
Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 62–69
November 16-20, 2020. c©2020 Association for Computational Linguistics

62

DeezyMatch: A Flexible Deep Learning Approach
to Fuzzy String Matching

Kasra Hosseini
The Alan Turing Institute

Federico Nanni
The Alan Turing Institute

{khosseini,fnanni,mcollardanuy}@turing.ac.uk

Mariona Coll Ardanuy
The Alan Turing Institute

Abstract

We present DeezyMatch, a free, open-source
software library written in Python for fuzzy
string matching and candidate ranking. Its
pair classifier supports various deep neural
network architectures for training new classi-
fiers and for fine-tuning a pretrained model,
which paves the way for transfer learning in
fuzzy string matching. This approach is espe-
cially useful where only limited training exam-
ples are available. The learned DeezyMatch
models can be used to generate rich vector
representations from string inputs. The can-
didate ranker component in DeezyMatch uses
these vector representations to find, for a given
query, the best matching candidates in a knowl-
edge base. It uses an adaptive searching algo-
rithm applicable to large knowledge bases and
query sets. We describe DeezyMatch’s func-
tionality, design and implementation, accom-
panied by a use case in toponym matching and
candidate ranking in realistic noisy datasets.

1 Introduction

String matching is an integral component of many
natural language processing (NLP) pipelines. One
such application is in entity linking (EL), the task
of mapping a mention (i.e., a string) to its corre-
sponding entry in a knowledge base (KB). Most EL
systems currently rely on a lookup table (Ferragina
and Scaiella, 2010; Mendes et al., 2011; Raiman
and Raiman, 2018; Sil et al., 2018)1 or shallow
string similarity approaches (e.g., based on n-gram
overlaps as in McNamee et al. (2011b); Plu et al.
(2016), or super-string matching, as in Moro et al.

1See, for instance, DBpedia Lexicalization
dataset used as a lookup table by DBpedia Spot-
light: https://wiki.dbpedia.org/lexicalizations, or how
Spacy currently retrieves candidates from a given KB:
https://spacy.io/api/kb/#get candidates.

(2014)) to narrow the entries of a KB down to a
set of potential candidates the mention may refer
to (i.e., aliases). While these choices allow fast
run-time, they generally rely on the assumption
that all surface forms of each entity are present as
aliases in the KB. The performances of these sys-
tems degrade when dealing with domain-specific
vocabulary (Munnelly and Lawless, 2018), local
variations (Rovera et al., 2017), historical materials
(Olieman et al., 2017; McDonough et al., 2019) and,
in general, challenges that emerge when perform-
ing EL on non-standard documents.2 This subtask
of EL, often referred to as candidate ranking (and
selection), is mostly ignored when designing down-
stream systems, even though its significant impact
on downstream NLP pipelines has been shown pre-
viously (Quercini et al., 2010; Hachey et al., 2013).

In this paper, we present DeezyMatch, a new
deep learning approach that strives to address ad-
vanced string matching and candidate ranking in a
more comprehensive and integrated manner than
existing tools. DeezyMatch is a free, open-source
community software written in Python. It uses Py-
Torch (Paszke et al., 2019) to implement various
state-of-the-art neural network architectures, and
it has been tested on both CPU and GPU. One of
the main features of DeezyMatch is its modular
design and flexibility. We describe DeezyMatch’s
functionalities, design choices and technical imple-
mentation. We compare its performance in rela-
tion to other approaches on several realistic string
matching scenarios, covering different languages,
alphabets, and domains, and we evaluate the qual-
ity of the candidate ranker in a real-case setting.
Thanks to its easy-to-use interface, DeezyMatch
can be seamlessly integrated into existing EL sys-
tems. This allows DeezyMatch to be adopted out-

2As opposed to Wikipedia or contemporary newspaper
text, which are employed in widespread EL benchmarks, such
as WikiDisamb30, CoNLL (YAGO), and AC KBP 2010.

