should be computed separately.

The training strategy as follows: at the tth NMT
training epoch, we are going to sample part of the
sentences from the training set, the sampling ratio
is computed by:

ratio = max(d(t−1) ∗ 20%, 5%), (8)

where d is the decay rate, we set as 0.9 here. To
avoid decreasing training efficiency, the sampled
data will be translated by fθt (·) at the tth epoch
and used at the t+ 1th epoch. And the first epoch
will not use this method as a warm-up.

The overview of the training strategy is shown in
Figure 4 The NMT will begin to translate sampled
sentences at the end of the tth epoch, which is

synchronous with the training process. Then, when
both of the training process and translation process
are finished, the multi-task learning paradigm will
be employed to continue train the NMT model.

3 Experiment

3.1 Implementation Detail

We conduct experiments on the WMT data-sets2,
including WMT17 Chinese to English CWMT part
(Zh→En), WMT 14 English to German (En→De)
and English to Romanian (En→Ro). On the
Zh→En, our training set has about 7.5M sentence
pairs. We use newsdev2017 as dev set which has
2002 sentence pairs, and newstest2017 as test
set which has 2001 sentence pairs. On the En→De,
our training set has about 4.5M sentence pairs. We
use newstest2013 as dev set which has 3000
sentence pairs, and newstest2014 as test set,
which has 3003 sentence pairs. On the En→Ro,
our training set has about 0.6M sentence pairs. We
use newstest2015 as dev set which has 2000
sentence pairs, and newstest2016 as test set
which has 2000 sentence pairs. We apply the byte
pair encoding (BPE) (Sennrich et al., 2015) to all
language pairs and limit the vocabulary to 32K. All
out-of-vocabulary words were mapped to the UNK
token. The same training sets were used to train
a word alignment model using fast align3. Then,
the bilingual phrase table is extracted by Koehn
et al. (2003, 2007a). We limit the length of phrase
is 2-4, and finally 6.7M, 3.4M and 0.2M phrases
are extracted from Zh→En, En→De and En→Ro.

Following Transformer-Base and Transformer-
Big settings, we set the dimension of the input
and output of all layers as 512/768, and that of the
feed-forward layer to 2048/3072. We employ 8/12
parallel attention heads. The number of layers for
the encoder and decoder are 6. Sentence pairs are
batched together by approximate sentence length.
Each batch has approximately 25000 source and
25000 target tokens. We use label smoothing with
value 0.1 and dropout with a rate of 0.1. We use
the Adam (Kingma and Ba, 2014) with the learning
rate of 1e-3, β1 = 0.9, β2 = 0.98, and it was varied
under the warm-up with 4000 steps. Other settings
of Transformer follow Vaswani et al. (2017).

We use beam search for heuristic decoding, and
the size is set to 4. We use the sacreBLEU4 to calcu-

2http://www.statmt.org/wmt17/translation-task.html
3https://github.com/clab/fast align
4https://github.com/mjpost/sacreBLEU
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# Model #Param. Zh→En En→De En→Ro

1 Transformer-Base 62M 24.41 27.37 32.23
2 Transformer-Big 207M 24.72 28.47 −
3 Transformer-Base∗ (Vaswani et al., 2017) 65M − 27.3 −
4 Transformer-Base∗ (Hassan et al., 2018) − 24.13 − −
5 Transformer-Base∗ (Gu et al., 2017) − − 27.02 31.91
6 Transformer-Big∗ (Vaswani et al., 2017) 213M − 27.3 −
7 (Feng et al., 2020) − − 27.55 −
8 AOL∗ (Kong et al., 2019) − − 28.01 −
9 AOL∗(Big) (Kong et al., 2019) − − 28.99 −
10 Dynamic Past&Future∗ (Zheng et al., 2019) 54M − 28.10 32.96
11 Reorder Embedding∗ (Chen et al., 2019) 107M − 28.22 −
12 Deliberation Network∗(Big) (Wang et al., 2019) 372M − 29.11 −
13 Self-supervised Learning 62M 24.39 27.50 31.98
14 MRT (Shen et al., 2016) 62M − 27.71 −
15 Knowledge Distillation 62M 24.55 27.93 −
16 FENMT 65M 25.47‡ 28.25† 33.43‡

17 FENMT (Big) 211M 26.16‡ 29.36‡ −

Table 1: The comparison of our FENMT, Transformer baselines and related work on the WMT17 Chinese to
English (Zh→En), WMT14 English to German (En→De), and WMT16 English to Romania (En→Ro) tasks (*
indicates the results came from their paper, †/‡ indicate significantly better than the baseline (p < 0.05/0.01)).

late case-sensitive BLEU (Papineni et al., 2002) as
the automatic metric. We implement the proposed
approach with the implementation of Transformer
derived from the tensor2tensor5.