https://wiki.dbpedia.org/lexicalizations
https://spacy.io/api/kb/#get_candidates

63

Figure 1: DeezyMatch architecture consists of two main components: pair classifier (left box) and candidate
ranker (right box). The learnable parameters in pair classifier are highlighted in blue. During fine-tuning, any
of these parameters can be frozen, that is, they will not be changed during fine-tuning. Various hyperparameters
including the architecture of the neural network and tokenization can be changed by the user (see text). In candidate
ranker, for each query and candidate pair, learned vector representations are first generated using a DeezyMatch
model. These vectors are then used to rank candidates according to different metrics (e.g., L2-norm distance,
cosine similarity and prediction scores). The steps of candidate ranker are depicted by dashed lines in the figure.

side the NLP community, especially in Digital Hu-
manities, where it could play a major role in ad-
dressing known issues concerning the EL systems
and their adaptability to the non-standard nature of
the datasets typically used in this field (Olieman
et al., 2017).

DeezyMatch is released under MIT License. It
is available via PyPI,3 and its source codes are
on GitHub.4 We provide extensive documentation,
including examples in Jupyter Notebooks, to enable
the smooth adoption of all its components.

2 Description of the system

Fig. 1 shows the two main components of Deezy-
Match: pair classifier and candidate ranker. To-
gether they allow the training or fine-tuning of a
query-candidate classifier and finding best match-
ing candidates to a query from a KB.

2.1 Pair classifier
Inspired by the work of Santos et al. (2018a),
DeezyMatch’s pair-classifier component has at

3https://pypi.org/project/DeezyMatch
4https://github.com/Living-with-machines/DeezyMatch

its core a siamese deep neural network classifier.
The network takes query-candidate pairs as inputs
which can be further processed (e.g., lower-cased
and normalized) and tokenized at different levels
(character, n-gram and word). Such pairs are ei-
ther possible referents of the same entity or not,
which form the positive and negative examples for
training and testing. The neural network architec-
ture and its hyperparameters can be configured in
the input file without requiring the user to modify
the code. Currently, DeezyMatch supports Elman
Recurrent neural network (RNN) (Elman, 1990),
Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Unit
(GRU) (Cho et al., 2014) architectures. The num-
ber of layers and directions (mono or bi-directional)
in the recurrent units as well as the dimensions of
hidden states and embedding layers can be changed
in the input file. The two parallel recurrent layers
in Fig. 1 share their weights and biases which helps
the model to learn transformations regardless of the
order of strings in an input pair.

During training, a dataset of string pairs is first
read, preprocessed, tokenized, and they are con-
verted into dense vectors (i.e., two embeddings per

https://pypi.org/project/DeezyMatch
https://github.com/Living-with-machines/DeezyMatch

64

Figure 2: Impact of fine-tuning and freezing neural network layers on the performance of pair classifier as mea-
sured by F1-score. Three neural network architectures (LSTM, GRU and RNN) are fine-tuned and compared as a
function of data instances (x-axis) used in fine-tuning. In model A, only the last layer (fully-connected layers in
Fig. 1) is fine-tuned while in model B, both the recurrent units and the fully-connected layers are used. By adding
more data instances in fine-tuning, the performance of all models improve logarithmically.

pair); the dimensionality of which can be speci-
fied in the input. The two embedding vectors of a
string pair are then fed into two parallel recurrent
units to generate vector representations (i.e., hidden
states of the last units in each direction and layer).
Next, the two vectors can be combined in different
ways specified in the input, e.g., via concatenation,
element-wise product, difference, or a combination
of these. This aggregated representation is then
given as input to a feed-forward network with one
hidden layer and with Rectified Linear Unit (ReLU)
as the activation function. The output layer has one
unit with a sigmoid activation function for produc-
ing the final prediction. During training, the target
and the predicted outputs are compared by the Bi-
nary Cross Entropy criterion. The dimensionality
of the hidden layer and other hyperparameters (e.g.,
learning rate, number of epochs, batch size, early
stopping and dropout probability) can all be tuned
in the input file. DeezyMatch logs and outputs all
standard evaluation metrics for binary classification
(accuracy, precision, recall and F1) during training,
evaluation and testing. Similar to Tam et al. (2019),
it also calculates mean average precision (MAP),
which evaluates the quality of candidate ranks per
query. After a training is finished, DeezyMatch can
be used to plot loss and evaluation metrics at each
epoch for model selection. The outputs of each
epoch can be also visualized during training via
TensorBoard (Abadi et al., 2016).

2.1.1 Transfer learning

In addition to training a model from scratch, Deezy-
Match supports fine-tuning a pretrained model; this
way, an already trained model on a large dataset
can be fine-tuned to a new domain. This trans-
fer learning approach helps especially where only
limited training examples are available. Any learn-
able parameters (as highlighted by blue boxes in
Fig. 1) can be “frozen” during fine-tuning, and the
fine-tuning can be done on a specified number of
training instances by the user.

Fig. 2 shows the results of two sets of models
fine-tuned progressively on more training instances.
In model A, both embedding and recurrent units are
frozen (i.e., their parameters are not updated during
fine-tuning), and in model B, only the embedding
layer is frozen. The baseline, skyline 1 and 2 are
trained on WG:en, OCR and WG:en+OCR, respec-
tively. Refer to Section 3.1.1 for details on these
datasets. The performance of these models is then
assessed on the OCR test set. To show the impact of
fine-tuning and choice of architecture on the model
performance, we trained various models starting
with the baseline model and included more train-
ing instances from the training set of OCR. In this
experiment, only ≈8K data points were needed to
improve the performance of all models from≈0.45
(baseline) to ≈0.82. In model B, by using around
20% of the data points (≈16K), the performance
of GRU and LSTM architectures improve to ≈0.92
which highlights the importance of fine-tuning in
scenarios with limited training datasets. When in-

65

cluding all the data points, all models, except RNN
in model A, pass skyline-2, and two of them reach
the performance of skyline-1 (≈0.964). It is worth
noting that model B shows better performance com-
pared to model A in fine-tuning. The improved
performance can be attributed to the more unfrozen
parameters during fine-tuning, which increases the
learning capacity.

2.2 Candidate Ranker

The trained pair-classifiers in Section 2.1 predict
if an input string pair is a good match or not by
providing not only the label (True/False) but also
the confidence of the model on each label. The
same models can then be used for the task of can-
didate ranking. First, a trained DeezyMatch model
is used to generate vector representations for all
known variations of entity names in a KB (i.e. “all
candidate mentions” in Fig. 1). These vector rep-
resentations are extracted from the recurrent units
for each direction and layer. This step is done
only once for a given model and KB. The vectors
(e.g. forward/backward vectors in a bi-directional
recurrent network) are then assembled to form one
file containing all the vector representations for
unique candidate mentions. Next, given a query
(i.e. a mention of an entity as a string), the same
DeezyMatch model generates its vector represen-
tation similar to the previous step. At the final
stage, the query vectors are compared with candi-
date vectors using a metric specified by the user.
The choices of this metric are the DeezyMatch pre-
diction scores, L2-norm distances (as implemented
in the faiss library of Johnson et al. (2019)) or co-
sine similarities between the query and candidate
vectors. Based on the selected method and for a
given query, DeezyMatch ranks the results and out-
puts the best matching candidates (the number of
which can be specified by the user).

An advantage of the proposed method is that vec-
tor representations for the KB are computed only
once (for a given trained model). For all subse-
quent queries, only the query vectors are generated
and compared to the KB vectors. This significantly
reduces the computation time compared to more
traditional methods (e.g. Levenshtein distance) in
which one query is compared to n possible varia-
tions of all potential candidates in each run.

When the selected ranking metric is L2-norm
distance or cosine similarity, the above procedure
can be done efficiently using generated matrices

(i.e., assembled vector representations) and avail-
able linear algebra packages. However, model in-
ference on large datasets can be prohibitively ex-
pensive. In DeezyMatch, we developed an adaptive
method to avoid the search of whole KB for a given
query. We start with the query vector and find a
set of “close” candidate vectors as measured by
the L2-norm distance (i.e., two vectors are similar
when the distance is low). We then perform model
inference only on these candidates. If the num-
ber of desired candidates (specified by the user) is
reached, DeezyMatch goes to the next query men-
tion. Otherwise, it expands the search space by a
user-specified search size and repeats the model
inference on new instances. This procedure con-
tinues until the number of desired candidates is
reached or all candidates in the KB are tested. In
our experiments in Section 3.1.2, this adaptive pro-
cedure significantly reduces the computation time
of similarity search in large datasets.