3.2 Automatic Evaluation

Translation quality. The results are summarized
in Table 1. We implement the Transformer-
Base and Transformer-Big as our baselines. Sev-
eral Transformer systems with the same set-
tings (Vaswani et al., 2017; Hassan et al., 2018; Gu
et al., 2017) are reported as a comparison (line 1-
6). Then, several related researches about improve
faithfulness of NMT (Kong et al., 2019; Zheng
et al., 2019; Chen et al., 2019; Feng et al., 2020)
or exploiting translations for improving NMT (Xia
et al., 2017; Wang et al., 2019) also be reported
(line 7-12). We implement three comparable ap-
proaches on our Transformer baseline, including:
1). self-supervised learning: we use the transla-
tions of training data as a self-supervision signal
to fine tune the NMT model; 2). minimum risk
training (MRT): we implement the MRT following
Shen et al. (2016); 3). Knowledge Distillation: we
adopt the KL divergence to distill knowledge from
Transformer-Big to Transformer-Base (line 13-15).

5https://github.com/tensorflow/tensor2tensor

The results on the ZH→EN task are shown in the
third column of Table 1. The improvement of our
model (FENMT) could be up to 1.03 based on the
Transformer-Base baseline (line 16 vs. line 1), and
1.44 base on the Transformer-Big baseline (line 17
vs. line 2). Then, the results on the En→De task
are shown in the fourth column. On this task, the
proposed model with base and big settings could at-
tain 28.25 BLEU (+0.88) and 29.36 BLEU (+0.89),
which outperforms all previous studies. We also
experiment our method on low resource language
pair of the En→Ro. Results are shown in the last
column. The improvement is 1.20 BLEU on the
base setting, which is a material improvement in
low resource scenario.

Experimental results on three machine transla-
tion tasks show that the proposed approach can
improve translation quality which is not limited by
the language or size of training data. Moreover, our
method is more effect on Zh→En than De→En,
which may appeal the unfaithful problem is more
serious on the language pair which have a larger
difference in morphology.

Model size and efficiency. The number of pa-
rameters is shown in Table 1, our work only adds
3M/4M parameters on the Base/Big settings. The
training efficiency of our FENMT based on the base
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Model Degree Addition Omission Grammar Style Others Total

Baseline
Minor 0 0 50 15 3 68
Major 6 54 3 0 0 63

Critical 0 5 0 0 1 6

FENMT

Minor 0 0 41 12 8 61(-10.3%)
Major 1 43 4 0 0 48(-23.8%)

Critical 0 3 0 0 0 3(-50.0%)

Table 2: Human evaluation on 100 sentences sampled from Zh�En test set. We divide mistranslations into several
types: Addition includes repetitive and useless translation, Omission means a consecutive part is not be translated
correctly (miss or wrong), Grammar includes word order, word form, function word, etc. Critical, Major and
Minor mean the degree of errors. We invite a professional translator to label errors in the sampled sentences.

Quality Baseline FENMT

Incomprehensible (1) 0 0
Bad (2) 7 3(-57.1%)
Understandable (3) 43 29(-32.6%)
Good (4) 42 54(+28.6%)
Excellent (5) 8 14(+75.0%)
Overall score 3.51 3.79

Table 3: Human evaluation on 100 sentences sampled
from Zh�En test set. We divide translation quality into
5 levels and give score 1 to 5 (larger is better). We ask a
professional translator to score them. The overall score
is the weighted average of above categories.

Model BLEU ∆

Baseline 27.37 −
FENMT-Base 28.25 +0.88
w/o LA w/o LC 28.00 +0.63
w/o LM w/o LC 27.70 +0.33
w/o LM w/o LA 27.89 +0.42
w/o LC 28.14 +0.77
w/o LA 28.10 +0.73
w/o LM 27.86 +0.49

Table 4: Ablation study on the En→De task.

setting is 0.86x compared with Transformer-Base,
and based on the big setting is 0.94x compared
with Transformer-Big.6 Our approach only influ-
ence the training process of NMT, so the inference
efficiency will not be affected.