2.3 DeezyMatch interface
DeezyMatch is available as a Python library and
can be used as a stand-alone command-line tool
or as a module in existing Python NLP pipelines.
As an example, the training and inference steps
described in Section 2.1 can be executed by:
from DeezyMatch import train
from DeezyMatch import inference

train a new model
train(input_file_path,

dataset_train_path,
model_name)

model inference
inference(input_file_path,

dataset_inference_path,
pretrained_model_path)

Other functionalities, such as fine-tuning and can-
didate ranking, have similar easy-to-use interfaces.
Consult DeezyMatch’s GitHub page for additional
information and examples.

3 Comparison with existing systems

The majority of readily available EL tools rely on
a lookup table or on shallow string similarity ap-
proaches to select an initial set of candidates, fol-
lowed by a disambiguation step. TagMe! (Ferrag-
ina and Scaiella, 2010), for instance, a well estab-
lished EL baseline, performs candidate selection
through perfect matches between mentions and a
list of alias surface forms derived from Wikipedia,
as also discussed by Hasibi et al. (2016).

66

Alternatives to perfect matches involve the adop-
tion of edit-distance techniques, such as Levens-
thein distance (see, for example, its adoption in
McNamee et al. (2011a); Moreno et al. (2017)).
While there are many implementations of such ap-
proaches readily available, these methods suffer
from poor scalability (i.e., time complexity, as we
discuss in our experiments in Section 3.1.1). Due
to this, some EL pipelines (e.g., Greenfield et al.
(2016)) have incorporated such techniques only
when no exact matching entry can be retrieved.

More recently, researchers have developed deep
learning solutions for candidate selection. Le and
Titov (2019) framed it as a distance learning task
with a noise detector in their EL system, in which
the linkage between mentions that are not neces-
sarily in the KB is learned from lists of positive
candidates (the top matching candidates) and nega-
tive candidates (randomly sampled from the KB).
Tam et al. (2019) have recently presented STANCE,
a model for computing the similarity of two strings
by encoding the characters of each of them, align-
ing the encodings using Sinkhorn Iteration, and
scoring the alignment with a convolutional neural
network. The associated repository5 offers codes
for reproducing the experiments in the paper. Un-
fortunately, their implementation is not directly
comparable with DeezyMatch, as it was not de-
signed to be integrated directly into an EL pipeline.

The work closest to ours, which has directly
inspired our initial development, is by Santos et al.
(2018a). The authors presented a recurrent neural
network architecture to encode pairs of toponyms
followed by a multi-layer perceptron to determine
if they are matching. The authors accompanied
their work with a repository to reproduce the results
presented in the paper.6 However, the user has little
control over the model architecture, including its
hyperparameters and processing steps. Moreover,
the authors do not offer a method for either loading
a trained model and applying it to new data or for
candidate ranking.

Building upon this previous work, we present an
easy to use library that (a) relies on deep neural
networks for fuzzy string matching and candidate
ranking beyond surface similarities; (b) is signif-
icantly faster than edit-distance approaches; and
(c) can be seamlessly integrated into existing EL
pipelines with a single Python command.

5https://github.com/iesl/stance
6https://github.com/ruipds/Toponym-Matching

3.1 Performance

We test DeezyMatch in the context of geographical
candidate selection, the task of identifying potential
entities that can be referred to by a toponym (i.e., a
place name). This can be understood as the middle
step between named entity recognition (in this case,
toponym recognition) and the downstream task of
EL (in this case, toponym resolution). See Coll Ar-
danuy et al. (2020) for a detailed description of
the datasets and KBs, experimental settings, and
analysis of the results reported in Sections 3.1.1
and 3.1.2. Evaluation of the impact of transfer
learning and domain adaptation (as described in
Section 2.1.1) on candidate ranking will be the sub-
ject of future work.