3.3 Human Evaluation
The automatic metric, i.e., BLEU, sometimes can’t
accurately evaluate translation quality. For exam-
ple, the sentence missing content words has de-

6All comparisons here were on a single GPU (Tesla P100).

crease more on faithfulness than missing function
words, but the BLEU scores may be equal. So, we
make detailed human evaluations to see the varia-
tions of translation quality in the real environment.

Number of mistranslations. We divide mis-
translations into several types and each type has
three degrees. We sample 100 sentences from the
Zh→En test set, and invite a professional translator
to label errors contained in these translations.

The results are reported in Table 2. Our method
can reduce the number of mistranslations at the
most of categories. Typically, our approach signifi-
cantly reduce the number of the Omission, which
means a continue part from the input doesn’t be
translated correctly. At the Addition category, our
approach also achieves remarkable improvement
even it’s not a main error type in current NMT.
Omission and Addition are two serious error types
greatly hurting the faithfulness of translations. The
reduction of these errors will improve the faithful-
ness of translations obviously.

Translation quality ranking. Besides evaluat-
ing the error types in the sampled sentences, we
also evaluate the overall quality for each sentence.
Here, the translation quality is divided into 5 lev-
els and give score 1 to 5 (larger is better) and a
professional translator is invited to score them.

The results are shown in Table 3, the overall
score of the proposed method is better than baseline
(3.79 > 3.51). Specifically, the good (4) and ex-
cellent(5) translations from our approach are more
than baseline (+75.0% and + 28.6%) by revising
the errors from the bad (2) and understandable
(3) translations (-57.1% and -32.6%). This results
show that the reduction of mistranslations really
improve the overall quality for human readers.
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Model Number of Phrases Accuracy

Reference 8082 −
Baseline 5676 70.2%
FENMT 6453 79.8%

Table 5: The accuracy of phrase translation on the
En→De task.

Model Sampling Rate BLEU

FENMT

5% 27.79
20% 28.27
100% 28.39

ours (20%�5%) 28.25

Table 6: The effectiveness of different sampling rates
on the En→De task. ours: computed by Eq. 8.

3.4 Analysis

Ablation study. To further show the function of
each task in our approach, we make ablation study
in this section. Specifically, we investigate how
the masked language model objective, word align-
ment objective, and max-margin objective affect
the translation performance.

The results are shown in Table 4. Firstly, we anal-
ysis the effect of each task. The model achieves
0.63, 0.33 and 0.42 gains when only using masked
language model (LM), word alignment (LA) and
max-margin (LC) individually. Then, the results of
combining two of three tasks are shown in the sec-
ond part. The masked language model combines
word alignment or max-margin can get improve-
ments of 0.77 and 0.73, which are close to the best
performance. While the combination of word align-
ment and max-margin is not work well (+0.49).

The above experimental results show that each
task could get a decent improvement. But com-
pared with improving the ability of the decoder, the
high quality contextual representation learned from
the masked language model is more important.

Accuracy of phrase translation. We compute
the accuracy of phrase translation on the En→De
task to evaluate the proposed multi-task objective in
a fine-grained aspect. The result are shown in Table
5. The total number of phrases in the references
is 8082. Our approach successfully translate the
6453 (79.8%) and the baseline correctly translate
the 5676 (70.2%). The accuracy of our approach
largely improves 9.6% compared with the baseline.

Figure 5: Performance of translations with different
lengths of source sentences on the En→De task. “Ours”
means the proposed FENMT.

Analysis of different sampling rate. The re-
sults of the FENMT with different sampling rate
are shown in Table 6. When the sampling rate is
5%, the performance decreases 0.46 compared with
the rate computed by Eq. 8. When the sampling
rate is larger than 20%, the performance does not
change significantly. But the dynamical sampling
rate will reduce the number of sentences needed to
be translated, which can avoid dropping training
efficiency.

Analysis of sentence length. We group the
En→De test set by the length of source sentences,
and then re-evaluate the BLEU score of each group.
The test set is divided into 7 subsets. Figure 5
shows the results. We find that our model outper-
forms the baseline in all categories in both base
and big setting. The proposed model performs
better on long sentences (e.g., [30,60]). Because
long sentences are usually complex and difficult
to translate which causes the number of mistrans-
lations in them is more than short sentences. Our
approach can avoid these mistranslations compared
with baselines.