3.1.1 Pair classifier
We compare our method to Santos et al. (2018a)
and normalized Levenshtein Damerau edit distance
(henceforth LevDam)7 on three datasets of posi-
tive and negative string pairs. The datasets against
which we compare the three methods are Santos
(∼4.3M toponym pairs in different alphabets de-
rived from GeoNames8 and introduced in Santos
et al. (2018b)); WG:en (∼670K toponym pairs de-
rived from the English version of WikiGazetteer;
see Coll Ardanuy et al. (2019)); and OCR (∼93K
named entity pairs derived from OCR’d text aligned
to its human correction).

All datasets are balanced and contain an equal
number of positive and negative pairs per query. In
all cases, negative examples have been constructed
carefully to capture both trivial and challenging
transformations. Table 1 reports the F-Score of
the three methods on the three datasets. Both for
LevDam and DeezyMatch, we have left out 10% of
each dataset for testing, whereas for Santos et al.
(2018a), we show an F-Score obtained through two-
fold cross validation (the setting allowed by the
implementation). The DeezyMatch models used
in the experiments have similar architecture and
hyperparameters.9

3.1.2 Candidate ranker
We evaluate the performance of DeezyMatch’s can-
didate ranker in a real-case toponym resolution
application by assessing the quality of ranked can-
didates and its computation time on three datasets:

7https://pypi.org/project/pyxDamerauLevenshtein
8https://www.geonames.org
9Refer to the DeezyMatch Models section in Coll Ardanuy

et al. (2020) for the choice of hyperparameters.

https://github.com/iesl/stance
https://github.com/ruipds/Toponym-Matching
https://pypi.org/project/pyxDamerauLevenshtein
https://www.geonames.org

67

Santos WG:en OCR

LevDam 0.70 0.74 0.76
Santos et al. (2018a) 0.82 0.92 0.95

DeezyMatch 0.89 0.94 0.95

Table 1: DeezyMatch’s pair-classifier performance as
measured by F-score compared with other methods.

P@1 MAP@10 MAP@20 T/q

ArgM:exact 0.69 - - -
ArgM:LD 0.78 0.72 0.70 9s
ArgM:DM 0.78 0.76 0.74 0.3s

WOTR:exact 0.86 - - -
WOTR:LD 0.92 0.84 0.80 31.6s
WOTR:DM 0.93 0.90 0.87 0.7s

FMP:exact 0.77 - - -
FMP:LD 0.92 0.82 0.76 14.1s
FMP:DM 0.85 0.82 0.78 0.7s

Table 2: DeezyMatch (DM) candidate ranker perfor-
mance on three datasets compared to two other meth-
ods: LevDam (LD) and exact. T/q indicates ‘Time per
query’ on CPU.

(1) ArgManuscrita (ArgM), a toponym-resolved
dataset in Spanish created from a seventeenth-
century travelogue and composed of 799 toponyms
(of which 200 are unique after lower-casing); (2)
WOTR, an OCR-corrected dataset of letters and re-
ports in English from 1860s, of which we used its
test set. It contains 1,479 toponyms manually anno-
tated with their resolved coordinates (of which 584
unique toponyms, after lower-casing); and (3) BNA-
FMP, a dataset of digitized nineteenth-century
newspaper articles in English with 1,248 toponyms
already recognized and resolved to their correct
geographic coordinates (of which 509 unique to-
ponyms, after lower-casing), containing several to-
ponyms with OCR errors, such as ‘DORSETSIIIRR’
for ‘Dorsetshire’.

As KBs, we used the English version of
WikiGazetteer (with 2,455,966 candidate mentions)
for WOTR and BNA-FMP; and the Spanish version
of WikiGazetteer combined with the HGIS de las
Indias gazetteer (Stangl, 2018) (with 556,985 can-
didate mentions) for ArgManuscrita. We consid-
ered that a retrieved candidate mention correctly
matched a query if it could refer to an entity in our
KB within 10 km of the coordinates in the gold stan-
dard.10 In Table 2, we compare DeezyMatch with

10Due to a lack of a true gold standard of coordinates for
locations, allowing an error distance is common practice in
evaluating toponym resolution systems (DeLozier et al., 2015;

two baselines: exact selects the exact-matching
candidate from the KB, which is the most common
approach in EL systems, and LevDam ranks can-
didates according to the normalized Levenshtein-
Damerau edit distance, traditionally considered a
strong baseline. The advantage of using Deezy-
Match is stressed both in terms of mean average
precision (at 10 and 20 candidates) and especially
by its reduced computation time in comparison
with LevDam.11

4 Conclusions

We presented DeezyMatch, a new user-friendly
Python library for fuzzy string matching and can-
didate ranking, based on deep neural network ar-
chitectures. DeezyMatch can be seamlessly in-
tegrated into existing EL pipelines. Its flexibil-
ity allows the user to easily fine-tune a pretrained
model or to adapt the model architecture to the
specificity of a real-case scenario. We compared
its design, implementation and functionalities with
other approaches. In the future, we plan to sup-
port self-attention and state-of-the-art pretrained
character-based models, integrate learning to rank
functionalities in the candidate selection process
and to release a zoo of models trained on large
datasets which can be fine-tuned further in other
downstream NLP tasks.

DeezyMatch was designed with flexibility in
mind, and we encourage the community to fur-
ther extend its implementation for addressing other
related tasks, such as record linkage, transliteration
and data integration.

Acknowledgments

We thank Katherine McDonough and the anony-
mous reviewers for their careful and construc-
tive reviews. This work was supported by Liv-
ing with Machines (AHRC grant AH/S01179X/1)
and The Alan Turing Institute (EPSRC grant EP/
N510129/1).

Roller et al., 2012; Speriosu and Baldridge, 2013). Addition-
ally, due to this, we skip toponyms if no correct match has
been found by all the tested methods.

11Here, we do not take into account the time spent on train-
ing the model and generating the candidate vectors, as this
is done offline only once and can be reused for all following
candidate ranking tasks that use the same model and gazetteer.
Training a model on a dataset with ≈670K pairs (including
preprocessing) takes 28m on GPU and 54m on CPU, while
generating and combining candidate vectors takes 39m on
GPU and 204m on CPU.

68

References
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–
283.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Mariona Coll Ardanuy, Kasra Hosseini, Katherine Mc-
Donough, Amrey Krause, Daniel van Strien, and
Federico Nanni. 2020. Deezymatch: A deep learn-
ing approach to geographical candidate selection
through toponym matching. In SIGSPATIAL: Poster
Paper.

Mariona Coll Ardanuy, Katherine McDonough, Am-
rey Krause, Daniel CS Wilson, Kasra Hosseini, and
Daniel van Strien. 2019. Resolving places, past
and present: toponym resolution in historical british
newspapers using multiple resources. In Proc. of
GIR.

Grant DeLozier, Jason Baldridge, and Loretta London.
2015. Gazetteer-independent toponym resolution
using geographic word profiles. In Proc. of AAAI.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Paolo Ferragina and Ugo Scaiella. 2010. Tagme:
on-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th ACM
international conference on Information and knowl-
edge management, pages 1625–1628.

Kara Greenfield, Rajmonda S Caceres, Michael Coury,
Kelly Geyer, Youngjune Gwon, Jason Matterer,
Alyssa C Mensch, Cem Safak Sahin, and Olga
Simek. 2016. A reverse approach to named entity
extraction and linking in microposts. In # Microp-
osts, pages 67–69.

Ben Hachey, Will Radford, Joel Nothman, Matthew
Honnibal, and James R Curran. 2013. Evaluating
entity linking with wikipedia. Artificial intelligence.

Faegheh Hasibi, Krisztian Balog, and Svein Erik Brats-
berg. 2016. On the reproducibility of the tagme en-
tity linking system. In European Conference on In-
formation Retrieval, pages 436–449. Springer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Jeff Johnson, Matthijs Douze, and Herve Jegou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Phong Le and Ivan Titov. 2019. Distant learning for
entity linking with automatic noise detection. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4081–
4090, Florence, Italy. Association for Computational
Linguistics.