Case study. We show two cases from the
Zh→En task to see the difference between baseline
and our approach, which are shown in Table 7.

Our approach could learn how to translate the
difficult fragments in the input which are easier to
be mistranslated. For example, the idiom “turn the
table” in case 1 is translated to loss by the baseline,
which only observe the word “败” in the input. In
case 2, the baseline makes a serious mistake at the
beginning of the sentence. The translation of “私
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Input 不论他是从前面，还是后面靠近你，它都会教你如何反败为胜。

Refer.
whether you’re approached from in front or behind, it will show you how to
turn the tables on your mugger.

Baseline whether he comes from the front, or from the front, it will teach you how to lose.
FENMT whether you’re approached from in front or back, it will show you how to turn the tables.

Input 私募股权基金等领域风险事件的爆发,资产托管机制是一个重要原因。

Refer.
asset custody mechanism is a major reason to explain the outbreak of risk events in private
equity funds and other sectors .

Baseline trust is an important reason for the outbreak of risk events in private equity fund .

FENMT
asset custody mechanism is an important reason for the outbreak of risk events in private
equity funds and other sectors .

Table 7: Translation cases from Transformer and FENMT on the Zh→En task. Words with Bold and blue fonts
are correct translations revised by our model. Words with Italic and red fonts are mistranslations from baseline.
Words with underline are the corresponding parts in the reference.

募股权基金” is omitted. Our FENMT avoids this
kind of mistakes by specialized modeling mistrans-
lated parts in the NMT model.

4 Related Work

Enhancing faithfulness for NMT. Faithfulness
and Fluency are two fundamental factors of transla-
tion quality. NMT has been able to generate fluent
sentences. While translating faithful sentences is
an urgent problem to be solved. In the RNN-based
NMT, Tu et al. (2016) and Mi et al. (2016) proposed
a coverage mechanism to improve the accuracy of
translation outputs. Following this intuition, Zheng
et al. (2018) divided source representation into past
and future parts to fine-grained control translation
process. These studies focus on using source repre-
sentation effectively. On the other hand, improving
the ability of the decoder is another way. Tu et al.
(2017) proposed to introduce a reconstruction loss
to make translation can reconstruct the input sen-
tence. Weng et al. (2017) proposed a bag-of-words
loss to constrain decoding process. These methods
are similar to multi-task learning, but the motiva-
tion of them are different.

Recent studies found that Transformer also suf-
fer this problem even its translation quality is far
better than RNN model. Kong et al. (2019) pro-
posed a coverage difference ratio metric as a re-
ward to train the Transformer model. Weng et al.
(2020) proposed to model global representation in
the source side to improve the source representa-
tion. Zheng et al. (2019) proposed a capsule based
module to control the source representation dynam-
ically in the decoding process. Zhang et al. (2019),

Feng et al. (2020) and Garg et al. (2019) proposed
to introduce word alignment information in Trans-
former to improve translation accuracy. However,
they only focus on one side causing this problem
while don’t have an overall solution. Our study is
the first work to pay attention to using mistrans-
lations guides NMT model to avoid making these
mistakes again.

Multi-task learning in NMT. Multi-task learn-
ing has been widely used in NMT. Dong et al.
(2015) proposed to share an encoder between differ-
ent translation tasks to exploit multi lingual knowl-
edge. Luong et al. (2015a) proposed to jointly learn
the translation task for different languages, the
parsing task and the image captioning task, with a
shared encoder or decoder. Zhang and Zong (2016)
and Domhan and Hieber (2017) proposed to use
multi-task learning for incorporating source/target
side monolingual data in NMT. Zhou et al. (2019)
introduced noisy data with multi-task learning to
improve the robustness of NMT. Different from
these attempts, our approach wants to improve the
faithfulness of current NMT model, while learning
extra knowledge from other tasks.

5 Conclusion

In this paper, we address the problem that current
NMT can’t generate faithful translations which will
observably decrease translation quality. We pro-
pose a FENMT to learn the faithful translation from
mistranslated parts. We implement the proposed
method based on the Transformer model and evalu-
ate it on three translation tasks. Both the automatic
and human evaluations show that our approach can
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effectively improve the faithfulness of translations.
Our work can employ on different text generation
tasks, e.g., text summarization and dialogue, to en-
hance the key phrases (or terms) generation. In
the future, we will continue investigate the learn-
ing method for effectively utilizing self-generated
samples and expand to other text generation tasks.
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