Katherine McDonough, Ludovic Moncla, and Matje
van de Camp. 2019. Named entity recognition goes
to old regime france: geographic text analysis for
early modern french corpora. International Journal
of Geographical Information Science, 33(12):2498–
2522.

Paul McNamee, James Mayfield, Dawn Lawrie, Dou-
glas Oard, and David Doermann. 2011a. Cross-
language entity linking. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 255–263, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Paul McNamee, James Mayfield, Dawn Lawrie, Dou-
glas W Oard, and David Doermann. 2011b. Cross-
language entity linking. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 255–263.

Pablo N Mendes, Max Jakob, Andrés Garcı́a-Silva, and
Christian Bizer. 2011. Dbpedia spotlight: shedding
light on the web of documents. In Proceedings of
the 7th international conference on semantic sys-
tems, pages 1–8.

Jose G Moreno, Romaric Besançon, Romain Beau-
mont, Eva D’hondt, Anne-Laure Ligozat, Sophie
Rosset, Xavier Tannier, and Brigitte Grau. 2017.
Combining word and entity embeddings for entity
linking. In European Semantic Web Conference,
pages 337–352. Springer.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Gary Munnelly and Séamus Lawless. 2018. Investigat-
ing entity linking in early english legal documents.
In Proceedings of the 18th ACM/IEEE on Joint Con-
ference on Digital Libraries, pages 59–68.

Alex Olieman, Kaspar Beelen, Milan van Lange, Jaap
Kamps, and Maarten Marx. 2017. Good applica-
tions for crummy entity linkers? the case of corpus
selection in digital humanities. In Proceedings of
the 13th International Conference on Semantic Sys-
tems, pages 81–88.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P19-1400
https://doi.org/10.18653/v1/P19-1400
https://www.aclweb.org/anthology/I11-1029
https://www.aclweb.org/anthology/I11-1029

69

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Julien Plu, Giuseppe Rizzo, and Raphaël Troncy. 2016.
Enhancing entity linking by combining ner models.
In Semantic Web Evaluation Challenge, pages 17–
32. Springer.

Gianluca Quercini, Hanan Samet, Jagan Sankara-
narayanan, and Michael D Lieberman. 2010. De-
termining the spatial reader scopes of news sources
using local lexicons. In Proc. of SIGSPATIAL.

Jonathan Raphael Raiman and Olivier Michel Raiman.
2018. Deeptype: multilingual entity linking by neu-
ral type system evolution. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proc. of EMNLP.

Marco Rovera, Federico Nanni, Simone Paolo
Ponzetto, and Anna Goy. 2017. Domain-specific
named entity disambiguation in historical memoirs.
CLiC-it 2017 11-12 December 2017, Rome, page
287.

Rui Santos, Patricia Murrieta-Flores, Pável Calado, and
Bruno Martins. 2018a. Toponym matching through
deep neural networks. International Journal of Geo-
graphical Information Science.

Rui Santos, Patricia Murrieta-Flores, and Bruno Mar-
tins. 2018b. Learning to combine multiple string
similarity metrics for effective toponym matching.
International journal of digital earth.

Avirup Sil, Gourab Kundu, Radu Florian, and Wael
Hamza. 2018. Neural cross-lingual entity linking.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Michael Speriosu and Jason Baldridge. 2013. Text-
driven toponym resolution using indirect supervi-
sion. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1466–1476, Sofia, Bul-
garia. Association for Computational Linguistics.

Werner Stangl. 2018. ‘the empire strikes back’?: Hgis
de las indias and the postcolonial death star. IJHAC.

Derek Tam, Nicholas Monath, Ari Kobren, Aaron Tray-
lor, Rajarshi Das, and Andrew McCallum. 2019. Op-
timal transport-based alignment of learned character

representations for string similarity. arXiv preprint
arXiv:1907.10165.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.aclweb.org/anthology/P13-1144
https://www.aclweb.org/anthology/P13-1144
https://www.aclweb.org/anthology/P13-1144

